use core::ops::{Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign}; use rand_core::RngCore; use subtle::{ Choice, CtOption, ConstantTimeEq, ConstantTimeLess, ConditionallyNegatable, ConditionallySelectable, }; use crypto_bigint::{Integer, Encoding, U256, U512}; use group::ff::{Field, PrimeField, FieldBits, PrimeFieldBits}; use crate::{constant_time, math, from_uint}; // 2^255 - 19 // Uses saturating_sub because checked_sub isn't available at compile time const MODULUS: U256 = U256::from_u8(1).shl_vartime(255).saturating_sub(&U256::from_u8(19)); const WIDE_MODULUS: U512 = U256::ZERO.concat(&MODULUS); #[derive(Clone, Copy, PartialEq, Eq, Default, Debug)] pub struct FieldElement(U256); /* The following is a valid const definition of sqrt(-1) yet exceeds the const_eval_limit by 24x. Accordingly, it'd only be usable on a nightly compiler with the following crate attributes: #![feature(const_eval_limit)] #![const_eval_limit = "24000000"] const SQRT_M1: FieldElement = { // Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z) // 2 ** ((MODULUS - 1) // 4) % MODULUS let base = U256::from_u8(2); let exp = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4)); const fn mul(x: U256, y: U256) -> U256 { let wide = U256::mul_wide(&x, &y); let wide = U256::concat(&wide.1, &wide.0); wide.wrapping_rem(&WIDE_MODULUS).split().1 } // Perform the pow via multiply and square let mut res = U256::ONE; // Iterate from highest bit to lowest bit let mut bit = 255; loop { if bit != 255 { res = mul(res, res); } // Reverse from little endian to big endian if exp.bit_vartime(bit) == 1 { res = mul(res, base); } if bit == 0 { break; } bit -= 1; } FieldElement(res) }; */ // Use a constant since we can't calculate it at compile-time without a nightly compiler // Even without const_eval_limit, it'd take ~30s to calculate, which isn't worth it const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex( "2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0", )); // Constant useful in calculating square roots (RFC-8032 sqrt8k5's exponent used to calculate y) const MOD_3_8: FieldElement = FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8))); // Constant useful in sqrt_ratio_i (sqrt(u / v)) const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE)); fn reduce(x: U512) -> U256 { U256::from_le_slice(&x.reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32]) } constant_time!(FieldElement, U256); math!( FieldElement, FieldElement, |x, y| U256::add_mod(&x, &y, &MODULUS), |x, y| U256::sub_mod(&x, &y, &MODULUS), |x, y| { let wide = U256::mul_wide(&x, &y); reduce(U512::from((wide.1, wide.0))) } ); from_uint!(FieldElement, U256); impl Neg for FieldElement { type Output = Self; fn neg(self) -> Self::Output { Self(self.0.neg_mod(&MODULUS)) } } impl<'a> Neg for &'a FieldElement { type Output = FieldElement; fn neg(self) -> Self::Output { (*self).neg() } } impl Field for FieldElement { fn random(mut rng: impl RngCore) -> Self { let mut bytes = [0; 64]; rng.fill_bytes(&mut bytes); FieldElement(reduce(U512::from_le_bytes(bytes))) } fn zero() -> Self { Self(U256::ZERO) } fn one() -> Self { Self(U256::ONE) } fn square(&self) -> Self { FieldElement(reduce(self.0.square())) } fn double(&self) -> Self { FieldElement((self.0 << 1).reduce(&MODULUS).unwrap()) } fn invert(&self) -> CtOption { const NEG_2: FieldElement = FieldElement(MODULUS.saturating_sub(&U256::from_u8(2))); CtOption::new(self.pow(NEG_2), !self.is_zero()) } // RFC-8032 sqrt8k5 fn sqrt(&self) -> CtOption { let tv1 = self.pow(MOD_3_8); let tv2 = tv1 * SQRT_M1; let candidate = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self)); CtOption::new(candidate, candidate.square().ct_eq(self)) } } impl PrimeField for FieldElement { type Repr = [u8; 32]; const NUM_BITS: u32 = 255; const CAPACITY: u32 = 254; fn from_repr(bytes: [u8; 32]) -> CtOption { let res = Self(U256::from_le_bytes(bytes)); CtOption::new(res, res.0.ct_lt(&MODULUS)) } fn to_repr(&self) -> [u8; 32] { self.0.to_le_bytes() } // This was set per the specification in the ff crate docs // The number of leading zero bits in the little-endian bit representation of (modulus - 1) const S: u32 = 2; fn is_odd(&self) -> Choice { self.0.is_odd() } fn multiplicative_generator() -> Self { // This was calculated with the method from the ff crate docs // SageMath GF(modulus).primitive_element() 2u64.into() } fn root_of_unity() -> Self { // This was calculated via the formula from the ff crate docs // Self::multiplicative_generator() ** ((modulus - 1) >> Self::S) FieldElement(U256::from_be_hex( "2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0", )) } } impl PrimeFieldBits for FieldElement { type ReprBits = [u8; 32]; fn to_le_bits(&self) -> FieldBits { self.to_repr().into() } fn char_le_bits() -> FieldBits { MODULUS.to_le_bytes().into() } } impl FieldElement { pub fn from_square(value: [u8; 32]) -> FieldElement { let value = U256::from_le_bytes(value); FieldElement(value) * FieldElement(value) } pub fn pow(&self, other: FieldElement) -> FieldElement { let mut table = [FieldElement::one(); 16]; table[1] = *self; for i in 2 .. 16 { table[i] = table[i - 1] * self; } let mut res = FieldElement::one(); let mut bits = 0; for (i, bit) in other.to_le_bits().iter().rev().enumerate() { bits <<= 1; let bit = u8::from(*bit); bits |= bit; if ((i + 1) % 4) == 0 { if i != 3 { for _ in 0 .. 4 { res *= res; } } res *= table[usize::from(bits)]; bits = 0; } } res } /// The square root of u/v, as used for Ed25519 point decoding (RFC 8032 5.1.3) and within /// Ristretto (5.1 Extracting an Inverse Square Root). /// /// The result is only a valid square root if the Choice is true. /// RFC 8032 simply fails if there isn't a square root, leaving any return value undefined. /// Ristretto explicitly returns 0 or sqrt((SQRT_M1 * u) / v). pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) { let i = SQRT_M1; let v3 = v.square() * v; let v7 = v3.square() * v; // Candidate root let mut r = (u * v3) * (u * v7).pow(MOD_5_8); // 8032 3.1 let check = v * r.square(); let correct_sign = check.ct_eq(&u); // 8032 3.2 conditional let neg_u = -u; let flipped_sign = check.ct_eq(&neg_u); // Ristretto Step 5 let flipped_sign_i = check.ct_eq(&(neg_u * i)); // 3.2 set r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i); // Always return the even root, per Ristretto // This doesn't break Ed25519 point decoding as that doesn't expect these steps to return a // specific root // Ed25519 points include a dedicated sign bit to determine which root to use, so at worst // this is a pointless inefficiency r.conditional_negate(r.is_odd()); (correct_sign | flipped_sign, r) } } #[test] fn test_wide_modulus() { let mut wide = [0; 64]; wide[.. 32].copy_from_slice(&MODULUS.to_le_bytes()); assert_eq!(wide, WIDE_MODULUS.to_le_bytes()); } #[test] fn test_sqrt_m1() { // Test equivalence against the known constant value const SQRT_M1_MAGIC: U256 = U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0"); assert_eq!(SQRT_M1.0, SQRT_M1_MAGIC); // Also test equivalence against the result of the formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z) // 2 ** ((MODULUS - 1) // 4) % MODULUS assert_eq!( SQRT_M1, FieldElement::from(2u8).pow(FieldElement( (FieldElement::zero() - FieldElement::one()).0.wrapping_div(&U256::from(4u8)) )) ); } #[test] fn test_field() { ff_group_tests::prime_field::test_prime_field_bits::<_, FieldElement>(&mut rand_core::OsRng); }