use core::fmt::Debug; use std::{rc::Rc, cell::RefCell}; use rand_core::{RngCore, CryptoRng}; use curve25519_dalek::{ constants::ED25519_BASEPOINT_TABLE, traits::Identity, scalar::Scalar, edwards::EdwardsPoint }; use monero::util::ringct::{Key, Clsag}; use group::Group; use dalek_ff_group as dfg; use transcript::Transcript as TranscriptTrait; use frost::{Curve, FrostError, algorithm::Algorithm, MultisigView}; use crate::{ Transcript, hash_to_point, frost::{MultisigError, Ed25519, DLEqProof}, key_image, clsag::{Input, sign_core, verify} }; impl Input { pub fn transcript(&self, transcript: &mut T) { // Ring index transcript.append_message(b"ring_index", &[self.i]); // Ring let mut ring = vec![]; for pair in &self.ring { // Doesn't include global output indexes as CLSAG doesn't care and won't be affected by it // They're just a mutable reference to this data ring.extend(&pair[0].compress().to_bytes()); ring.extend(&pair[1].compress().to_bytes()); } transcript.append_message(b"ring", &ring); // Doesn't include the commitment's parts as the above ring + index includes the commitment // The only potential malleability would be if the G/H relationship is known breaking the // discrete log problem, which breaks everything already } } #[allow(non_snake_case)] #[derive(Clone, Debug)] struct ClsagSignInterim { c: Scalar, s: Scalar, clsag: Clsag, C_out: EdwardsPoint } #[allow(non_snake_case)] #[derive(Clone, Debug)] pub struct Multisig { commitments_H: Vec, image: EdwardsPoint, AH: (dfg::EdwardsPoint, dfg::EdwardsPoint), input: Input, msg: Rc>, mask: Rc>, interim: Option } impl Multisig { pub fn new( input: Input, msg: Rc>, mask: Rc>, ) -> Result { Ok( Multisig { commitments_H: vec![], image: EdwardsPoint::identity(), AH: (dfg::EdwardsPoint::identity(), dfg::EdwardsPoint::identity()), input, msg, mask, interim: None } ) } pub fn serialized_len() -> usize { 3 * (32 + 64) } } impl Algorithm for Multisig { type Transcript = Transcript; type Signature = (Clsag, EdwardsPoint); fn preprocess_addendum( rng: &mut R, view: &MultisigView, nonces: &[dfg::Scalar; 2] ) -> Vec { let (share, proof) = key_image::generate_share(rng, view); #[allow(non_snake_case)] let H = hash_to_point(&view.group_key().0); #[allow(non_snake_case)] let nH = (nonces[0].0 * H, nonces[1].0 * H); let mut serialized = Vec::with_capacity(Multisig::serialized_len()); serialized.extend(share.compress().to_bytes()); serialized.extend(nH.0.compress().to_bytes()); serialized.extend(nH.1.compress().to_bytes()); serialized.extend(&DLEqProof::prove(rng, &nonces[0].0, &H, &nH.0).serialize()); serialized.extend(&DLEqProof::prove(rng, &nonces[1].0, &H, &nH.1).serialize()); serialized.extend(proof); serialized } fn process_addendum( &mut self, view: &MultisigView, l: usize, commitments: &[dfg::EdwardsPoint; 2], serialized: &[u8] ) -> Result<(), FrostError> { if serialized.len() != Multisig::serialized_len() { // Not an optimal error but... Err(FrostError::InvalidCommitmentQuantity(l, 9, serialized.len() / 32))?; } let (share, serialized) = key_image::verify_share(view, l, serialized).map_err(|_| FrostError::InvalidShare(l))?; self.image += share; let alt = &hash_to_point(&self.input.ring[usize::from(self.input.i)][0]); // Uses the same format FROST does for the expected commitments (nonce * G where this is nonce * H) self.commitments_H.extend(&u64::try_from(l).unwrap().to_le_bytes()); self.commitments_H.extend(&serialized[0 .. 64]); #[allow(non_snake_case)] let H = ( ::G_from_slice(&serialized[0 .. 32]).map_err(|_| FrostError::InvalidCommitment(l))?, ::G_from_slice(&serialized[32 .. 64]).map_err(|_| FrostError::InvalidCommitment(l))? ); DLEqProof::deserialize(&serialized[64 .. 128]).ok_or(FrostError::InvalidCommitment(l))?.verify( &alt, &commitments[0], &H.0 ).map_err(|_| FrostError::InvalidCommitment(l))?; DLEqProof::deserialize(&serialized[128 .. 192]).ok_or(FrostError::InvalidCommitment(l))?.verify( &alt, &commitments[1], &H.1 ).map_err(|_| FrostError::InvalidCommitment(l))?; self.AH.0 += H.0; self.AH.1 += H.1; Ok(()) } fn transcript(&self) -> Option { let mut transcript = Self::Transcript::new(b"CLSAG"); self.input.transcript(&mut transcript); // Given the fact there's only ever one possible value for this, this may technically not need // to be committed to. If signing a TX, it's be double committed to thanks to the message // It doesn't hurt to have though and ensures security boundaries are well formed transcript.append_message(b"image", &self.image.compress().to_bytes()); // Given this is guaranteed to match commitments, which FROST commits to, this also technically // doesn't need to be committed to if a canonical serialization is guaranteed // It, again, doesn't hurt to include and ensures security boundaries are well formed transcript.append_message(b"commitments_H", &self.commitments_H); transcript.append_message(b"message", &*self.msg.borrow()); transcript.append_message(b"mask", &self.mask.borrow().to_bytes()); Some(transcript) } fn sign_share( &mut self, view: &MultisigView, nonce_sum: dfg::EdwardsPoint, b: dfg::Scalar, nonce: dfg::Scalar, _: &[u8] ) -> dfg::Scalar { // Apply the binding factor to the H variant of the nonce self.AH.0 += self.AH.1 * b; // Use the transcript to get a seeded random number generator // The transcript contains private data, preventing passive adversaries from recreating this // process even if they have access to commitments (specifically, the ring index being signed // for, along with the mask which should not only require knowing the shared keys yet also the // input commitment mask) let mut rng = self.transcript().unwrap().seeded_rng(b"decoy_responses", None); #[allow(non_snake_case)] let (clsag, c, mu_C, z, mu_P, C_out) = sign_core( &mut rng, &self.msg.borrow(), &self.input, &self.image, *self.mask.borrow(), nonce_sum.0, self.AH.0.0 ); self.interim = Some(ClsagSignInterim { c: c * mu_P, s: c * mu_C * z, clsag, C_out }); let share = dfg::Scalar(nonce.0 - (c * mu_P * view.secret_share().0)); share } fn verify( &self, _: dfg::EdwardsPoint, _: dfg::EdwardsPoint, sum: dfg::Scalar ) -> Option { let interim = self.interim.as_ref().unwrap(); let mut clsag = interim.clsag.clone(); clsag.s[usize::from(self.input.i)] = Key { key: (sum.0 - interim.s).to_bytes() }; if verify(&clsag, &self.msg.borrow(), self.image, &self.input.ring, interim.C_out) { return Some((clsag, interim.C_out)); } return None; } fn verify_share( &self, verification_share: dfg::EdwardsPoint, nonce: dfg::EdwardsPoint, share: dfg::Scalar, ) -> bool { let interim = self.interim.as_ref().unwrap(); return (&share.0 * &ED25519_BASEPOINT_TABLE) == ( nonce.0 - (interim.c * verification_share.0) ); } }