use lazy_static::lazy_static; use rand_core::{RngCore, CryptoRng}; use zeroize::Zeroize; use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint}; use group::{ff::Field, Group}; use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint}; use multiexp::BatchVerifier; use crate::{Commitment, ringct::bulletproofs::core::*}; include!("../../../.generators/generators.rs"); lazy_static! { static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); N]); static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N); } #[derive(Clone, PartialEq, Eq, Debug)] pub struct OriginalStruct { pub(crate) A: DalekPoint, pub(crate) S: DalekPoint, pub(crate) T1: DalekPoint, pub(crate) T2: DalekPoint, pub(crate) taux: DalekScalar, pub(crate) mu: DalekScalar, pub(crate) L: Vec, pub(crate) R: Vec, pub(crate) a: DalekScalar, pub(crate) b: DalekScalar, pub(crate) t: DalekScalar, } impl OriginalStruct { pub(crate) fn prove( rng: &mut R, commitments: &[Commitment], ) -> OriginalStruct { let (logMN, M, MN) = MN(commitments.len()); let (aL, aR) = bit_decompose(commitments); let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate)); let (sL, sR) = ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::>()).split(); let (mut alpha, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR); let (mut rho, S) = alpha_rho(&mut *rng, &GENERATORS, &sL, &sR); let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]); let mut cache = hash_to_scalar(&y.to_bytes()); let z = cache; let l0 = &aL - z; let l1 = sL; let mut zero_twos = Vec::with_capacity(MN); let zpow = ScalarVector::powers(z, M + 2); for j in 0 .. M { for i in 0 .. N { zero_twos.push(zpow[j + 2] * TWO_N[i]); } } let yMN = ScalarVector::powers(y, MN); let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos); let r1 = yMN * sR; let (T1, T2, x, mut taux) = { let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0); let t2 = inner_product(&l1, &r1); let mut tau1 = Scalar::random(&mut *rng); let mut tau2 = Scalar::random(rng); let T1 = prove_multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]); let T2 = prove_multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]); let x = hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]); let taux = (tau2 * (x * x)) + (tau1 * x); tau1.zeroize(); tau2.zeroize(); (T1, T2, x, taux) }; let mu = (x * rho) + alpha; alpha.zeroize(); rho.zeroize(); for (i, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() { taux += zpow[i + 2] * gamma; } let l = &l0 + &(l1 * x); let r = &r0 + &(r1 * x); let t = inner_product(&l, &r); let x_ip = hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]); let mut a = l; let mut b = r; let yinv = y.invert().unwrap(); let yinvpow = ScalarVector::powers(yinv, MN); let mut G_proof = GENERATORS.G[.. a.len()].to_vec(); let mut H_proof = GENERATORS.H[.. a.len()].to_vec(); H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow); let U = *H * x_ip; let mut L = Vec::with_capacity(logMN); let mut R = Vec::with_capacity(logMN); while a.len() != 1 { let (aL, aR) = a.split(); let (bL, bR) = b.split(); let cL = inner_product(&aL, &bR); let cR = inner_product(&aR, &bL); let (G_L, G_R) = G_proof.split_at(aL.len()); let (H_L, H_R) = H_proof.split_at(aL.len()); let L_i = prove_multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U)); let R_i = prove_multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U)); L.push(L_i); R.push(R_i); let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]); let winv = w.invert().unwrap(); a = (aL * w) + (aR * winv); b = (bL * winv) + (bR * w); if a.len() != 1 { G_proof = hadamard_fold(G_L, G_R, winv, w); H_proof = hadamard_fold(H_L, H_R, w, winv); } } OriginalStruct { A: *A, S: *S, T1: *T1, T2: *T2, taux: *taux, mu: *mu, L: L.drain(..).map(|L| *L).collect(), R: R.drain(..).map(|R| *R).collect(), a: *a[0], b: *b[0], t: *t, } } #[must_use] fn verify_core( &self, rng: &mut R, verifier: &mut BatchVerifier, id: ID, commitments: &[DalekPoint], ) -> bool { // Verify commitments are valid if commitments.is_empty() || (commitments.len() > MAX_M) { return false; } // Verify L and R are properly sized if self.L.len() != self.R.len() { return false; } let (logMN, M, MN) = MN(commitments.len()); if self.L.len() != logMN { return false; } // Rebuild all challenges let (mut cache, commitments) = hash_commitments(commitments.iter().cloned()); let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]); let z = hash_to_scalar(&y.to_bytes()); cache = z; let x = hash_cache( &mut cache, &[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()], ); let x_ip = hash_cache( &mut cache, &[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()], ); let mut w = Vec::with_capacity(logMN); let mut winv = Vec::with_capacity(logMN); for (L, R) in self.L.iter().zip(&self.R) { w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()])); winv.push(cache.invert().unwrap()); } // Convert the proof from * INV_EIGHT to its actual form let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor()); let L = self.L.iter().map(normalize).collect::>(); let R = self.R.iter().map(normalize).collect::>(); let T1 = normalize(&self.T1); let T2 = normalize(&self.T2); let A = normalize(&self.A); let S = normalize(&self.S); let commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::>(); // Verify it let mut proof = Vec::with_capacity(4 + commitments.len()); let zpow = ScalarVector::powers(z, M + 3); let ip1y = ScalarVector::powers(y, M * N).sum(); let mut k = -(zpow[2] * ip1y); for j in 1 ..= M { k -= zpow[j + 2] * *IP12; } let y1 = Scalar(self.t) - ((z * ip1y) + k); proof.push((-y1, *H)); proof.push((-Scalar(self.taux), G)); for (j, commitment) in commitments.iter().enumerate() { proof.push((zpow[j + 2], *commitment)); } proof.push((x, T1)); proof.push((x * x, T2)); verifier.queue(&mut *rng, id, proof); proof = Vec::with_capacity(4 + (2 * (MN + logMN))); let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip; proof.push((z3, *H)); proof.push((-Scalar(self.mu), G)); proof.push((Scalar::one(), A)); proof.push((x, S)); { let ypow = ScalarVector::powers(y, MN); let yinv = y.invert().unwrap(); let yinvpow = ScalarVector::powers(yinv, MN); let w_cache = challenge_products(&w, &winv); for i in 0 .. MN { let g = (Scalar(self.a) * w_cache[i]) + z; proof.push((-g, GENERATORS.G[i])); let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)]; h -= ((zpow[(i / N) + 2] * TWO_N[i % N]) + (z * ypow[i])) * yinvpow[i]; proof.push((-h, GENERATORS.H[i])); } } for i in 0 .. logMN { proof.push((w[i] * w[i], L[i])); proof.push((winv[i] * winv[i], R[i])); } verifier.queue(rng, id, proof); true } #[must_use] pub(crate) fn verify( &self, rng: &mut R, commitments: &[DalekPoint], ) -> bool { let mut verifier = BatchVerifier::new(1); if self.verify_core(rng, &mut verifier, (), commitments) { verifier.verify_vartime() } else { false } } #[must_use] pub(crate) fn batch_verify( &self, rng: &mut R, verifier: &mut BatchVerifier, id: ID, commitments: &[DalekPoint], ) -> bool { self.verify_core(rng, verifier, id, commitments) } }