use core::fmt; use std::{sync::Arc, collections::HashMap}; use rand_core::{RngCore, CryptoRng}; use group::{ff::{Field, PrimeField}, Group, GroupEncoding}; use transcript::Transcript; use dleq::{Generators, DLEqProof}; use crate::{ curve::{Curve, F_len, G_len, F_from_slice, G_from_slice}, FrostError, FrostParams, FrostKeys, FrostView, algorithm::Algorithm, validate_map }; /// Pairing of an Algorithm with a FrostKeys instance and this specific signing set #[derive(Clone)] pub struct Params> { algorithm: A, keys: Arc>, view: FrostView, } // Currently public to enable more complex operations as desired, yet solely used in testing impl> Params { pub fn new( algorithm: A, keys: Arc>, included: &[u16], ) -> Result, FrostError> { let mut included = included.to_vec(); (&mut included).sort_unstable(); // Included < threshold if included.len() < usize::from(keys.params.t) { Err(FrostError::InvalidSigningSet("not enough signers".to_string()))?; } // Invalid index if included[0] == 0 { Err(FrostError::InvalidParticipantIndex(included[0], keys.params.n))?; } // OOB index if included[included.len() - 1] > keys.params.n { Err(FrostError::InvalidParticipantIndex(included[included.len() - 1], keys.params.n))?; } // Same signer included multiple times for i in 0 .. included.len() - 1 { if included[i] == included[i + 1] { Err(FrostError::DuplicatedIndex(included[i].into()))?; } } // Not included if !included.contains(&keys.params.i) { Err(FrostError::InvalidSigningSet("signing despite not being included".to_string()))?; } // Out of order arguments to prevent additional cloning Ok(Params { algorithm, view: keys.view(&included).unwrap(), keys }) } pub fn multisig_params(&self) -> FrostParams { self.keys.params } pub fn view(&self) -> FrostView { self.view.clone() } } fn nonce_transcript() -> T { T::new(b"FROST_nonce_dleq") } pub(crate) struct PreprocessPackage { pub(crate) nonces: Vec<[C::F; 2]>, pub(crate) serialized: Vec, } // This library unifies the preprocessing step with signing due to security concerns and to provide // a simpler UX fn preprocess>( rng: &mut R, params: &mut Params, ) -> PreprocessPackage { let mut serialized = Vec::with_capacity(2 * G_len::()); let nonces = params.algorithm.nonces().iter().cloned().map( |mut generators| { let nonces = [ C::random_nonce(params.view().secret_share(), &mut *rng), C::random_nonce(params.view().secret_share(), &mut *rng) ]; let commit = |generator: C::G| { let commitments = [generator * nonces[0], generator * nonces[1]]; [commitments[0].to_bytes().as_ref(), commitments[1].to_bytes().as_ref()].concat().to_vec() }; let first = generators.remove(0); serialized.extend(commit(first)); // Iterate over the rest for generator in generators.iter() { serialized.extend(commit(*generator)); // Provide a DLEq to verify these commitments are for the same nonce // TODO: Provide a single DLEq. See https://github.com/serai-dex/serai/issues/34 for nonce in nonces { DLEqProof::prove( &mut *rng, // Uses an independent transcript as each signer must do this now, yet we validate them // sequentially by the global order. Avoids needing to clone the transcript around &mut nonce_transcript::(), Generators::new(first, *generator), nonce ).serialize(&mut serialized).unwrap(); } } nonces } ).collect::>(); serialized.extend(¶ms.algorithm.preprocess_addendum(rng, ¶ms.view)); PreprocessPackage { nonces, serialized } } #[allow(non_snake_case)] struct Package { B: HashMap>, C::F)>, Rs: Vec>, share: Vec } // Has every signer perform the role of the signature aggregator // Step 1 was already deprecated by performing nonce generation as needed // Step 2 is simply the broadcast round from step 1 fn sign_with_share>( params: &mut Params, our_preprocess: PreprocessPackage, mut commitments: HashMap>, msg: &[u8], ) -> Result<(Package, Vec), FrostError> { let multisig_params = params.multisig_params(); validate_map( &mut commitments, ¶ms.view.included, (multisig_params.i, our_preprocess.serialized) )?; { let transcript = params.algorithm.transcript(); // Domain separate FROST transcript.domain_separate(b"FROST"); } #[allow(non_snake_case)] let mut B = HashMap::::with_capacity(params.view.included.len()); // Get the binding factors let nonces = params.algorithm.nonces(); let mut addendums = HashMap::new(); { let transcript = params.algorithm.transcript(); // Parse the commitments for l in ¶ms.view.included { transcript.append_message(b"participant", &l.to_be_bytes()); let serialized = commitments.remove(l).unwrap(); let mut read_commitment = |c, label| { let commitment = &serialized[c .. (c + G_len::())]; transcript.append_message(label, commitment); G_from_slice::(commitment).map_err(|_| FrostError::InvalidCommitment(*l)) }; // While this doesn't note which nonce/basepoint this is for, those are expected to be // static. Beyond that, they're committed to in the DLEq proof transcripts, ensuring // consistency. While this is suboptimal, it maintains IETF compliance, and Algorithm is // documented accordingly #[allow(non_snake_case)] let mut read_D_E = |c| Ok([ read_commitment(c, b"commitment_D")?, read_commitment(c + G_len::(), b"commitment_E")? ]); let mut c = 0; let mut commitments = Vec::with_capacity(nonces.len()); for (n, nonce_generators) in nonces.clone().iter_mut().enumerate() { commitments.push(Vec::with_capacity(nonce_generators.len())); let first = nonce_generators.remove(0); commitments[n].push(read_D_E(c)?); c += 2 * G_len::(); let mut c = 2 * G_len::(); for generator in nonce_generators { commitments[n].push(read_D_E(c)?); c += 2 * G_len::(); for de in 0 .. 2 { DLEqProof::deserialize( &mut std::io::Cursor::new(&serialized[c .. (c + (2 * F_len::()))]) ).map_err(|_| FrostError::InvalidCommitment(*l))?.verify( &mut nonce_transcript::(), Generators::new(first, *generator), (commitments[n][0][de], commitments[n][commitments[n].len() - 1][de]) ).map_err(|_| FrostError::InvalidCommitment(*l))?; c += 2 * F_len::(); } } addendums.insert(*l, serialized[c ..].to_vec()); } B.insert(*l, (commitments, C::F::zero())); } // Re-format into the FROST-expected rho transcript let mut rho_transcript = A::Transcript::new(b"FROST_rho"); rho_transcript.append_message(b"message", &C::hash_msg(&msg)); rho_transcript.append_message( b"commitments", &C::hash_msg(transcript.challenge(b"commitments").as_ref()) ); // Include the offset, if one exists // While this isn't part of the FROST-expected rho transcript, the offset being here coincides // with another specification if let Some(offset) = params.keys.offset { rho_transcript.append_message(b"offset", offset.to_repr().as_ref()); } // Generate the per-signer binding factors for (l, commitments) in B.iter_mut() { let mut rho_transcript = rho_transcript.clone(); rho_transcript.append_message(b"participant", &l.to_be_bytes()); commitments.1 = C::hash_binding_factor(rho_transcript.challenge(b"rho").as_ref()); } // Merge the rho transcript back into the global one to ensure its advanced while committing to // everything transcript.append_message(b"rho_transcript", rho_transcript.challenge(b"merge").as_ref()); } // Process the addendums for l in ¶ms.view.included { params.algorithm.process_addendum(¶ms.view, *l, &addendums[l])?; } #[allow(non_snake_case)] let mut Rs = Vec::with_capacity(nonces.len()); for n in 0 .. nonces.len() { Rs.push(vec![C::G::identity(); nonces[n].len()]); #[allow(non_snake_case)] for g in 0 .. nonces[n].len() { Rs[n][g] = { B.values().map(|(B, _)| B[n][g][0]).sum::() + B.values().map(|(B, binding)| B[n][g][1] * binding).sum::() }; } } let share = params.algorithm.sign_share( ¶ms.view, &Rs, &our_preprocess.nonces.iter().map( |nonces| nonces[0] + (nonces[1] * B[¶ms.keys.params.i()].1) ).collect::>(), msg ).to_repr().as_ref().to_vec(); Ok((Package { B, Rs, share: share.clone() }, share)) } fn complete>( sign_params: &Params, sign: Package, mut shares: HashMap>, ) -> Result { let params = sign_params.multisig_params(); validate_map(&mut shares, &sign_params.view.included, (params.i(), sign.share))?; let mut responses = HashMap::new(); let mut sum = C::F::zero(); for l in &sign_params.view.included { let part = F_from_slice::(&shares[l]).map_err(|_| FrostError::InvalidShare(*l))?; sum += part; responses.insert(*l, part); } // Perform signature validation instead of individual share validation // For the success route, which should be much more frequent, this should be faster // It also acts as an integrity check of this library's signing function let res = sign_params.algorithm.verify(sign_params.view.group_key, &sign.Rs, sum); if let Some(res) = res { return Ok(res); } // Find out who misbehaved. It may be beneficial to randomly sort this to have detection be // within n / 2 on average, and not gameable to n, though that should be minor for l in &sign_params.view.included { if !sign_params.algorithm.verify_share( sign_params.view.verification_share(*l), &sign.B[l].0.iter().map( |nonces| nonces.iter().map( |commitments| commitments[0] + (commitments[1] * sign.B[l].1) ).collect() ).collect::>(), responses[l] ) { Err(FrostError::InvalidShare(*l))?; } } // If everyone has a valid share and there were enough participants, this should've worked Err( FrostError::InternalError( "everyone had a valid share yet the signature was still invalid".to_string() ) ) } pub trait PreprocessMachine { type Signature: Clone + PartialEq + fmt::Debug; type SignMachine: SignMachine; /// Perform the preprocessing round required in order to sign /// Returns a byte vector which must be transmitted to all parties selected for this signing /// process, over an authenticated channel fn preprocess( self, rng: &mut R ) -> (Self::SignMachine, Vec); } pub trait SignMachine { type SignatureMachine: SignatureMachine; /// Sign a message /// Takes in the participant's commitments, which are expected to be in a Vec where participant /// index = Vec index. None is expected at index 0 to allow for this. None is also expected at /// index i which is locally handled. Returns a byte vector representing a share of the signature /// for every other participant to receive, over an authenticated channel fn sign( self, commitments: HashMap>, msg: &[u8], ) -> Result<(Self::SignatureMachine, Vec), FrostError>; } pub trait SignatureMachine { /// Complete signing /// Takes in everyone elses' shares submitted to us as a Vec, expecting participant index = /// Vec index with None at index 0 and index i. Returns a byte vector representing the serialized /// signature fn complete(self, shares: HashMap>) -> Result; } /// State machine which manages signing for an arbitrary signature algorithm pub struct AlgorithmMachine> { params: Params } pub struct AlgorithmSignMachine> { params: Params, preprocess: PreprocessPackage, } pub struct AlgorithmSignatureMachine> { params: Params, sign: Package, } impl> AlgorithmMachine { /// Creates a new machine to generate a key for the specified curve in the specified multisig pub fn new( algorithm: A, keys: Arc>, included: &[u16], ) -> Result, FrostError> { Ok(AlgorithmMachine { params: Params::new(algorithm, keys, included)? }) } pub(crate) fn unsafe_override_preprocess( self, preprocess: PreprocessPackage ) -> (AlgorithmSignMachine, Vec) { let serialized = preprocess.serialized.clone(); (AlgorithmSignMachine { params: self.params, preprocess }, serialized) } } impl> PreprocessMachine for AlgorithmMachine { type Signature = A::Signature; type SignMachine = AlgorithmSignMachine; fn preprocess( self, rng: &mut R ) -> (Self::SignMachine, Vec) { let mut params = self.params; let preprocess = preprocess::(rng, &mut params); let serialized = preprocess.serialized.clone(); (AlgorithmSignMachine { params, preprocess }, serialized) } } impl> SignMachine for AlgorithmSignMachine { type SignatureMachine = AlgorithmSignatureMachine; fn sign( self, commitments: HashMap>, msg: &[u8] ) -> Result<(Self::SignatureMachine, Vec), FrostError> { let mut params = self.params; let (sign, serialized) = sign_with_share(&mut params, self.preprocess, commitments, msg)?; Ok((AlgorithmSignatureMachine { params, sign }, serialized)) } } impl< C: Curve, A: Algorithm > SignatureMachine for AlgorithmSignatureMachine { fn complete(self, shares: HashMap>) -> Result { complete(&self.params, self.sign, shares) } }