use rand_core::{RngCore, CryptoRng}; use blake2::{digest::Update, Digest, Blake2b512}; use curve25519_dalek::{ constants::ED25519_BASEPOINT_TABLE, scalar::Scalar, edwards::EdwardsPoint }; use dalek_ff_group as dfg; use group::Group; use frost::{Curve, FrostError, algorithm::Algorithm, sign::ParamsView}; use monero::util::ringct::{Key, Clsag}; use crate::{ hash_to_point, frost::{MultisigError, Ed25519, DLEqProof}, clsag::{SignableInput, sign_core, verify} }; #[allow(non_snake_case)] #[derive(Clone, Debug)] struct ClsagSignInterim { c: Scalar, s: Scalar, clsag: Clsag, C_out: EdwardsPoint } #[allow(non_snake_case)] #[derive(Clone, Debug)] pub struct Multisig { b: Vec, AH: dfg::EdwardsPoint, msg: [u8; 32], input: SignableInput, interim: Option } impl Multisig { pub fn new( msg: [u8; 32], input: SignableInput ) -> Result { Ok( Multisig { b: vec![], AH: dfg::EdwardsPoint::identity(), msg, input, interim: None } ) } } impl Algorithm for Multisig { type Signature = (Clsag, EdwardsPoint); fn context(&self) -> Vec { let mut context = vec![]; context.extend(&self.msg); context.extend(&self.input.context()); context } // We arguably don't have to commit to at all thanks to xG and yG being committed to, both of // those being proven to have the same scalar as xH and yH, yet it doesn't hurt fn addendum_commit_len() -> usize { 64 } fn preprocess_addendum( rng: &mut R, view: &ParamsView, nonces: &[dfg::Scalar; 2] ) -> Vec { #[allow(non_snake_case)] let H = hash_to_point(&view.group_key().0); let h0 = nonces[0].0 * H; let h1 = nonces[1].0 * H; // 32 + 32 + 64 + 64 let mut serialized = Vec::with_capacity(192); serialized.extend(h0.compress().to_bytes()); serialized.extend(h1.compress().to_bytes()); serialized.extend(&DLEqProof::prove(rng, &nonces[0].0, &H, &h0).serialize()); serialized.extend(&DLEqProof::prove(rng, &nonces[1].0, &H, &h1).serialize()); serialized } fn process_addendum( &mut self, _: &ParamsView, l: usize, commitments: &[dfg::EdwardsPoint; 2], p: &dfg::Scalar, serialized: &[u8] ) -> Result<(), FrostError> { if serialized.len() != 192 { // Not an optimal error but... Err(FrostError::InvalidCommitmentQuantity(l, 6, serialized.len() / 32))?; } let alt = &hash_to_point(&self.input.ring[self.input.i][0]); let h0 = ::G_from_slice(&serialized[0 .. 32]).map_err(|_| FrostError::InvalidCommitment(l))?; DLEqProof::deserialize(&serialized[64 .. 128]).ok_or(FrostError::InvalidCommitment(l))?.verify( &alt, &commitments[0], &h0 ).map_err(|_| FrostError::InvalidCommitment(l))?; let h1 = ::G_from_slice(&serialized[32 .. 64]).map_err(|_| FrostError::InvalidCommitment(l))?; DLEqProof::deserialize(&serialized[128 .. 192]).ok_or(FrostError::InvalidCommitment(l))?.verify( &alt, &commitments[1], &h1 ).map_err(|_| FrostError::InvalidCommitment(l))?; self.b.extend(&l.to_le_bytes()); self.b.extend(&serialized[0 .. 64]); self.AH += h0 + (h1 * p); Ok(()) } fn sign_share( &mut self, view: &ParamsView, nonce_sum: dfg::EdwardsPoint, nonce: dfg::Scalar, _: &[u8] ) -> dfg::Scalar { // Use everyone's commitments to derive a random source all signers can agree upon // Cannot be manipulated to effect and all signers must, and will, know this let mut rand_source = Blake2b512::new() .chain("clsag_randomness") .chain(&self.b) .finalize() .as_slice() .try_into() .unwrap(); let mask = Scalar::from_bytes_mod_order_wide(&rand_source); rand_source = Blake2b512::digest(&rand_source).as_slice().try_into().unwrap(); #[allow(non_snake_case)] let (clsag, c, mu_C, z, mu_P, C_out) = sign_core( rand_source, &self.msg, &self.input, mask, nonce_sum.0, self.AH.0 ); self.interim = Some(ClsagSignInterim { c: c * mu_P, s: c * mu_C * z, clsag, C_out }); let share = dfg::Scalar(nonce.0 - (c * mu_P * view.secret_share().0)); share } fn verify( &self, _: dfg::EdwardsPoint, _: dfg::EdwardsPoint, sum: dfg::Scalar ) -> Option { let interim = self.interim.as_ref().unwrap(); let mut clsag = interim.clsag.clone(); clsag.s[self.input.i] = Key { key: (sum.0 - interim.s).to_bytes() }; if verify(&clsag, &self.msg, self.input.image, &self.input.ring, interim.C_out) { return Some((clsag, interim.C_out)); } return None; } fn verify_share( &self, verification_share: dfg::EdwardsPoint, nonce: dfg::EdwardsPoint, share: dfg::Scalar, ) -> bool { let interim = self.interim.as_ref().unwrap(); return (&share.0 * &ED25519_BASEPOINT_TABLE) == ( nonce.0 - (interim.c * verification_share.0) ); } }