// Required to be for this entire file, which isn't an issue, as it wouldn't bind to the static #![allow(non_upper_case_globals)] use lazy_static::lazy_static; use rand_core::{RngCore, CryptoRng}; use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint}; use group::{ff::Field, Group}; use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint}; use multiexp::{BatchVerifier, multiexp as multiexp_const}; fn prove_multiexp(pairs: &[(Scalar, EdwardsPoint)]) -> EdwardsPoint { multiexp_const(pairs) * *INV_EIGHT } use crate::{ H as DALEK_H, Commitment, hash, hash_to_scalar as dalek_hash, ringct::{hash_to_point::raw_hash_to_point, bulletproofs::scalar_vector::*}, serialize::write_varint, }; // Bring things into ff/group lazy_static! { static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert().unwrap(); static ref H: EdwardsPoint = EdwardsPoint(*DALEK_H); } fn hash_to_scalar(data: &[u8]) -> Scalar { Scalar(dalek_hash(data)) } // Components common between variants pub(crate) const MAX_M: usize = 16; const N: usize = 64; const MAX_MN: usize = MAX_M * N; struct Generators { G: Vec, H: Vec, } fn generators_core(prefix: &'static [u8]) -> Generators { let mut res = Generators { G: Vec::with_capacity(MAX_MN), H: Vec::with_capacity(MAX_MN) }; for i in 0 .. MAX_MN { let i = 2 * i; let mut even = (*H).compress().to_bytes().to_vec(); even.extend(prefix); let mut odd = even.clone(); write_varint(&i.try_into().unwrap(), &mut even).unwrap(); write_varint(&(i + 1).try_into().unwrap(), &mut odd).unwrap(); res.H.push(EdwardsPoint(raw_hash_to_point(hash(&even)))); res.G.push(EdwardsPoint(raw_hash_to_point(hash(&odd)))); } res } // TODO: Have this take in other, multiplied by G, and do a single multiexp fn vector_exponent(generators: &Generators, a: &ScalarVector, b: &ScalarVector) -> EdwardsPoint { debug_assert_eq!(a.len(), b.len()); (a * &generators.G[.. a.len()]) + (b * &generators.H[.. b.len()]) } fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar { let slice = &[cache.to_bytes().as_ref(), mash.iter().cloned().flatten().collect::>().as_ref()] .concat(); *cache = hash_to_scalar(slice); *cache } fn MN(outputs: usize) -> (usize, usize, usize) { let logN = 6; debug_assert_eq!(N, 1 << logN); let mut logM = 0; let mut M; while { M = 1 << logM; (M <= MAX_M) && (M < outputs) } { logM += 1; } (logM + logN, M, M * N) } fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) { let (_, M, MN) = MN(commitments.len()); let sv = commitments.iter().map(|c| Scalar::from(c.amount)).collect::>(); let mut aL = ScalarVector::new(MN); let mut aR = ScalarVector::new(MN); for j in 0 .. M { for i in (0 .. N).rev() { if (j < sv.len()) && ((sv[j][i / 8] & (1u8 << (i % 8))) != 0) { aL.0[(j * N) + i] = Scalar::one(); } else { aR.0[(j * N) + i] = -Scalar::one(); } } } (aL, aR) } fn hash_commitments>( commitments: C, ) -> (Scalar, Vec) { let V = commitments.into_iter().map(|c| EdwardsPoint(c) * *INV_EIGHT).collect::>(); (hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::>()), V) } fn alpha_rho( rng: &mut R, generators: &Generators, aL: &ScalarVector, aR: &ScalarVector, ) -> (Scalar, EdwardsPoint) { let ar = Scalar::random(rng); (ar, (vector_exponent(generators, aL, aR) + (EdwardsPoint::generator() * ar)) * *INV_EIGHT) } fn LR_statements( a: &ScalarVector, G_i: &[EdwardsPoint], b: &ScalarVector, H_i: &[EdwardsPoint], cL: Scalar, U: EdwardsPoint, ) -> Vec<(Scalar, EdwardsPoint)> { let mut res = a .0 .iter() .cloned() .zip(G_i.iter().cloned()) .chain(b.0.iter().cloned().zip(H_i.iter().cloned())) .collect::>(); res.push((cL, U)); res } lazy_static! { static ref TWO_N: ScalarVector = ScalarVector::powers(Scalar::from(2u8), N); } // Bulletproofs-specific lazy_static! { static ref GENERATORS: Generators = generators_core(b"bulletproof"); static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); N]); static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N); } // Bulletproofs+-specific lazy_static! { static ref GENERATORS_PLUS: Generators = generators_core(b"bulletproof_plus"); static ref TRANSCRIPT_PLUS: [u8; 32] = EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript"))).compress().to_bytes(); } // TRANSCRIPT_PLUS isn't a Scalar, so we need this alternative for the first hash fn hash_plus(mash: &[u8]) -> Scalar { hash_to_scalar(&[&*TRANSCRIPT_PLUS as &[u8], mash].concat()) } #[derive(Clone, PartialEq, Eq, Debug)] pub struct OriginalStruct { pub(crate) A: DalekPoint, pub(crate) S: DalekPoint, pub(crate) T1: DalekPoint, pub(crate) T2: DalekPoint, pub(crate) taux: DalekScalar, pub(crate) mu: DalekScalar, pub(crate) L: Vec, pub(crate) R: Vec, pub(crate) a: DalekScalar, pub(crate) b: DalekScalar, pub(crate) t: DalekScalar, } impl OriginalStruct { #[must_use] fn verify_core( &self, rng: &mut R, verifier: &mut BatchVerifier, id: ID, commitments: &[DalekPoint], ) -> bool { // Verify commitments are valid if commitments.is_empty() || (commitments.len() > MAX_M) { return false; } // Verify L and R are properly sized if self.L.len() != self.R.len() { return false; } let (logMN, M, MN) = MN(commitments.len()); if self.L.len() != logMN { return false; } // Rebuild all challenges let (mut cache, commitments) = hash_commitments(commitments.iter().cloned()); let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]); let z = hash_to_scalar(&y.to_bytes()); cache = z; let x = hash_cache( &mut cache, &[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()], ); let x_ip = hash_cache( &mut cache, &[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()], ); let mut w = Vec::with_capacity(logMN); let mut winv = Vec::with_capacity(logMN); for (L, R) in self.L.iter().zip(&self.R) { w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()])); winv.push(cache.invert().unwrap()); } // Convert the proof from * INV_EIGHT to its actual form let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor()); let L = self.L.iter().map(normalize).collect::>(); let R = self.R.iter().map(normalize).collect::>(); let T1 = normalize(&self.T1); let T2 = normalize(&self.T2); let A = normalize(&self.A); let S = normalize(&self.S); let commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::>(); // Verify it let mut proof = Vec::with_capacity(4 + commitments.len()); let zpow = ScalarVector::powers(z, M + 3); let ip1y = ScalarVector::powers(y, M * N).sum(); let mut k = -(zpow[2] * ip1y); for j in 1 ..= M { k -= zpow[j + 2] * *IP12; } let y1 = Scalar(self.t) - ((z * ip1y) + k); proof.push((-y1, *H)); proof.push((-Scalar(self.taux), G)); for (j, commitment) in commitments.iter().enumerate() { proof.push((zpow[j + 2], *commitment)); } proof.push((x, T1)); proof.push((x * x, T2)); verifier.queue(&mut *rng, id, proof); proof = Vec::with_capacity(4 + (2 * (MN + logMN))); let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip; proof.push((z3, *H)); proof.push((-Scalar(self.mu), G)); proof.push((Scalar::one(), A)); proof.push((x, S)); { let ypow = ScalarVector::powers(y, MN); let yinv = y.invert().unwrap(); let yinvpow = ScalarVector::powers(yinv, MN); let mut w_cache = vec![Scalar::zero(); MN]; w_cache[0] = winv[0]; w_cache[1] = w[0]; for j in 1 .. logMN { let mut slots = (1 << (j + 1)) - 1; while slots > 0 { w_cache[slots] = w_cache[slots / 2] * w[j]; w_cache[slots - 1] = w_cache[slots / 2] * winv[j]; slots = slots.saturating_sub(2); } } for w in &w_cache { debug_assert!(!bool::from(w.is_zero())); } for i in 0 .. MN { let g = (Scalar(self.a) * w_cache[i]) + z; proof.push((-g, GENERATORS.G[i])); let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)]; h -= ((zpow[(i / N) + 2] * TWO_N[i % N]) + (z * ypow[i])) * yinvpow[i]; proof.push((-h, GENERATORS.H[i])); } } for i in 0 .. logMN { proof.push((w[i] * w[i], L[i])); proof.push((winv[i] * winv[i], R[i])); } verifier.queue(rng, id, proof); true } #[must_use] pub(crate) fn verify( &self, rng: &mut R, commitments: &[DalekPoint], ) -> bool { let mut verifier = BatchVerifier::new(4 + commitments.len() + 4 + (2 * (MAX_MN + 10))); if self.verify_core(rng, &mut verifier, (), commitments) { verifier.verify_vartime() } else { false } } #[must_use] pub(crate) fn batch_verify( &self, rng: &mut R, verifier: &mut BatchVerifier, id: ID, commitments: &[DalekPoint], ) -> bool { self.verify_core(rng, verifier, id, commitments) } } #[derive(Clone, PartialEq, Eq, Debug)] pub struct PlusStruct { pub(crate) A: DalekPoint, pub(crate) A1: DalekPoint, pub(crate) B: DalekPoint, pub(crate) r1: DalekScalar, pub(crate) s1: DalekScalar, pub(crate) d1: DalekScalar, pub(crate) L: Vec, pub(crate) R: Vec, } #[allow(clippy::large_enum_variant)] #[derive(Clone, PartialEq, Eq, Debug)] pub enum Bulletproofs { Original(OriginalStruct), Plus(PlusStruct), } pub(crate) fn prove( rng: &mut R, commitments: &[Commitment], ) -> Bulletproofs { let (logMN, M, MN) = MN(commitments.len()); let (aL, aR) = bit_decompose(commitments); let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate)); let (alpha, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR); let (sL, sR) = ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::>()).split(); let (rho, S) = alpha_rho(&mut *rng, &GENERATORS, &sL, &sR); let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]); let mut cache = hash_to_scalar(&y.to_bytes()); let z = cache; let l0 = &aL - z; let l1 = sL; let mut zero_twos = Vec::with_capacity(MN); let zpow = ScalarVector::powers(z, M + 2); for j in 0 .. M { for i in 0 .. N { zero_twos.push(zpow[j + 2] * TWO_N[i]); } } let yMN = ScalarVector::powers(y, MN); let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos); let r1 = yMN * sR; let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0); let t2 = inner_product(&l1, &r1); let tau1 = Scalar::random(&mut *rng); let tau2 = Scalar::random(rng); let T1 = prove_multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]); let T2 = prove_multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]); let x = hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]); let mut taux = (tau2 * (x * x)) + (tau1 * x); for (i, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() { taux += zpow[i + 2] * gamma; } let mu = (x * rho) + alpha; let l = &l0 + &(l1 * x); let r = &r0 + &(r1 * x); let t = inner_product(&l, &r); let x_ip = hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]); let mut a = l; let mut b = r; let yinv = y.invert().unwrap(); let yinvpow = ScalarVector::powers(yinv, MN); let mut G_proof = GENERATORS.G[.. a.len()].to_vec(); let mut H_proof = GENERATORS.H[.. a.len()].to_vec(); H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow); let U = *H * x_ip; let mut L = Vec::with_capacity(logMN); let mut R = Vec::with_capacity(logMN); while a.len() != 1 { let (aL, aR) = a.split(); let (bL, bR) = b.split(); let cL = inner_product(&aL, &bR); let cR = inner_product(&aR, &bL); let (G_L, G_R) = G_proof.split_at(aL.len()); let (H_L, H_R) = H_proof.split_at(aL.len()); let L_i = prove_multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U)); let R_i = prove_multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U)); L.push(L_i); R.push(R_i); let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]); let winv = w.invert().unwrap(); a = (aL * w) + (aR * winv); b = (bL * winv) + (bR * w); if a.len() != 1 { G_proof = hadamard_fold(G_L, G_R, winv, w); H_proof = hadamard_fold(H_L, H_R, w, winv); } } Bulletproofs::Original(OriginalStruct { A: *A, S: *S, T1: *T1, T2: *T2, taux: *taux, mu: *mu, L: L.drain(..).map(|L| *L).collect(), R: R.drain(..).map(|R| *R).collect(), a: *a[0], b: *b[0], t: *t, }) } pub(crate) fn prove_plus( rng: &mut R, commitments: &[Commitment], ) -> Bulletproofs { let (logMN, M, MN) = MN(commitments.len()); let (aL, aR) = bit_decompose(commitments); let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate)); cache = hash_plus(&cache.to_bytes()); let (mut alpha1, A) = alpha_rho(&mut *rng, &GENERATORS_PLUS, &aL, &aR); let y = hash_cache(&mut cache, &[A.compress().to_bytes()]); let mut cache = hash_to_scalar(&y.to_bytes()); let z = cache; let zpow = ScalarVector::even_powers(z, 2 * M); // d[j*N+i] = z**(2*(j+1)) * 2**i let mut d = vec![Scalar::zero(); MN]; for j in 0 .. M { for i in 0 .. N { d[(j * N) + i] = zpow[j] * TWO_N[i]; } } let aL1 = aL - z; let ypow = ScalarVector::powers(y, MN + 2); let mut y_for_d = ScalarVector(ypow.0[1 ..= MN].to_vec()); y_for_d.0.reverse(); let aR1 = (aR + z) + (y_for_d * ScalarVector(d)); for (j, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() { alpha1 += zpow[j] * ypow[MN + 1] * gamma; } let mut a = aL1; let mut b = aR1; let yinv = y.invert().unwrap(); let yinvpow = ScalarVector::powers(yinv, MN); let mut G_proof = GENERATORS_PLUS.G[.. a.len()].to_vec(); let mut H_proof = GENERATORS_PLUS.H[.. a.len()].to_vec(); let mut L = Vec::with_capacity(logMN); let mut R = Vec::with_capacity(logMN); while a.len() != 1 { let (aL, aR) = a.split(); let (bL, bR) = b.split(); let cL = weighted_inner_product(&aL, &bR, y); let cR = weighted_inner_product(&(&aR * ypow[aR.len()]), &bL, y); let (dL, dR) = (Scalar::random(&mut *rng), Scalar::random(&mut *rng)); let (G_L, G_R) = G_proof.split_at(aL.len()); let (H_L, H_R) = H_proof.split_at(aL.len()); let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, *H); L_i.push((dL, G)); let L_i = prove_multiexp(&L_i); L.push(L_i); let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, *H); R_i.push((dR, G)); let R_i = prove_multiexp(&R_i); R.push(R_i); let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]); let winv = w.invert().unwrap(); G_proof = hadamard_fold(G_L, G_R, winv, w * yinvpow[aL.len()]); H_proof = hadamard_fold(H_L, H_R, w, winv); a = (&aL * w) + (aR * (winv * ypow[aL.len()])); b = (bL * winv) + (bR * w); alpha1 += (dL * (w * w)) + (dR * (winv * winv)); } let r = Scalar::random(&mut *rng); let s = Scalar::random(&mut *rng); let d = Scalar::random(&mut *rng); let eta = Scalar::random(rng); let A1 = prove_multiexp(&[ (r, G_proof[0]), (s, H_proof[0]), (d, G), ((r * y * b[0]) + (s * y * a[0]), *H), ]); let B = prove_multiexp(&[(r * y * s, *H), (eta, G)]); let e = hash_cache(&mut cache, &[A1.compress().to_bytes(), B.compress().to_bytes()]); let r1 = (a[0] * e) + r; let s1 = (b[0] * e) + s; let d1 = ((d * e) + eta) + (alpha1 * (e * e)); Bulletproofs::Plus(PlusStruct { A: *A, A1: *A1, B: *B, r1: *r1, s1: *s1, d1: *d1, L: L.drain(..).map(|L| *L).collect(), R: R.drain(..).map(|R| *R).collect(), }) }