use std::collections::HashSet; use lazy_static::lazy_static; use rand_core::{RngCore, CryptoRng}; use rand_distr::{Distribution, Gamma}; use curve25519_dalek::edwards::EdwardsPoint; use monero::VarInt; use crate::{transaction::SpendableOutput, rpc::{RpcError, Rpc}}; const LOCK_WINDOW: usize = 10; const RECENT_WINDOW: usize = 15; const BLOCK_TIME: usize = 120; const BLOCKS_PER_YEAR: usize = 365 * 24 * 60 * 60 / BLOCK_TIME; const TIP_APPLICATION: f64 = (LOCK_WINDOW * BLOCK_TIME) as f64; const MIXINS: usize = 11; lazy_static! { static ref GAMMA: Gamma = Gamma::new(19.28, 1.0 / 1.61).unwrap(); } async fn select_single( rng: &mut R, rpc: &Rpc, height: usize, distribution: &[u64], high: u64, per_second: f64, used: &mut HashSet ) -> Result<(u64, [EdwardsPoint; 2]), RpcError> { let mut o; let mut output = None; while { let mut age = GAMMA.sample(rng).exp(); if age > TIP_APPLICATION { age -= TIP_APPLICATION; } else { age = (rng.next_u64() % u64::try_from(RECENT_WINDOW * BLOCK_TIME).unwrap()) as f64; } o = (age * per_second) as u64; (o >= high) || { o = high - 1 - o; let i = distribution.partition_point(|s| *s < o); let prev = if i == 0 { 0 } else { i - 1 }; let n = distribution[i] - distribution[prev]; o = distribution[prev] + (rng.next_u64() % n); (n == 0) || used.contains(&o) || { output = rpc.get_outputs(&[o], height).await?[0]; output.is_none() } } } {} used.insert(o); Ok((o, output.unwrap())) } // Uses VarInt as this is solely used for key_offsets which is serialized by monero-rs fn offset(mixins: &[u64]) -> Vec { let mut res = vec![VarInt(mixins[0])]; res.resize(mixins.len(), VarInt(0)); for m in (1 .. mixins.len()).rev() { res[m] = VarInt(mixins[m] - mixins[m - 1]); } res } pub(crate) async fn select( rng: &mut R, rpc: &Rpc, height: usize, inputs: &[SpendableOutput] ) -> Result, u8, Vec<[EdwardsPoint; 2]>)>, RpcError> { // Convert the inputs in question to the raw output data let mut outputs = Vec::with_capacity(inputs.len()); for input in inputs { outputs.push(( rpc.get_o_indexes(input.tx).await?[input.o], [input.key, input.commitment.calculate()] )); } let distribution = rpc.get_output_distribution(height).await?; let high = distribution[distribution.len() - 1]; let per_second = { let blocks = distribution.len().min(BLOCKS_PER_YEAR); let outputs = high - distribution[distribution.len().saturating_sub(blocks + 1)]; (outputs as f64) / ((blocks * BLOCK_TIME) as f64) }; let mut used = HashSet::::new(); for o in &outputs { used.insert(o.0); } let mut res = Vec::with_capacity(inputs.len()); for (i, o) in outputs.iter().enumerate() { let mut mixins = Vec::with_capacity(MIXINS); for _ in 0 .. MIXINS { mixins.push(select_single(rng, rpc, height, &distribution, high, per_second, &mut used).await?); } mixins.sort_by(|a, b| a.0.cmp(&b.0)); // Make sure the TX passes the sanity check that the median output is within the last 40% // This actually checks the median is within the last third, a slightly more aggressive boundary, // as the height used in this calculation will be slightly under the height this is sanity // checked against while mixins[MIXINS / 2].0 < (high * 2 / 3) { // If it's not, update the bottom half with new values to ensure the median only moves up for m in 0 .. MIXINS / 2 { // We could not remove this, saving CPU time and removing low values as possibilities, yet // it'd increase the amount of mixins required to create this transaction and some banned // outputs may be the best options used.remove(&mixins[m].0); mixins[m] = select_single(rng, rpc, height, &distribution, high, per_second, &mut used).await?; } mixins.sort_by(|a, b| a.0.cmp(&b.0)); } // Replace the closest selected decoy with the actual let mut replace = 0; let mut distance = u64::MAX; for m in 0 .. mixins.len() { let diff = mixins[m].0.abs_diff(o.0); if diff < distance { replace = m; distance = diff; } } mixins[replace] = outputs[i]; res.push(( offset(&mixins.iter().map(|output| output.0).collect::>()), u8::try_from(replace).unwrap(), mixins.iter().map(|output| output.1).collect() )); } Ok(res) }