use std::{ io::{self, Read, Write}, collections::HashMap, }; use thiserror::Error; use rand_core::{RngCore, CryptoRng}; use transcript::{Transcript, RecommendedTranscript}; use k256::{elliptic_curve::sec1::{Tag, ToEncodedPoint}, Scalar, ProjectivePoint}; use frost::{ curve::{Ciphersuite, Secp256k1}, Participant, ThresholdKeys, FrostError, sign::*, }; use bitcoin::{ hashes::Hash, consensus::encode::{Decodable, serialize}, schnorr::TweakedPublicKey, util::sighash::{SchnorrSighashType, SighashCache, Prevouts}, OutPoint, Script, Sequence, Witness, TxIn, TxOut, PackedLockTime, Transaction, Network, Address, }; use crate::{crypto::x_only, algorithm::Schnorr}; #[rustfmt::skip] // https://github.com/bitcoin/bitcoin/blob/306ccd4927a2efe325c8d84be1bdb79edeb29b04/src/policy/policy.h#L27 const MAX_STANDARD_TX_WEIGHT: u64 = 400_000; #[rustfmt::skip] //https://github.com/bitcoin/bitcoin/blob/a245429d680eb95cf4c0c78e58e63e3f0f5d979a/src/test/transaction_tests.cpp#L815-L816 const DUST: u64 = 674; /// Return the Taproot address for a public key. pub fn address(network: Network, key: ProjectivePoint) -> Option
{ if key.to_encoded_point(true).tag() != Tag::CompressedEvenY { return None; } Some(Address::p2tr_tweaked(TweakedPublicKey::dangerous_assume_tweaked(x_only(&key)), network)) } /// A spendable output. #[derive(Clone, PartialEq, Eq, Debug)] pub struct SpendableOutput { // The scalar offset to obtain the key usable to spend this output. // // This field exists in order to support HDKD schemes. offset: Scalar, // The output to spend. output: TxOut, // The TX ID and vout of the output to spend. outpoint: OutPoint, } impl SpendableOutput { /// Construct a SpendableOutput from an output. pub fn new(key: ProjectivePoint, offset: Option, tx: &Transaction, o: usize) -> Option { let offset = offset.unwrap_or(Scalar::ZERO); // Uses Network::Bitcoin since network is irrelevant here let address = address(Network::Bitcoin, key + (ProjectivePoint::GENERATOR * offset))?; let output = tx.output.get(o)?; if output.script_pubkey == address.script_pubkey() { return Some(SpendableOutput { offset, output: output.clone(), outpoint: OutPoint { txid: tx.txid(), vout: u32::try_from(o).unwrap() }, }); } None } /// The outpoint for this output. pub fn outpoint(&self) -> &OutPoint { &self.outpoint } /// The value of this output. pub fn value(&self) -> u64 { self.output.value } /// Read a SpendableOutput from a generic satisfying Read. pub fn read(r: &mut R) -> io::Result { Ok(SpendableOutput { offset: Secp256k1::read_F(r)?, output: TxOut::consensus_decode(r) .map_err(|_| io::Error::new(io::ErrorKind::Other, "invalid TxOut"))?, outpoint: OutPoint::consensus_decode(r) .map_err(|_| io::Error::new(io::ErrorKind::Other, "invalid OutPoint"))?, }) } /// Write a SpendableOutput to a generic satisfying Write. pub fn write(&self, w: &mut W) -> io::Result<()> { w.write_all(&self.offset.to_bytes())?; w.write_all(&serialize(&self.output))?; w.write_all(&serialize(&self.outpoint)) } /// Serialize a SpendableOutput to a Vec. pub fn serialize(&self) -> Vec { let mut res = vec![]; self.write(&mut res).unwrap(); res } } #[derive(Clone, PartialEq, Eq, Debug, Error)] pub enum TransactionError { #[error("no inputs were specified")] NoInputs, #[error("no outputs were created")] NoOutputs, #[error("a specified payment's amount was less than bitcoin's required minimum")] DustPayment, #[error("too much data was specified")] TooMuchData, #[error("not enough funds for these payments")] NotEnoughFunds, #[error("transaction was too large")] TooLargeTransaction, } /// A signable transaction, clone-able across attempts. #[derive(Clone, PartialEq, Eq, Debug)] pub struct SignableTransaction { tx: Transaction, offsets: Vec, prevouts: Vec, needed_fee: u64, } impl SignableTransaction { fn calculate_weight(inputs: usize, payments: &[(Address, u64)], change: Option<&Address>) -> u64 { // Expand this a full transaction in order to use the bitcoin library's weight function let mut tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: vec![ TxIn { // This is a fixed size // See https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format previous_output: OutPoint::default(), // This is empty for a Taproot spend script_sig: Script::new(), // This is fixed size, yet we do use Sequence::MAX sequence: Sequence::MAX, // Our witnesses contains a single 64-byte signature witness: Witness::from_vec(vec![vec![0; 64]]) }; inputs ], output: payments .iter() // The payment is a fixed size so we don't have to use it here // The script pub key is not of a fixed size and does have to be used here .map(|payment| TxOut { value: payment.1, script_pubkey: payment.0.script_pubkey() }) .collect(), }; if let Some(change) = change { // Use a 0 value since we're currently unsure what the change amount will be, and since // the value is fixed size (so any value could be used here) tx.output.push(TxOut { value: 0, script_pubkey: change.script_pubkey() }); } u64::try_from(tx.weight()).unwrap() } /// Returns the fee necessary for this transaction to achieve the fee rate specified at /// construction. /// /// The actual fee this transaction will use is `sum(inputs) - sum(outputs)`. pub fn needed_fee(&self) -> u64 { self.needed_fee } /// Create a new SignableTransaction. /// /// If a change address is specified, any leftover funds will be sent to it if the leftover funds /// exceed the minimum output amount. If a change address isn't specified, all leftover funds /// will become part of the paid fee. /// /// If data is specified, an OP_RETURN output will be added with it. pub fn new( mut inputs: Vec, payments: &[(Address, u64)], change: Option
, data: Option>, fee_per_weight: u64, ) -> Result { if inputs.is_empty() { Err(TransactionError::NoInputs)?; } if payments.is_empty() && change.is_none() { Err(TransactionError::NoOutputs)?; } for (_, amount) in payments { if *amount < DUST { Err(TransactionError::DustPayment)?; } } if data.as_ref().map(|data| data.len()).unwrap_or(0) > 80 { Err(TransactionError::TooMuchData)?; } let input_sat = inputs.iter().map(|input| input.output.value).sum::(); let offsets = inputs.iter().map(|input| input.offset).collect(); let tx_ins = inputs .iter() .map(|input| TxIn { previous_output: input.outpoint, script_sig: Script::new(), sequence: Sequence::MAX, witness: Witness::new(), }) .collect::>(); let payment_sat = payments.iter().map(|payment| payment.1).sum::(); let mut tx_outs = payments .iter() .map(|payment| TxOut { value: payment.1, script_pubkey: payment.0.script_pubkey() }) .collect::>(); // Add the OP_RETURN output if let Some(data) = data { tx_outs.push(TxOut { value: 0, script_pubkey: Script::new_op_return(&data) }) } let mut weight = Self::calculate_weight(tx_ins.len(), payments, None); let mut needed_fee = fee_per_weight * weight; if input_sat < (payment_sat + needed_fee) { Err(TransactionError::NotEnoughFunds)?; } // If there's a change address, check if there's change to give it if let Some(change) = change.as_ref() { let weight_with_change = Self::calculate_weight(tx_ins.len(), payments, Some(change)); let fee_with_change = fee_per_weight * weight_with_change; if let Some(value) = input_sat.checked_sub(payment_sat + fee_with_change) { if value >= DUST { tx_outs.push(TxOut { value, script_pubkey: change.script_pubkey() }); weight = weight_with_change; needed_fee = fee_with_change; } } } if tx_outs.is_empty() { Err(TransactionError::NoOutputs)?; } if weight > MAX_STANDARD_TX_WEIGHT { Err(TransactionError::TooLargeTransaction)?; } Ok(SignableTransaction { tx: Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: tx_ins, output: tx_outs, }, offsets, prevouts: inputs.drain(..).map(|input| input.output).collect(), needed_fee, }) } /// Create a multisig machine for this transaction. pub async fn multisig( self, keys: ThresholdKeys, mut transcript: RecommendedTranscript, ) -> Result { transcript.domain_separate(b"bitcoin_transaction"); transcript.append_message(b"root_key", keys.group_key().to_encoded_point(true).as_bytes()); // Transcript the inputs and outputs let tx = &self.tx; for input in &tx.input { transcript.append_message(b"input_hash", input.previous_output.txid.as_hash().into_inner()); transcript.append_message(b"input_output_index", input.previous_output.vout.to_le_bytes()); } for payment in &tx.output { transcript.append_message(b"output_script", payment.script_pubkey.as_bytes()); transcript.append_message(b"output_amount", payment.value.to_le_bytes()); } let mut sigs = vec![]; for i in 0 .. tx.input.len() { let mut transcript = transcript.clone(); transcript.append_message(b"signing_input", u32::try_from(i).unwrap().to_le_bytes()); sigs.push(AlgorithmMachine::new( Schnorr::new(transcript), keys.clone().offset(self.offsets[i]), )); } Ok(TransactionMachine { tx: self, sigs }) } } /// A FROST signing machine to produce a Bitcoin transaction. /// /// This does not support caching its preprocess. When sign is called, the message must be empty. /// This will panic if it isn't. pub struct TransactionMachine { tx: SignableTransaction, sigs: Vec>>, } impl PreprocessMachine for TransactionMachine { type Preprocess = Vec>; type Signature = Transaction; type SignMachine = TransactionSignMachine; fn preprocess( mut self, rng: &mut R, ) -> (Self::SignMachine, Self::Preprocess) { let mut preprocesses = Vec::with_capacity(self.sigs.len()); let sigs = self .sigs .drain(..) .map(|sig| { let (sig, preprocess) = sig.preprocess(rng); preprocesses.push(preprocess); sig }) .collect(); (TransactionSignMachine { tx: self.tx, sigs }, preprocesses) } } pub struct TransactionSignMachine { tx: SignableTransaction, sigs: Vec>>, } impl SignMachine for TransactionSignMachine { type Params = (); type Keys = ThresholdKeys; type Preprocess = Vec>; type SignatureShare = Vec>; type SignatureMachine = TransactionSignatureMachine; fn cache(self) -> CachedPreprocess { unimplemented!( "Bitcoin transactions don't support caching their preprocesses due to {}", "being already bound to a specific transaction" ); } fn from_cache( _: (), _: ThresholdKeys, _: CachedPreprocess, ) -> Result { unimplemented!( "Bitcoin transactions don't support caching their preprocesses due to {}", "being already bound to a specific transaction" ); } fn read_preprocess(&self, reader: &mut R) -> io::Result { self.sigs.iter().map(|sig| sig.read_preprocess(reader)).collect() } fn sign( mut self, commitments: HashMap, msg: &[u8], ) -> Result<(TransactionSignatureMachine, Self::SignatureShare), FrostError> { if !msg.is_empty() { panic!("message was passed to the TransactionMachine when it generates its own"); } let commitments = (0 .. self.sigs.len()) .map(|c| { commitments .iter() .map(|(l, commitments)| (*l, commitments[c].clone())) .collect::>() }) .collect::>(); let mut cache = SighashCache::new(&self.tx.tx); // Sign committing to all inputs let prevouts = Prevouts::All(&self.tx.prevouts); let mut shares = Vec::with_capacity(self.sigs.len()); let sigs = self .sigs .drain(..) .enumerate() .map(|(i, sig)| { let (sig, share) = sig.sign( commitments[i].clone(), &cache .taproot_key_spend_signature_hash(i, &prevouts, SchnorrSighashType::Default) .unwrap(), )?; shares.push(share); Ok(sig) }) .collect::>()?; Ok((TransactionSignatureMachine { tx: self.tx.tx, sigs }, shares)) } } pub struct TransactionSignatureMachine { tx: Transaction, sigs: Vec>>, } impl SignatureMachine for TransactionSignatureMachine { type SignatureShare = Vec>; fn read_share(&self, reader: &mut R) -> io::Result { self.sigs.iter().map(|sig| sig.read_share(reader)).collect() } fn complete( mut self, mut shares: HashMap, ) -> Result { for (input, schnorr) in self.tx.input.iter_mut().zip(self.sigs.drain(..)) { let sig = schnorr.complete( shares.iter_mut().map(|(l, shares)| (*l, shares.remove(0))).collect::>(), )?; let mut witness: Witness = Witness::new(); witness.push(sig.as_ref()); input.witness = witness; } Ok(self.tx) } }