We only really care about it as a WASM blob, given `serai-abi`, so there's no
need to compile it twice when it's an expensive blob and we don't care about it
at all.
* Update `build-dependencies` CI action
* Update `develop` to `patch-polkadot-sdk`
Allows us to finally remove the old `serai-dex/substrate` repository _and_
should have CI pass without issue on `develop` again.
The changes made here should be trivial and maintain all prior
behavior/functionality. The most notable are to `chain_spec.rs`, in order to
still use a SCALE-encoded `GenesisConfig` (avoiding `serde_json`).
* CI fixes
* Add `/usr/local/opt/llvm/lib` to paths on macOS hosts
* Attempt to use `LD_LIBRARY_PATH` in macOS GitHub CI
* Use `libp2p 0.56` in `serai-node`
* Correct Windows build dependencies
* Correct `llvm/lib` path on macOS
* Correct how macOS 13 and 14 have different homebrew paths
* Use `sw_vers` instead of `uname` on macOS
Yields the macOS version instead of the kernel's version.
* Replace hard-coded path with the intended env variable to fix macOS 13
* Add `libclang-dev` as dependency to the Debian Dockerfile
* Set the `CODE` storage slot
* Update to a version of substrate without `wasmtimer`
Turns out `wasmtimer` is WASM only. This should restore the node's functioning
on non-WASM environments.
* Restore `clang` as a dependency due to the Debian Dockerfile as we require a C++ compiler
* Move from Debian bookworm to trixie
* Restore `chain_getBlockBin` to the RPC
* Always generate a new key for the P2P network
* Mention every account on-chain before they publish a transaction
`CheckNonce` required accounts have a provider in order to even have their
nonce considered. This shims that by claiming every account has a provider at
the start of a block, if it signs a transaction.
The actual execution could presumably diverge between block building (which
sets the provider before each transaction) and execution (which sets the
providers at the start of the block). It doesn't diverge in our current
configuration and it won't be propagated to `next` (which doesn't use
`CheckNonce`).
Also uses explicit indexes for the `serai_abi::{Call, Event}` `enum`s.
* Adopt `patch-polkadot-sdk` with fixed peering
* Manually insert the authority discovery key into the keystore
I did try pulling in `pallet-authority-discovery` for this, updating
`SessionKeys`, but that was insufficient for whatever reason.
* Update to latest `substrate-wasm-builder`
* Fix timeline for incrementing providers
e1671dd71b incremented the providers for every
single transaction's sender before execution, noting the solution was fragile
but it worked for us at this time. It did not work for us at this time.
The new solution replaces `inc_providers` with direct access to the `Account`
`StorageMap` to increment the providers, achieving the desired goal, _without_
emitting an event (which is ordered, and the disparate order between building
and execution was causing mismatches of the state root).
This solution is also fragile and may also be insufficient. None of this code
exists anymore on `next` however. It just has to work sufficiently for now.
* clippy
`serai_core_pallet` solely defines an accumulator for the events. We use the
traditional `frame_system::Events` to store them for now and enable retrieval.
Adds a deny entry for `is-terminal` to stop it from secretly reappearing.
Restores the `is-terminal` patch for `is_terminal_polyfill` to have one less
external dependency.
Actually use the added `Allocations` abstraction
Start using the sessions API in the validator-sets pallet
Get a `substrate/validator-sets` approximate to compiling
Enables representing IUMT within `StorageValues`. Applied to a variety of
values.
Fixes a bug where `Some([0; 32])` would be considered a valid block anchor.
Consolidates all primitives into a single crate. We didn't benefit from its
fragmentation. I'm hesitant to say the new internal-organization is better (it
may be just as clunky), but it's at least in a single crate (not spread out
over micro-crates).
The ABI is the most distinct. We now entirely own it. Block header hashes don't
directly commit to any BABE data (avoiding potentially ~4 KB headers upon
session changes), and are hashed as borsh (a more widely used codec than
SCALE). There are still Substrate variants, using SCALE and with the BABE data,
but they're prunable from a protocol design perspective.
Defines a transaction as a Vec of Calls, allowing atomic operations.
The prior workflow (now deleted) required manually specifying the packages to
check and only checked the package could compile under the stated MSRV. It
didn't verify it was actually the _minimum_ supported Rust version. The new
version finds the MSRV from scratch to check if the stated MSRV aligns.
Updates stated MSRVs accordingly.
Also removes many explicit dependencies from secq256k1 for their re-exports via
k256. Not directly relevant, just part of tidying up all the `toml`s.
This resolves the conflicts and gets the workspace `Cargo.toml`s to not be
invalid. It doesn't actually get clippy to pass again yet.
Does move `crypto/dkg/src/evrf` into a new `crypto/dkg/evrf` crate (which does
not yet compile).
* Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++
* Initial eVRF implementation
Not quite done yet. It needs to communicate the resulting points and proofs to
extract them from the Pedersen Commitments in order to return those, and then
be tested.
* Add the openings of the PCs to the eVRF as necessary
* Add implementation of secq256k1
* Make DKG Encryption a bit more flexible
No longer requires the use of an EncryptionKeyMessage, and allows pre-defined
keys for encryption.
* Make NUM_BITS an argument for the field macro
* Have the eVRF take a Zeroizing private key
* Initial eVRF-based DKG
* Add embedwards25519 curve
* Inline the eVRF into the DKG library
Due to how we're handling share encryption, we'd either need two circuits or to
dedicate this circuit to the DKG. The latter makes sense at this time.
* Add documentation to the eVRF-based DKG
* Add paragraph claiming robustness
* Update to the new eVRF proof
* Finish routing the eVRF functionality
Still needs errors and serialization, along with a few other TODOs.
* Add initial eVRF DKG test
* Improve eVRF DKG
Updates how we calculcate verification shares, improves performance when
extracting multiple sets of keys, and adds more to the test for it.
* Start using a proper error for the eVRF DKG
* Resolve various TODOs
Supports recovering multiple key shares from the eVRF DKG.
Inlines two loops to save 2**16 iterations.
Adds support for creating a constant time representation of scalars < NUM_BITS.
* Ban zero ECDH keys, document non-zero requirements
* Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519
* Add Ristretto eVRF trait impls
* Support participating multiple times in the eVRF DKG
* Only participate once per key, not once per key share
* Rewrite processor key-gen around the eVRF DKG
Still a WIP.
* Finish routing the new key gen in the processor
Doesn't touch the tests, coordinator, nor Substrate yet.
`cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor`
does pass.
* Deduplicate and better document in processor key_gen
* Update serai-processor tests to the new key gen
* Correct amount of yx coefficients, get processor key gen test to pass
* Add embedded elliptic curve keys to Substrate
* Update processor key gen tests to the eVRF DKG
* Have set_keys take signature_participants, not removed_participants
Now no one is removed from the DKG. Only `t` people publish the key however.
Uses a BitVec for an efficient encoding of the participants.
* Update the coordinator binary for the new DKG
This does not yet update any tests.
* Add sensible Debug to key_gen::[Processor, Coordinator]Message
* Have the DKG explicitly declare how to interpolate its shares
Removes the hack for MuSig where we multiply keys by the inverse of their
lagrange interpolation factor.
* Replace Interpolation::None with Interpolation::Constant
Allows the MuSig DKG to keep the secret share as the original private key,
enabling deriving FROST nonces consistently regardless of the MuSig context.
* Get coordinator tests to pass
* Update spec to the new DKG
* Get clippy to pass across the repo
* cargo machete
* Add an extra sleep to ensure expected ordering of `Participation`s
* Update orchestration
* Remove bad panic in coordinator
It expected ConfirmationShare to be n-of-n, not t-of-n.
* Improve documentation on functions
* Update TX size limit
We now no longer have to support the ridiculous case of having 49 DKG
participations within a 101-of-150 DKG. It does remain quite high due to
needing to _sign_ so many times. It'd may be optimal for parties with multiple
key shares to independently send their preprocesses/shares (despite the
overhead that'll cause with signatures and the transaction structure).
* Correct error in the Processor spec document
* Update a few comments in the validator-sets pallet
* Send/Recv Participation one at a time
Sending all, then attempting to receive all in an expected order, wasn't working
even with notable delays between sending messages. This points to the mempool
not working as expected...
* Correct ThresholdKeys serialization in modular-frost test
* Updating existing TX size limit test for the new DKG parameters
* Increase time allowed for the DKG on the GH CI
* Correct construction of signature_participants in serai-client tests
Fault identified by akil.
* Further contextualize DkgConfirmer by ValidatorSet
Caught by a safety check we wouldn't reuse preprocesses across messages. That
raises the question of we were prior reusing preprocesses (reusing keys)?
Except that'd have caused a variety of signing failures (suggesting we had some
staggered timing avoiding it in practice but yes, this was possible in theory).
* Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests
* Correct shimmed setting of a secq256k1 key
* cargo fmt
* Don't use `[0; 32]` for the embedded keys in the coordinator rotation test
The key_gen function expects the random values already decided.
* Big-endian secq256k1 scalars
Also restores the prior, safer, Encryption::register function.