Implement Bulletproofs in Rust (#69)

* Initial attempt at Bulletproofs

I don't know why this doesn't work. The generators and hash_cache lines
up without issue. AFAICT, the inner product proof is valid as well, as
are all included formulas.

* Add yinvpow asserts

* Clean code

* Correct bad imports

* Fix the definition of TWO_N

Bulletproofs work now :D

* Tidy up a bit

* fmt + clippy

* Compile a variety of XMR dependencies with optimizations, even under dev

The Rust bulletproof implementation is 8% slower than C right now, under 
release. This is acceptable, even if suboptimal. Under debug, they take 
a quarter of a second to two seconds though, depending on the amount of 
outputs, which justifies this move.

* Remove unnecessary deref in BPs
This commit is contained in:
Luke Parker
2022-07-26 02:05:15 -05:00
committed by GitHub
parent 3711e13009
commit ee29f6d6d8
9 changed files with 382 additions and 45 deletions

View File

@@ -0,0 +1,106 @@
use core::ops::{Add, Sub, Mul, Index};
use group::ff::Field;
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp;
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
macro_rules! math_op {
($Op: ident, $op: ident, $f: expr) => {
impl $Op<Scalar> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
impl $Op<Scalar> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
impl $Op<ScalarVector> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: ScalarVector) -> ScalarVector {
assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
impl $Op<&ScalarVector> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: &ScalarVector) -> ScalarVector {
assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
};
}
math_op!(Add, add, |(a, b): (&Scalar, &Scalar)| *a + *b);
math_op!(Sub, sub, |(a, b): (&Scalar, &Scalar)| *a - *b);
math_op!(Mul, mul, |(a, b): (&Scalar, &Scalar)| *a * *b);
impl ScalarVector {
pub(crate) fn new(len: usize) -> ScalarVector {
ScalarVector(vec![Scalar::zero(); len])
}
pub(crate) fn powers(x: Scalar, len: usize) -> ScalarVector {
let mut res = Vec::with_capacity(len);
if len == 0 {
return ScalarVector(res);
}
res.push(Scalar::one());
for i in 1 .. len {
res.push(res[i - 1] * x);
}
ScalarVector(res)
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(self) -> (ScalarVector, ScalarVector) {
let (l, r) = self.0.split_at(self.0.len() / 2);
(ScalarVector(l.to_vec()), ScalarVector(r.to_vec()))
}
}
impl Index<usize> for ScalarVector {
type Output = Scalar;
fn index(&self, index: usize) -> &Scalar {
&self.0[index]
}
}
pub(crate) fn inner_product(a: &ScalarVector, b: &ScalarVector) -> Scalar {
(a * b).0.drain(..).sum()
}
impl Mul<&[EdwardsPoint]> for &ScalarVector {
type Output = EdwardsPoint;
fn mul(self, b: &[EdwardsPoint]) -> EdwardsPoint {
assert_eq!(self.len(), b.len());
multiexp(&self.0.iter().cloned().zip(b.iter().cloned()).collect::<Vec<_>>())
}
}
pub(crate) fn hadamard_fold(
l: &[EdwardsPoint],
r: &[EdwardsPoint],
a: Scalar,
b: Scalar,
) -> Vec<EdwardsPoint> {
let mut res = Vec::with_capacity(l.len() / 2);
for i in 0 .. l.len() {
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
}
res
}