mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 12:19:24 +00:00
Implement Bulletproofs in Rust (#69)
* Initial attempt at Bulletproofs I don't know why this doesn't work. The generators and hash_cache lines up without issue. AFAICT, the inner product proof is valid as well, as are all included formulas. * Add yinvpow asserts * Clean code * Correct bad imports * Fix the definition of TWO_N Bulletproofs work now :D * Tidy up a bit * fmt + clippy * Compile a variety of XMR dependencies with optimizations, even under dev The Rust bulletproof implementation is 8% slower than C right now, under release. This is acceptable, even if suboptimal. Under debug, they take a quarter of a second to two seconds though, depending on the amount of outputs, which justifies this move. * Remove unnecessary deref in BPs
This commit is contained in:
235
coins/monero/src/ringct/bulletproofs/core.rs
Normal file
235
coins/monero/src/ringct/bulletproofs/core.rs
Normal file
@@ -0,0 +1,235 @@
|
||||
// Required to be for this entire file, which isn't an issue, as it wouldn't bind to the static
|
||||
#![allow(non_upper_case_globals)]
|
||||
|
||||
use lazy_static::lazy_static;
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use group::{ff::Field, Group};
|
||||
use dalek_ff_group::{Scalar, EdwardsPoint};
|
||||
|
||||
use multiexp::multiexp;
|
||||
|
||||
use crate::{
|
||||
H as DALEK_H, Commitment, random_scalar as dalek_random, hash, hash_to_scalar as dalek_hash,
|
||||
ringct::{
|
||||
hash_to_point::raw_hash_to_point,
|
||||
bulletproofs::{scalar_vector::*, Bulletproofs},
|
||||
},
|
||||
serialize::write_varint,
|
||||
};
|
||||
|
||||
pub(crate) const MAX_M: usize = 16;
|
||||
pub(crate) const MAX_N: usize = 64;
|
||||
const MAX_MN: usize = MAX_M * MAX_N;
|
||||
|
||||
// Wrap random_scalar and hash_to_scalar into dalek_ff_group
|
||||
fn random_scalar<R: RngCore + CryptoRng>(rng: &mut R) -> Scalar {
|
||||
Scalar(dalek_random(rng))
|
||||
}
|
||||
|
||||
fn hash_to_scalar(data: &[u8]) -> Scalar {
|
||||
let scalar = Scalar(dalek_hash(data));
|
||||
// Monero will explicitly retry on these cases, as them occurring breaks the proof
|
||||
// This library acknowledges their practical impossibility of them occurring, and doesn't bother
|
||||
// to code in logic to handle it. That said, if they ever occur, something must happen in order
|
||||
// to not generate a proof we believe to be valid when it isn't
|
||||
assert!(!bool::from(scalar.is_zero()), "ZERO HASH: {:?}", data);
|
||||
scalar
|
||||
}
|
||||
|
||||
fn generator(i: usize) -> EdwardsPoint {
|
||||
let mut transcript = (*H).compress().to_bytes().to_vec();
|
||||
transcript.extend(b"bulletproof");
|
||||
write_varint(&i.try_into().unwrap(), &mut transcript).unwrap();
|
||||
EdwardsPoint(raw_hash_to_point(hash(&transcript)))
|
||||
}
|
||||
|
||||
lazy_static! {
|
||||
static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert().unwrap();
|
||||
static ref H: EdwardsPoint = EdwardsPoint(*DALEK_H);
|
||||
pub(crate) static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); MAX_N]);
|
||||
pub(crate) static ref TWO_N: ScalarVector = ScalarVector::powers(Scalar::from(2u8), MAX_N);
|
||||
pub(crate) static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N);
|
||||
static ref H_i: Vec<EdwardsPoint> = (0 .. MAX_MN).map(|g| generator(g * 2)).collect();
|
||||
static ref G_i: Vec<EdwardsPoint> = (0 .. MAX_MN).map(|g| generator((g * 2) + 1)).collect();
|
||||
}
|
||||
|
||||
pub(crate) fn vector_exponent(a: &ScalarVector, b: &ScalarVector) -> EdwardsPoint {
|
||||
assert_eq!(a.len(), b.len());
|
||||
(a * &G_i[.. a.len()]) + (b * &H_i[.. b.len()])
|
||||
}
|
||||
|
||||
fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
|
||||
let slice =
|
||||
&[cache.to_bytes().as_ref(), mash.iter().cloned().flatten().collect::<Vec<_>>().as_ref()]
|
||||
.concat();
|
||||
*cache = hash_to_scalar(slice);
|
||||
*cache
|
||||
}
|
||||
|
||||
pub(crate) fn prove<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
commitments: &[Commitment],
|
||||
) -> Bulletproofs {
|
||||
let sv = ScalarVector(commitments.iter().cloned().map(|c| Scalar::from(c.amount)).collect());
|
||||
let gamma = ScalarVector(commitments.iter().cloned().map(|c| Scalar(c.mask)).collect());
|
||||
|
||||
let logN = 6;
|
||||
let N = 1 << logN;
|
||||
assert_eq!(N, 64);
|
||||
|
||||
let mut logM = 0;
|
||||
let mut M;
|
||||
while {
|
||||
M = 1 << logM;
|
||||
(M <= MAX_M) && (M < sv.len())
|
||||
} {
|
||||
logM += 1;
|
||||
}
|
||||
|
||||
let logMN = logM + logN;
|
||||
let MN = M * N;
|
||||
|
||||
let mut aL = ScalarVector::new(MN);
|
||||
let mut aR = ScalarVector::new(MN);
|
||||
|
||||
for j in 0 .. M {
|
||||
for i in (0 .. N).rev() {
|
||||
if (j < sv.len()) && ((sv[j][i / 8] & (1u8 << (i % 8))) != 0) {
|
||||
aL.0[(j * N) + i] = Scalar::one();
|
||||
} else {
|
||||
aR.0[(j * N) + i] = -Scalar::one();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Commitments * INV_EIGHT
|
||||
let V = commitments.iter().map(|c| EdwardsPoint(c.calculate()) * *INV_EIGHT).collect::<Vec<_>>();
|
||||
let mut cache =
|
||||
hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>());
|
||||
|
||||
let alpha = random_scalar(&mut *rng);
|
||||
let A = (vector_exponent(&aL, &aR) + (EdwardsPoint::generator() * alpha)) * *INV_EIGHT;
|
||||
|
||||
let (sL, sR) =
|
||||
ScalarVector((0 .. (MN * 2)).map(|_| random_scalar(&mut *rng)).collect::<Vec<_>>()).split();
|
||||
let rho = random_scalar(&mut *rng);
|
||||
let S = (vector_exponent(&sL, &sR) + (EdwardsPoint::generator() * rho)) * *INV_EIGHT;
|
||||
|
||||
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
|
||||
let mut cache = hash_to_scalar(&y.to_bytes());
|
||||
let z = cache;
|
||||
|
||||
let l0 = &aL - z;
|
||||
let l1 = sL;
|
||||
|
||||
let mut zero_twos = Vec::with_capacity(MN);
|
||||
let zpow = ScalarVector::powers(z, M + 2);
|
||||
for j in 0 .. M {
|
||||
for i in 0 .. N {
|
||||
zero_twos.push(zpow[j + 2] * TWO_N[i]);
|
||||
}
|
||||
}
|
||||
|
||||
let yMN = ScalarVector::powers(y, MN);
|
||||
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
|
||||
let r1 = yMN * sR;
|
||||
|
||||
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
|
||||
let t2 = inner_product(&l1, &r1);
|
||||
|
||||
let tau1 = random_scalar(&mut *rng);
|
||||
let tau2 = random_scalar(&mut *rng);
|
||||
|
||||
let T1 = multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]) * *INV_EIGHT;
|
||||
let T2 = multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]) * *INV_EIGHT;
|
||||
|
||||
let x =
|
||||
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
|
||||
|
||||
let mut taux = (tau2 * (x * x)) + (tau1 * x);
|
||||
for i in 1 ..= sv.len() {
|
||||
taux += zpow[i + 1] * gamma[i - 1];
|
||||
}
|
||||
let mu = (x * rho) + alpha;
|
||||
|
||||
let l = &l0 + &(l1 * x);
|
||||
let r = &r0 + &(r1 * x);
|
||||
|
||||
let t = inner_product(&l, &r);
|
||||
|
||||
let x_ip = hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
|
||||
|
||||
let mut a = l;
|
||||
let mut b = r;
|
||||
|
||||
let yinv = y.invert().unwrap();
|
||||
let yinvpow = ScalarVector::powers(yinv, MN);
|
||||
|
||||
let mut G_proof = G_i[.. a.len()].to_vec();
|
||||
let mut H_proof = H_i[.. a.len()].to_vec();
|
||||
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
|
||||
let U = *H * x_ip;
|
||||
|
||||
let mut L = Vec::with_capacity(logMN);
|
||||
let mut R = Vec::with_capacity(logMN);
|
||||
|
||||
while a.len() != 1 {
|
||||
let (aL, aR) = a.split();
|
||||
let (bL, bR) = b.split();
|
||||
|
||||
let cL = inner_product(&aL, &bR);
|
||||
let cR = inner_product(&aR, &bL);
|
||||
|
||||
let (G_L, G_R) = G_proof.split_at(aL.len());
|
||||
let (H_L, H_R) = H_proof.split_at(aL.len());
|
||||
|
||||
let mut L_i_s = aL
|
||||
.0
|
||||
.iter()
|
||||
.cloned()
|
||||
.zip(G_R.iter().cloned())
|
||||
.chain(bR.0.iter().cloned().zip(H_L.iter().cloned()))
|
||||
.collect::<Vec<_>>();
|
||||
L_i_s.push((cL, U));
|
||||
let L_i = multiexp(&L_i_s) * *INV_EIGHT;
|
||||
|
||||
let mut R_i_s = aR
|
||||
.0
|
||||
.iter()
|
||||
.cloned()
|
||||
.zip(G_L.iter().cloned())
|
||||
.chain(bL.0.iter().cloned().zip(H_R.iter().cloned()))
|
||||
.collect::<Vec<_>>();
|
||||
R_i_s.push((cR, U));
|
||||
let R_i = multiexp(&R_i_s) * *INV_EIGHT;
|
||||
|
||||
L.push(L_i);
|
||||
R.push(R_i);
|
||||
|
||||
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
|
||||
let winv = w.invert().unwrap();
|
||||
|
||||
a = (aL * w) + (aR * winv);
|
||||
b = (bL * winv) + (bR * w);
|
||||
|
||||
if a.len() != 1 {
|
||||
G_proof = hadamard_fold(G_L, G_R, winv, w);
|
||||
H_proof = hadamard_fold(H_L, H_R, w, winv);
|
||||
}
|
||||
}
|
||||
|
||||
Bulletproofs {
|
||||
A: *A,
|
||||
S: *S,
|
||||
T1: *T1,
|
||||
T2: *T2,
|
||||
taux: *taux,
|
||||
mu: *mu,
|
||||
L: L.drain(..).map(|L| *L).collect(),
|
||||
R: R.drain(..).map(|R| *R).collect(),
|
||||
a: *a[0],
|
||||
b: *b[0],
|
||||
t: *t,
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user