One Round DKG (#589)

* Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++

* Initial eVRF implementation

Not quite done yet. It needs to communicate the resulting points and proofs to
extract them from the Pedersen Commitments in order to return those, and then
be tested.

* Add the openings of the PCs to the eVRF as necessary

* Add implementation of secq256k1

* Make DKG Encryption a bit more flexible

No longer requires the use of an EncryptionKeyMessage, and allows pre-defined
keys for encryption.

* Make NUM_BITS an argument for the field macro

* Have the eVRF take a Zeroizing private key

* Initial eVRF-based DKG

* Add embedwards25519 curve

* Inline the eVRF into the DKG library

Due to how we're handling share encryption, we'd either need two circuits or to
dedicate this circuit to the DKG. The latter makes sense at this time.

* Add documentation to the eVRF-based DKG

* Add paragraph claiming robustness

* Update to the new eVRF proof

* Finish routing the eVRF functionality

Still needs errors and serialization, along with a few other TODOs.

* Add initial eVRF DKG test

* Improve eVRF DKG

Updates how we calculcate verification shares, improves performance when
extracting multiple sets of keys, and adds more to the test for it.

* Start using a proper error for the eVRF DKG

* Resolve various TODOs

Supports recovering multiple key shares from the eVRF DKG.

Inlines two loops to save 2**16 iterations.

Adds support for creating a constant time representation of scalars < NUM_BITS.

* Ban zero ECDH keys, document non-zero requirements

* Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519

* Add Ristretto eVRF trait impls

* Support participating multiple times in the eVRF DKG

* Only participate once per key, not once per key share

* Rewrite processor key-gen around the eVRF DKG

Still a WIP.

* Finish routing the new key gen in the processor

Doesn't touch the tests, coordinator, nor Substrate yet.
`cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor`
does pass.

* Deduplicate and better document in processor key_gen

* Update serai-processor tests to the new key gen

* Correct amount of yx coefficients, get processor key gen test to pass

* Add embedded elliptic curve keys to Substrate

* Update processor key gen tests to the eVRF DKG

* Have set_keys take signature_participants, not removed_participants

Now no one is removed from the DKG. Only `t` people publish the key however.

Uses a BitVec for an efficient encoding of the participants.

* Update the coordinator binary for the new DKG

This does not yet update any tests.

* Add sensible Debug to key_gen::[Processor, Coordinator]Message

* Have the DKG explicitly declare how to interpolate its shares

Removes the hack for MuSig where we multiply keys by the inverse of their
lagrange interpolation factor.

* Replace Interpolation::None with Interpolation::Constant

Allows the MuSig DKG to keep the secret share as the original private key,
enabling deriving FROST nonces consistently regardless of the MuSig context.

* Get coordinator tests to pass

* Update spec to the new DKG

* Get clippy to pass across the repo

* cargo machete

* Add an extra sleep to ensure expected ordering of `Participation`s

* Update orchestration

* Remove bad panic in coordinator

It expected ConfirmationShare to be n-of-n, not t-of-n.

* Improve documentation on  functions

* Update TX size limit

We now no longer have to support the ridiculous case of having 49 DKG
participations within a 101-of-150 DKG. It does remain quite high due to
needing to _sign_ so many times. It'd may be optimal for parties with multiple
key shares to independently send their preprocesses/shares (despite the
overhead that'll cause with signatures and the transaction structure).

* Correct error in the Processor spec document

* Update a few comments in the validator-sets pallet

* Send/Recv Participation one at a time

Sending all, then attempting to receive all in an expected order, wasn't working
even with notable delays between sending messages. This points to the mempool
not working as expected...

* Correct ThresholdKeys serialization in modular-frost test

* Updating existing TX size limit test for the new DKG parameters

* Increase time allowed for the DKG on the GH CI

* Correct construction of signature_participants in serai-client tests

Fault identified by akil.

* Further contextualize DkgConfirmer by ValidatorSet

Caught by a safety check we wouldn't reuse preprocesses across messages. That
raises the question of we were prior reusing preprocesses (reusing keys)?
Except that'd have caused a variety of signing failures (suggesting we had some
staggered timing avoiding it in practice but yes, this was possible in theory).

* Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests

* Correct shimmed setting of a secq256k1 key

* cargo fmt

* Don't use `[0; 32]` for the embedded keys in the coordinator rotation test

The key_gen function expects the random values already decided.

* Big-endian secq256k1 scalars

Also restores the prior, safer, Encryption::register function.
This commit is contained in:
Luke Parker
2024-08-16 11:26:07 -07:00
parent 669b2fef72
commit e4e4245ee3
121 changed files with 10388 additions and 2480 deletions

View File

@@ -0,0 +1,39 @@
[package]
name = "secq256k1"
version = "0.1.0"
description = "An implementation of the curve secp256k1 cycles with"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/evrf/secq256k1"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["secp256k1", "secq256k1", "group"]
edition = "2021"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
rustversion = "1"
hex-literal = { version = "0.4", default-features = false }
rand_core = { version = "0.6", default-features = false, features = ["std"] }
zeroize = { version = "^1.5", default-features = false, features = ["std", "zeroize_derive"] }
subtle = { version = "^2.4", default-features = false, features = ["std"] }
generic-array = { version = "0.14", default-features = false }
crypto-bigint = { version = "0.5", default-features = false, features = ["zeroize"] }
k256 = { version = "0.13", default-features = false, features = ["arithmetic"] }
blake2 = { version = "0.10", default-features = false, features = ["std"] }
ciphersuite = { path = "../../ciphersuite", version = "0.4", default-features = false, features = ["std"] }
ec-divisors = { path = "../divisors" }
generalized-bulletproofs-ec-gadgets = { path = "../ec-gadgets" }
[dev-dependencies]
hex = "0.4"
rand_core = { version = "0.6", features = ["std"] }
ff-group-tests = { path = "../../ff-group-tests" }

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022-2024 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,5 @@
# secq256k1
An implementation of the curve secp256k1 cycles with.
Scalars and field elements are encoded in their big-endian formats.

View File

@@ -0,0 +1,295 @@
use zeroize::Zeroize;
// Use black_box when possible
#[rustversion::since(1.66)]
use core::hint::black_box;
#[rustversion::before(1.66)]
fn black_box<T>(val: T) -> T {
val
}
pub(crate) fn u8_from_bool(bit_ref: &mut bool) -> u8 {
let bit_ref = black_box(bit_ref);
let mut bit = black_box(*bit_ref);
let res = black_box(bit as u8);
bit.zeroize();
debug_assert!((res | 1) == 1);
bit_ref.zeroize();
res
}
macro_rules! math_op {
(
$Value: ident,
$Other: ident,
$Op: ident,
$op_fn: ident,
$Assign: ident,
$assign_fn: ident,
$function: expr
) => {
impl $Op<$Other> for $Value {
type Output = $Value;
fn $op_fn(self, other: $Other) -> Self::Output {
Self($function(self.0, other.0))
}
}
impl $Assign<$Other> for $Value {
fn $assign_fn(&mut self, other: $Other) {
self.0 = $function(self.0, other.0);
}
}
impl<'a> $Op<&'a $Other> for $Value {
type Output = $Value;
fn $op_fn(self, other: &'a $Other) -> Self::Output {
Self($function(self.0, other.0))
}
}
impl<'a> $Assign<&'a $Other> for $Value {
fn $assign_fn(&mut self, other: &'a $Other) {
self.0 = $function(self.0, other.0);
}
}
};
}
macro_rules! from_wrapper {
($wrapper: ident, $inner: ident, $uint: ident) => {
impl From<$uint> for $wrapper {
fn from(a: $uint) -> $wrapper {
Self(Residue::new(&$inner::from(a)))
}
}
};
}
macro_rules! field {
(
$FieldName: ident,
$ResidueType: ident,
$MODULUS_STR: ident,
$MODULUS: ident,
$WIDE_MODULUS: ident,
$NUM_BITS: literal,
$MULTIPLICATIVE_GENERATOR: literal,
$S: literal,
$ROOT_OF_UNITY: literal,
$DELTA: literal,
) => {
use core::{
ops::{DerefMut, Add, AddAssign, Neg, Sub, SubAssign, Mul, MulAssign},
iter::{Sum, Product},
};
use subtle::{Choice, CtOption, ConstantTimeEq, ConstantTimeLess, ConditionallySelectable};
use rand_core::RngCore;
use crypto_bigint::{Integer, NonZero, Encoding, impl_modulus};
use ciphersuite::group::ff::{
Field, PrimeField, FieldBits, PrimeFieldBits, helpers::sqrt_ratio_generic,
};
use $crate::backend::u8_from_bool;
fn reduce(x: U512) -> U256 {
U256::from_le_slice(&x.rem(&NonZero::new($WIDE_MODULUS).unwrap()).to_le_bytes()[.. 32])
}
impl ConstantTimeEq for $FieldName {
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
impl ConditionallySelectable for $FieldName {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
$FieldName(Residue::conditional_select(&a.0, &b.0, choice))
}
}
math_op!($FieldName, $FieldName, Add, add, AddAssign, add_assign, |x: $ResidueType, y| x
.add(&y));
math_op!($FieldName, $FieldName, Sub, sub, SubAssign, sub_assign, |x: $ResidueType, y| x
.sub(&y));
math_op!($FieldName, $FieldName, Mul, mul, MulAssign, mul_assign, |x: $ResidueType, y| x
.mul(&y));
from_wrapper!($FieldName, U256, u8);
from_wrapper!($FieldName, U256, u16);
from_wrapper!($FieldName, U256, u32);
from_wrapper!($FieldName, U256, u64);
from_wrapper!($FieldName, U256, u128);
impl Neg for $FieldName {
type Output = $FieldName;
fn neg(self) -> $FieldName {
Self(self.0.neg())
}
}
impl<'a> Neg for &'a $FieldName {
type Output = $FieldName;
fn neg(self) -> Self::Output {
(*self).neg()
}
}
impl $FieldName {
/// Perform an exponentation.
pub fn pow(&self, other: $FieldName) -> $FieldName {
let mut table = [Self(Residue::ONE); 16];
table[1] = *self;
for i in 2 .. 16 {
table[i] = table[i - 1] * self;
}
let mut res = Self(Residue::ONE);
let mut bits = 0;
for (i, mut bit) in other.to_le_bits().iter_mut().rev().enumerate() {
bits <<= 1;
let mut bit = u8_from_bool(bit.deref_mut());
bits |= bit;
bit.zeroize();
if ((i + 1) % 4) == 0 {
if i != 3 {
for _ in 0 .. 4 {
res *= res;
}
}
let mut factor = table[0];
for (j, candidate) in table[1 ..].iter().enumerate() {
let j = j + 1;
factor = Self::conditional_select(&factor, &candidate, usize::from(bits).ct_eq(&j));
}
res *= factor;
bits = 0;
}
}
res
}
}
impl Field for $FieldName {
const ZERO: Self = Self(Residue::ZERO);
const ONE: Self = Self(Residue::ONE);
fn random(mut rng: impl RngCore) -> Self {
let mut bytes = [0; 64];
rng.fill_bytes(&mut bytes);
$FieldName(Residue::new(&reduce(U512::from_be_slice(bytes.as_ref()))))
}
fn square(&self) -> Self {
Self(self.0.square())
}
fn double(&self) -> Self {
*self + self
}
fn invert(&self) -> CtOption<Self> {
let res = self.0.invert();
CtOption::new(Self(res.0), res.1.into())
}
fn sqrt(&self) -> CtOption<Self> {
// (p + 1) // 4, as valid since p % 4 == 3
let mod_plus_one_div_four = $MODULUS.saturating_add(&U256::ONE).wrapping_div(&(4u8.into()));
let res = self.pow(Self($ResidueType::new_checked(&mod_plus_one_div_four).unwrap()));
CtOption::new(res, res.square().ct_eq(self))
}
fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
sqrt_ratio_generic(num, div)
}
}
impl PrimeField for $FieldName {
type Repr = [u8; 32];
const MODULUS: &'static str = $MODULUS_STR;
const NUM_BITS: u32 = $NUM_BITS;
const CAPACITY: u32 = $NUM_BITS - 1;
const TWO_INV: Self = $FieldName($ResidueType::new(&U256::from_u8(2)).invert().0);
const MULTIPLICATIVE_GENERATOR: Self =
Self(Residue::new(&U256::from_u8($MULTIPLICATIVE_GENERATOR)));
const S: u32 = $S;
const ROOT_OF_UNITY: Self = $FieldName(Residue::new(&U256::from_be_hex($ROOT_OF_UNITY)));
const ROOT_OF_UNITY_INV: Self = Self(Self::ROOT_OF_UNITY.0.invert().0);
const DELTA: Self = $FieldName(Residue::new(&U256::from_be_hex($DELTA)));
fn from_repr(bytes: Self::Repr) -> CtOption<Self> {
let res = U256::from_be_slice(&bytes);
CtOption::new($FieldName(Residue::new(&res)), res.ct_lt(&$MODULUS))
}
fn to_repr(&self) -> Self::Repr {
let mut repr = [0; 32];
repr.copy_from_slice(&self.0.retrieve().to_be_bytes());
repr
}
fn is_odd(&self) -> Choice {
self.0.retrieve().is_odd()
}
}
impl PrimeFieldBits for $FieldName {
type ReprBits = [u8; 32];
fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
let mut repr = [0; 32];
repr.copy_from_slice(&self.0.retrieve().to_le_bytes());
repr.into()
}
fn char_le_bits() -> FieldBits<Self::ReprBits> {
let mut repr = [0; 32];
repr.copy_from_slice(&MODULUS.to_le_bytes());
repr.into()
}
}
impl Sum<$FieldName> for $FieldName {
fn sum<I: Iterator<Item = $FieldName>>(iter: I) -> $FieldName {
let mut res = $FieldName::ZERO;
for item in iter {
res += item;
}
res
}
}
impl<'a> Sum<&'a $FieldName> for $FieldName {
fn sum<I: Iterator<Item = &'a $FieldName>>(iter: I) -> $FieldName {
iter.cloned().sum()
}
}
impl Product<$FieldName> for $FieldName {
fn product<I: Iterator<Item = $FieldName>>(iter: I) -> $FieldName {
let mut res = $FieldName::ONE;
for item in iter {
res *= item;
}
res
}
}
impl<'a> Product<&'a $FieldName> for $FieldName {
fn product<I: Iterator<Item = &'a $FieldName>>(iter: I) -> $FieldName {
iter.cloned().product()
}
}
};
}

View File

@@ -0,0 +1,47 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
use generic_array::typenum::{Sum, Diff, Quot, U, U1, U2};
use ciphersuite::group::{ff::PrimeField, Group};
#[macro_use]
mod backend;
mod scalar;
pub use scalar::Scalar;
pub use k256::Scalar as FieldElement;
mod point;
pub use point::Point;
/// Ciphersuite for Secq256k1.
///
/// hash_to_F is implemented with a naive concatenation of the dst and data, allowing transposition
/// between the two. This means `dst: b"abc", data: b"def"`, will produce the same scalar as
/// `dst: "abcdef", data: b""`. Please use carefully, not letting dsts be substrings of each other.
#[derive(Clone, Copy, PartialEq, Eq, Debug, zeroize::Zeroize)]
pub struct Secq256k1;
impl ciphersuite::Ciphersuite for Secq256k1 {
type F = Scalar;
type G = Point;
type H = blake2::Blake2b512;
const ID: &'static [u8] = b"secq256k1";
fn generator() -> Self::G {
Point::generator()
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
use blake2::Digest;
Scalar::wide_reduce(Self::H::digest([dst, data].concat()).as_slice().try_into().unwrap())
}
}
impl generalized_bulletproofs_ec_gadgets::DiscreteLogParameters for Secq256k1 {
type ScalarBits = U<{ Scalar::NUM_BITS as usize }>;
type XCoefficients = Quot<Sum<Self::ScalarBits, U1>, U2>;
type XCoefficientsMinusOne = Diff<Self::XCoefficients, U1>;
type YxCoefficients = Diff<Quot<Sum<Sum<Self::ScalarBits, U1>, U1>, U2>, U2>;
}

View File

@@ -0,0 +1,414 @@
use core::{
ops::{DerefMut, Add, AddAssign, Neg, Sub, SubAssign, Mul, MulAssign},
iter::Sum,
};
use rand_core::RngCore;
use zeroize::Zeroize;
use subtle::{Choice, CtOption, ConstantTimeEq, ConditionallySelectable, ConditionallyNegatable};
use generic_array::{typenum::U33, GenericArray};
use ciphersuite::group::{
ff::{Field, PrimeField, PrimeFieldBits},
Group, GroupEncoding,
prime::PrimeGroup,
};
use crate::{backend::u8_from_bool, Scalar, FieldElement};
fn recover_y(x: FieldElement) -> CtOption<FieldElement> {
// x**3 + B since a = 0
((x.square() * x) + FieldElement::from(7u64)).sqrt()
}
/// Point.
#[derive(Clone, Copy, Debug, Zeroize)]
#[repr(C)]
pub struct Point {
x: FieldElement, // / Z
y: FieldElement, // / Z
z: FieldElement,
}
impl ConstantTimeEq for Point {
fn ct_eq(&self, other: &Self) -> Choice {
let x1 = self.x * other.z;
let x2 = other.x * self.z;
let y1 = self.y * other.z;
let y2 = other.y * self.z;
(self.x.is_zero() & other.x.is_zero()) | (x1.ct_eq(&x2) & y1.ct_eq(&y2))
}
}
impl PartialEq for Point {
fn eq(&self, other: &Point) -> bool {
self.ct_eq(other).into()
}
}
impl Eq for Point {}
impl ConditionallySelectable for Point {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Point {
x: FieldElement::conditional_select(&a.x, &b.x, choice),
y: FieldElement::conditional_select(&a.y, &b.y, choice),
z: FieldElement::conditional_select(&a.z, &b.z, choice),
}
}
}
impl Add for Point {
type Output = Point;
#[allow(non_snake_case)]
fn add(self, other: Self) -> Self {
// add-2015-rcb
let a = FieldElement::ZERO;
let B = FieldElement::from(7u64);
let b3 = B + B + B;
let X1 = self.x;
let Y1 = self.y;
let Z1 = self.z;
let X2 = other.x;
let Y2 = other.y;
let Z2 = other.z;
let t0 = X1 * X2;
let t1 = Y1 * Y2;
let t2 = Z1 * Z2;
let t3 = X1 + Y1;
let t4 = X2 + Y2;
let t3 = t3 * t4;
let t4 = t0 + t1;
let t3 = t3 - t4;
let t4 = X1 + Z1;
let t5 = X2 + Z2;
let t4 = t4 * t5;
let t5 = t0 + t2;
let t4 = t4 - t5;
let t5 = Y1 + Z1;
let X3 = Y2 + Z2;
let t5 = t5 * X3;
let X3 = t1 + t2;
let t5 = t5 - X3;
let Z3 = a * t4;
let X3 = b3 * t2;
let Z3 = X3 + Z3;
let X3 = t1 - Z3;
let Z3 = t1 + Z3;
let Y3 = X3 * Z3;
let t1 = t0 + t0;
let t1 = t1 + t0;
let t2 = a * t2;
let t4 = b3 * t4;
let t1 = t1 + t2;
let t2 = t0 - t2;
let t2 = a * t2;
let t4 = t4 + t2;
let t0 = t1 * t4;
let Y3 = Y3 + t0;
let t0 = t5 * t4;
let X3 = t3 * X3;
let X3 = X3 - t0;
let t0 = t3 * t1;
let Z3 = t5 * Z3;
let Z3 = Z3 + t0;
Point { x: X3, y: Y3, z: Z3 }
}
}
impl AddAssign for Point {
fn add_assign(&mut self, other: Point) {
*self = *self + other;
}
}
impl Add<&Point> for Point {
type Output = Point;
fn add(self, other: &Point) -> Point {
self + *other
}
}
impl AddAssign<&Point> for Point {
fn add_assign(&mut self, other: &Point) {
*self += *other;
}
}
impl Neg for Point {
type Output = Point;
fn neg(self) -> Self {
Point { x: self.x, y: -self.y, z: self.z }
}
}
impl Sub for Point {
type Output = Point;
#[allow(clippy::suspicious_arithmetic_impl)]
fn sub(self, other: Self) -> Self {
self + other.neg()
}
}
impl SubAssign for Point {
fn sub_assign(&mut self, other: Point) {
*self = *self - other;
}
}
impl Sub<&Point> for Point {
type Output = Point;
fn sub(self, other: &Point) -> Point {
self - *other
}
}
impl SubAssign<&Point> for Point {
fn sub_assign(&mut self, other: &Point) {
*self -= *other;
}
}
impl Group for Point {
type Scalar = Scalar;
fn random(mut rng: impl RngCore) -> Self {
loop {
let mut bytes = GenericArray::default();
rng.fill_bytes(bytes.as_mut());
let opt = Self::from_bytes(&bytes);
if opt.is_some().into() {
return opt.unwrap();
}
}
}
fn identity() -> Self {
Point { x: FieldElement::ZERO, y: FieldElement::ONE, z: FieldElement::ZERO }
}
fn generator() -> Self {
Point {
x: FieldElement::from_repr(
hex_literal::hex!("0000000000000000000000000000000000000000000000000000000000000001")
.into(),
)
.unwrap(),
y: FieldElement::from_repr(
hex_literal::hex!("0C7C97045A2074634909ABDF82C9BD0248916189041F2AF0C1B800D1FFC278C0")
.into(),
)
.unwrap(),
z: FieldElement::ONE,
}
}
fn is_identity(&self) -> Choice {
self.z.ct_eq(&FieldElement::ZERO)
}
#[allow(non_snake_case)]
fn double(&self) -> Self {
// dbl-2007-bl
let a = FieldElement::ZERO;
let X1 = self.x;
let Y1 = self.y;
let Z1 = self.z;
let XX = X1 * X1;
let ZZ = Z1 * Z1;
let w = (a * ZZ) + XX.double() + XX;
let s = (Y1 * Z1).double();
let ss = s * s;
let sss = s * ss;
let R = Y1 * s;
let RR = R * R;
let B = X1 + R;
let B = (B * B) - XX - RR;
let h = (w * w) - B.double();
let X3 = h * s;
let Y3 = w * (B - h) - RR.double();
let Z3 = sss;
let res = Self { x: X3, y: Y3, z: Z3 };
// If self is identity, res will not be well-formed
// Accordingly, we return self if self was the identity
Self::conditional_select(&res, self, self.is_identity())
}
}
impl Sum<Point> for Point {
fn sum<I: Iterator<Item = Point>>(iter: I) -> Point {
let mut res = Self::identity();
for i in iter {
res += i;
}
res
}
}
impl<'a> Sum<&'a Point> for Point {
fn sum<I: Iterator<Item = &'a Point>>(iter: I) -> Point {
Point::sum(iter.cloned())
}
}
impl Mul<Scalar> for Point {
type Output = Point;
fn mul(self, mut other: Scalar) -> Point {
// Precompute the optimal amount that's a multiple of 2
let mut table = [Point::identity(); 16];
table[1] = self;
for i in 2 .. 16 {
table[i] = table[i - 1] + self;
}
let mut res = Self::identity();
let mut bits = 0;
for (i, mut bit) in other.to_le_bits().iter_mut().rev().enumerate() {
bits <<= 1;
let mut bit = u8_from_bool(bit.deref_mut());
bits |= bit;
bit.zeroize();
if ((i + 1) % 4) == 0 {
if i != 3 {
for _ in 0 .. 4 {
res = res.double();
}
}
let mut term = table[0];
for (j, candidate) in table[1 ..].iter().enumerate() {
let j = j + 1;
term = Self::conditional_select(&term, candidate, usize::from(bits).ct_eq(&j));
}
res += term;
bits = 0;
}
}
other.zeroize();
res
}
}
impl MulAssign<Scalar> for Point {
fn mul_assign(&mut self, other: Scalar) {
*self = *self * other;
}
}
impl Mul<&Scalar> for Point {
type Output = Point;
fn mul(self, other: &Scalar) -> Point {
self * *other
}
}
impl MulAssign<&Scalar> for Point {
fn mul_assign(&mut self, other: &Scalar) {
*self *= *other;
}
}
impl GroupEncoding for Point {
type Repr = GenericArray<u8, U33>;
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
// Extract and clear the sign bit
let sign = Choice::from(bytes[0] & 1);
// Parse x, recover y
FieldElement::from_repr(*GenericArray::from_slice(&bytes[1 ..])).and_then(|x| {
let is_identity = x.is_zero();
let y = recover_y(x).map(|mut y| {
y.conditional_negate(y.is_odd().ct_eq(&!sign));
y
});
// If this the identity, set y to 1
let y =
CtOption::conditional_select(&y, &CtOption::new(FieldElement::ONE, 1.into()), is_identity);
// Create the point if we have a y solution
let point = y.map(|y| Point { x, y, z: FieldElement::ONE });
let not_negative_zero = !(is_identity & sign);
// Only return the point if it isn't -0 and the sign byte wasn't malleated
CtOption::conditional_select(
&CtOption::new(Point::identity(), 0.into()),
&point,
not_negative_zero & ((bytes[0] & 1).ct_eq(&bytes[0])),
)
})
}
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
Point::from_bytes(bytes)
}
fn to_bytes(&self) -> Self::Repr {
let Some(z) = Option::<FieldElement>::from(self.z.invert()) else {
return *GenericArray::from_slice(&[0; 33]);
};
let x = self.x * z;
let y = self.y * z;
let mut res = *GenericArray::from_slice(&[0; 33]);
res[1 ..].as_mut().copy_from_slice(&x.to_repr());
// The following conditional select normalizes the sign to 0 when x is 0
let y_sign = u8::conditional_select(&y.is_odd().unwrap_u8(), &0, x.ct_eq(&FieldElement::ZERO));
res[0] |= y_sign;
res
}
}
impl PrimeGroup for Point {}
impl ec_divisors::DivisorCurve for Point {
type FieldElement = FieldElement;
fn a() -> Self::FieldElement {
FieldElement::from(0u64)
}
fn b() -> Self::FieldElement {
FieldElement::from(7u64)
}
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
let z: Self::FieldElement = Option::from(point.z.invert())?;
Some((point.x * z, point.y * z))
}
}
#[test]
fn test_curve() {
ff_group_tests::group::test_prime_group_bits::<_, Point>(&mut rand_core::OsRng);
}
#[test]
fn generator() {
assert_eq!(
Point::generator(),
Point::from_bytes(GenericArray::from_slice(&hex_literal::hex!(
"000000000000000000000000000000000000000000000000000000000000000001"
)))
.unwrap()
);
}
#[test]
fn zero_x_is_invalid() {
assert!(Option::<FieldElement>::from(recover_y(FieldElement::ZERO)).is_none());
}
// Checks random won't infinitely loop
#[test]
fn random() {
Point::random(&mut rand_core::OsRng);
}

View File

@@ -0,0 +1,52 @@
use zeroize::{DefaultIsZeroes, Zeroize};
use crypto_bigint::{
U256, U512,
modular::constant_mod::{ResidueParams, Residue},
};
const MODULUS_STR: &str = "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F";
impl_modulus!(SecQ, U256, MODULUS_STR);
type ResidueType = Residue<SecQ, { SecQ::LIMBS }>;
/// The Scalar field of secq256k1.
///
/// This is equivalent to the field secp256k1 is defined over.
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
#[repr(C)]
pub struct Scalar(pub(crate) ResidueType);
impl DefaultIsZeroes for Scalar {}
pub(crate) const MODULUS: U256 = U256::from_be_hex(MODULUS_STR);
const WIDE_MODULUS: U512 = U512::from_be_hex(concat!(
"0000000000000000000000000000000000000000000000000000000000000000",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F",
));
field!(
Scalar,
ResidueType,
MODULUS_STR,
MODULUS,
WIDE_MODULUS,
256,
3,
1,
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
"0000000000000000000000000000000000000000000000000000000000000009",
);
impl Scalar {
/// Perform a wide reduction, presumably to obtain a non-biased Scalar field element.
pub fn wide_reduce(bytes: [u8; 64]) -> Scalar {
Scalar(Residue::new(&reduce(U512::from_le_slice(bytes.as_ref()))))
}
}
#[test]
fn test_scalar_field() {
ff_group_tests::prime_field::test_prime_field_bits::<_, Scalar>(&mut rand_core::OsRng);
}