mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-09 12:49:23 +00:00
One Round DKG (#589)
* Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
This commit is contained in:
287
crypto/evrf/divisors/src/lib.rs
Normal file
287
crypto/evrf/divisors/src/lib.rs
Normal file
@@ -0,0 +1,287 @@
|
||||
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
|
||||
#![doc = include_str!("../README.md")]
|
||||
#![deny(missing_docs)]
|
||||
#![allow(non_snake_case)]
|
||||
|
||||
use group::{
|
||||
ff::{Field, PrimeField},
|
||||
Group,
|
||||
};
|
||||
|
||||
mod poly;
|
||||
pub use poly::*;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
/// A curve usable with this library.
|
||||
pub trait DivisorCurve: Group {
|
||||
/// An element of the field this curve is defined over.
|
||||
type FieldElement: PrimeField;
|
||||
|
||||
/// The A in the curve equation y^2 = x^3 + A x + B.
|
||||
fn a() -> Self::FieldElement;
|
||||
/// The B in the curve equation y^2 = x^3 + A x + B.
|
||||
fn b() -> Self::FieldElement;
|
||||
|
||||
/// y^2 - x^3 - A x - B
|
||||
///
|
||||
/// Section 2 of the security proofs define this modulus.
|
||||
///
|
||||
/// This MUST NOT be overriden.
|
||||
// TODO: Move to an extension trait
|
||||
fn divisor_modulus() -> Poly<Self::FieldElement> {
|
||||
Poly {
|
||||
// 0 y**1, 1 y*2
|
||||
y_coefficients: vec![Self::FieldElement::ZERO, Self::FieldElement::ONE],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![
|
||||
// - A x
|
||||
-Self::a(),
|
||||
// 0 x^2
|
||||
Self::FieldElement::ZERO,
|
||||
// - x^3
|
||||
-Self::FieldElement::ONE,
|
||||
],
|
||||
// - B
|
||||
zero_coefficient: -Self::b(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a point to its x and y coordinates.
|
||||
///
|
||||
/// Returns None if passed the point at infinity.
|
||||
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)>;
|
||||
}
|
||||
|
||||
/// Calculate the slope and intercept between two points.
|
||||
///
|
||||
/// This function panics when `a @ infinity`, `b @ infinity`, `a == b`, or when `a == -b`.
|
||||
pub(crate) fn slope_intercept<C: DivisorCurve>(a: C, b: C) -> (C::FieldElement, C::FieldElement) {
|
||||
let (ax, ay) = C::to_xy(a).unwrap();
|
||||
debug_assert_eq!(C::divisor_modulus().eval(ax, ay), C::FieldElement::ZERO);
|
||||
let (bx, by) = C::to_xy(b).unwrap();
|
||||
debug_assert_eq!(C::divisor_modulus().eval(bx, by), C::FieldElement::ZERO);
|
||||
let slope = (by - ay) *
|
||||
Option::<C::FieldElement>::from((bx - ax).invert())
|
||||
.expect("trying to get slope/intercept of points sharing an x coordinate");
|
||||
let intercept = by - (slope * bx);
|
||||
debug_assert!(bool::from((ay - (slope * ax) - intercept).is_zero()));
|
||||
debug_assert!(bool::from((by - (slope * bx) - intercept).is_zero()));
|
||||
(slope, intercept)
|
||||
}
|
||||
|
||||
// The line interpolating two points.
|
||||
fn line<C: DivisorCurve>(a: C, mut b: C) -> Poly<C::FieldElement> {
|
||||
// If they're both the point at infinity, we simply set the line to one
|
||||
if bool::from(a.is_identity() & b.is_identity()) {
|
||||
return Poly {
|
||||
y_coefficients: vec![],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![],
|
||||
zero_coefficient: C::FieldElement::ONE,
|
||||
};
|
||||
}
|
||||
|
||||
// If either point is the point at infinity, or these are additive inverses, the line is
|
||||
// `1 * x - x`. The first `x` is a term in the polynomial, the `x` is the `x` coordinate of these
|
||||
// points (of which there is one, as the second point is either at infinity or has a matching `x`
|
||||
// coordinate).
|
||||
if bool::from(a.is_identity() | b.is_identity()) || (a == -b) {
|
||||
let (x, _) = C::to_xy(if !bool::from(a.is_identity()) { a } else { b }).unwrap();
|
||||
return Poly {
|
||||
y_coefficients: vec![],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![C::FieldElement::ONE],
|
||||
zero_coefficient: -x,
|
||||
};
|
||||
}
|
||||
|
||||
// If the points are equal, we use the line interpolating the sum of these points with the point
|
||||
// at infinity
|
||||
if a == b {
|
||||
b = -a.double();
|
||||
}
|
||||
|
||||
let (slope, intercept) = slope_intercept::<C>(a, b);
|
||||
|
||||
// Section 4 of the proofs explicitly state the line `L = y - lambda * x - mu`
|
||||
// y - (slope * x) - intercept
|
||||
Poly {
|
||||
y_coefficients: vec![C::FieldElement::ONE],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![-slope],
|
||||
zero_coefficient: -intercept,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a divisor interpolating the following points.
|
||||
///
|
||||
/// Returns None if:
|
||||
/// - No points were passed in
|
||||
/// - The points don't sum to the point at infinity
|
||||
/// - A passed in point was the point at infinity
|
||||
#[allow(clippy::new_ret_no_self)]
|
||||
pub fn new_divisor<C: DivisorCurve>(points: &[C]) -> Option<Poly<C::FieldElement>> {
|
||||
// A single point is either the point at infinity, or this doesn't sum to the point at infinity
|
||||
// Both cause us to return None
|
||||
if points.len() < 2 {
|
||||
None?;
|
||||
}
|
||||
if points.iter().sum::<C>() != C::identity() {
|
||||
None?;
|
||||
}
|
||||
|
||||
// Create the initial set of divisors
|
||||
let mut divs = vec![];
|
||||
let mut iter = points.iter().copied();
|
||||
while let Some(a) = iter.next() {
|
||||
if a == C::identity() {
|
||||
None?;
|
||||
}
|
||||
|
||||
let b = iter.next();
|
||||
if b == Some(C::identity()) {
|
||||
None?;
|
||||
}
|
||||
|
||||
// Draw the line between those points
|
||||
divs.push((a + b.unwrap_or(C::identity()), line::<C>(a, b.unwrap_or(-a))));
|
||||
}
|
||||
|
||||
let modulus = C::divisor_modulus();
|
||||
|
||||
// Pair them off until only one remains
|
||||
while divs.len() > 1 {
|
||||
let mut next_divs = vec![];
|
||||
// If there's an odd amount of divisors, carry the odd one out to the next iteration
|
||||
if (divs.len() % 2) == 1 {
|
||||
next_divs.push(divs.pop().unwrap());
|
||||
}
|
||||
|
||||
while let Some((a, a_div)) = divs.pop() {
|
||||
let (b, b_div) = divs.pop().unwrap();
|
||||
|
||||
// Merge the two divisors
|
||||
let numerator = a_div.mul_mod(b_div, &modulus).mul_mod(line::<C>(a, b), &modulus);
|
||||
let denominator = line::<C>(a, -a).mul_mod(line::<C>(b, -b), &modulus);
|
||||
let (q, r) = numerator.div_rem(&denominator);
|
||||
assert_eq!(r, Poly::zero());
|
||||
|
||||
next_divs.push((a + b, q));
|
||||
}
|
||||
|
||||
divs = next_divs;
|
||||
}
|
||||
|
||||
// Return the unified divisor
|
||||
Some(divs.remove(0).1)
|
||||
}
|
||||
|
||||
#[cfg(any(test, feature = "pasta"))]
|
||||
mod pasta {
|
||||
use group::{ff::Field, Curve};
|
||||
use pasta_curves::{
|
||||
arithmetic::{Coordinates, CurveAffine},
|
||||
Ep, Fp, Eq, Fq,
|
||||
};
|
||||
use crate::DivisorCurve;
|
||||
|
||||
impl DivisorCurve for Ep {
|
||||
type FieldElement = Fp;
|
||||
|
||||
fn a() -> Self::FieldElement {
|
||||
Self::FieldElement::ZERO
|
||||
}
|
||||
fn b() -> Self::FieldElement {
|
||||
Self::FieldElement::from(5u64)
|
||||
}
|
||||
|
||||
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
|
||||
Option::<Coordinates<_>>::from(point.to_affine().coordinates())
|
||||
.map(|coords| (*coords.x(), *coords.y()))
|
||||
}
|
||||
}
|
||||
|
||||
impl DivisorCurve for Eq {
|
||||
type FieldElement = Fq;
|
||||
|
||||
fn a() -> Self::FieldElement {
|
||||
Self::FieldElement::ZERO
|
||||
}
|
||||
fn b() -> Self::FieldElement {
|
||||
Self::FieldElement::from(5u64)
|
||||
}
|
||||
|
||||
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
|
||||
Option::<Coordinates<_>>::from(point.to_affine().coordinates())
|
||||
.map(|coords| (*coords.x(), *coords.y()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(any(test, feature = "ed25519"))]
|
||||
mod ed25519 {
|
||||
use group::{
|
||||
ff::{Field, PrimeField},
|
||||
Group, GroupEncoding,
|
||||
};
|
||||
use dalek_ff_group::{FieldElement, EdwardsPoint};
|
||||
|
||||
impl crate::DivisorCurve for EdwardsPoint {
|
||||
type FieldElement = FieldElement;
|
||||
|
||||
// Wei25519 a/b
|
||||
// https://www.ietf.org/archive/id/draft-ietf-lwig-curve-representations-02.pdf E.3
|
||||
fn a() -> Self::FieldElement {
|
||||
let mut be_bytes =
|
||||
hex::decode("2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa984914a144").unwrap();
|
||||
be_bytes.reverse();
|
||||
let le_bytes = be_bytes;
|
||||
Self::FieldElement::from_repr(le_bytes.try_into().unwrap()).unwrap()
|
||||
}
|
||||
fn b() -> Self::FieldElement {
|
||||
let mut be_bytes =
|
||||
hex::decode("7b425ed097b425ed097b425ed097b425ed097b425ed097b4260b5e9c7710c864").unwrap();
|
||||
be_bytes.reverse();
|
||||
let le_bytes = be_bytes;
|
||||
|
||||
Self::FieldElement::from_repr(le_bytes.try_into().unwrap()).unwrap()
|
||||
}
|
||||
|
||||
// https://www.ietf.org/archive/id/draft-ietf-lwig-curve-representations-02.pdf E.2
|
||||
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
|
||||
if bool::from(point.is_identity()) {
|
||||
None?;
|
||||
}
|
||||
|
||||
// Extract the y coordinate from the compressed point
|
||||
let mut edwards_y = point.to_bytes();
|
||||
let x_is_odd = edwards_y[31] >> 7;
|
||||
edwards_y[31] &= (1 << 7) - 1;
|
||||
let edwards_y = Self::FieldElement::from_repr(edwards_y).unwrap();
|
||||
|
||||
// Recover the x coordinate
|
||||
let edwards_y_sq = edwards_y * edwards_y;
|
||||
let D = -Self::FieldElement::from(121665u64) *
|
||||
Self::FieldElement::from(121666u64).invert().unwrap();
|
||||
let mut edwards_x = ((edwards_y_sq - Self::FieldElement::ONE) *
|
||||
((D * edwards_y_sq) + Self::FieldElement::ONE).invert().unwrap())
|
||||
.sqrt()
|
||||
.unwrap();
|
||||
if u8::from(bool::from(edwards_x.is_odd())) != x_is_odd {
|
||||
edwards_x = -edwards_x;
|
||||
}
|
||||
|
||||
// Calculate the x and y coordinates for Wei25519
|
||||
let edwards_y_plus_one = Self::FieldElement::ONE + edwards_y;
|
||||
let one_minus_edwards_y = Self::FieldElement::ONE - edwards_y;
|
||||
let wei_x = (edwards_y_plus_one * one_minus_edwards_y.invert().unwrap()) +
|
||||
(Self::FieldElement::from(486662u64) * Self::FieldElement::from(3u64).invert().unwrap());
|
||||
let c =
|
||||
(-(Self::FieldElement::from(486662u64) + Self::FieldElement::from(2u64))).sqrt().unwrap();
|
||||
let wei_y = c * edwards_y_plus_one * (one_minus_edwards_y * edwards_x).invert().unwrap();
|
||||
Some((wei_x, wei_y))
|
||||
}
|
||||
}
|
||||
}
|
||||
430
crypto/evrf/divisors/src/poly.rs
Normal file
430
crypto/evrf/divisors/src/poly.rs
Normal file
@@ -0,0 +1,430 @@
|
||||
use core::ops::{Add, Neg, Sub, Mul, Rem};
|
||||
|
||||
use zeroize::Zeroize;
|
||||
|
||||
use group::ff::PrimeField;
|
||||
|
||||
/// A structure representing a Polynomial with x**i, y**i, and y**i * x**j terms.
|
||||
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
|
||||
pub struct Poly<F: PrimeField + From<u64>> {
|
||||
/// c[i] * y ** (i + 1)
|
||||
pub y_coefficients: Vec<F>,
|
||||
/// c[i][j] * y ** (i + 1) x ** (j + 1)
|
||||
pub yx_coefficients: Vec<Vec<F>>,
|
||||
/// c[i] * x ** (i + 1)
|
||||
pub x_coefficients: Vec<F>,
|
||||
/// Coefficient for x ** 0, y ** 0, and x ** 0 y ** 0 (the coefficient for 1)
|
||||
pub zero_coefficient: F,
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Poly<F> {
|
||||
/// A polynomial for zero.
|
||||
pub fn zero() -> Self {
|
||||
Poly {
|
||||
y_coefficients: vec![],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![],
|
||||
zero_coefficient: F::ZERO,
|
||||
}
|
||||
}
|
||||
|
||||
/// The amount of terms in the polynomial.
|
||||
#[allow(clippy::len_without_is_empty)]
|
||||
#[must_use]
|
||||
pub fn len(&self) -> usize {
|
||||
self.y_coefficients.len() +
|
||||
self.yx_coefficients.iter().map(Vec::len).sum::<usize>() +
|
||||
self.x_coefficients.len() +
|
||||
usize::from(u8::from(self.zero_coefficient != F::ZERO))
|
||||
}
|
||||
|
||||
// Remove high-order zero terms, allowing the length of the vectors to equal the amount of terms.
|
||||
pub(crate) fn tidy(&mut self) {
|
||||
let tidy = |vec: &mut Vec<F>| {
|
||||
while vec.last() == Some(&F::ZERO) {
|
||||
vec.pop();
|
||||
}
|
||||
};
|
||||
|
||||
tidy(&mut self.y_coefficients);
|
||||
for vec in self.yx_coefficients.iter_mut() {
|
||||
tidy(vec);
|
||||
}
|
||||
while self.yx_coefficients.last() == Some(&vec![]) {
|
||||
self.yx_coefficients.pop();
|
||||
}
|
||||
tidy(&mut self.x_coefficients);
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Add<&Self> for Poly<F> {
|
||||
type Output = Self;
|
||||
|
||||
fn add(mut self, other: &Self) -> Self {
|
||||
// Expand to be the neeeded size
|
||||
while self.y_coefficients.len() < other.y_coefficients.len() {
|
||||
self.y_coefficients.push(F::ZERO);
|
||||
}
|
||||
while self.yx_coefficients.len() < other.yx_coefficients.len() {
|
||||
self.yx_coefficients.push(vec![]);
|
||||
}
|
||||
for i in 0 .. other.yx_coefficients.len() {
|
||||
while self.yx_coefficients[i].len() < other.yx_coefficients[i].len() {
|
||||
self.yx_coefficients[i].push(F::ZERO);
|
||||
}
|
||||
}
|
||||
while self.x_coefficients.len() < other.x_coefficients.len() {
|
||||
self.x_coefficients.push(F::ZERO);
|
||||
}
|
||||
|
||||
// Perform the addition
|
||||
for (i, coeff) in other.y_coefficients.iter().enumerate() {
|
||||
self.y_coefficients[i] += coeff;
|
||||
}
|
||||
for (i, coeffs) in other.yx_coefficients.iter().enumerate() {
|
||||
for (j, coeff) in coeffs.iter().enumerate() {
|
||||
self.yx_coefficients[i][j] += coeff;
|
||||
}
|
||||
}
|
||||
for (i, coeff) in other.x_coefficients.iter().enumerate() {
|
||||
self.x_coefficients[i] += coeff;
|
||||
}
|
||||
self.zero_coefficient += other.zero_coefficient;
|
||||
|
||||
self.tidy();
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Neg for Poly<F> {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(mut self) -> Self {
|
||||
for y_coeff in self.y_coefficients.iter_mut() {
|
||||
*y_coeff = -*y_coeff;
|
||||
}
|
||||
for yx_coeffs in self.yx_coefficients.iter_mut() {
|
||||
for yx_coeff in yx_coeffs.iter_mut() {
|
||||
*yx_coeff = -*yx_coeff;
|
||||
}
|
||||
}
|
||||
for x_coeff in self.x_coefficients.iter_mut() {
|
||||
*x_coeff = -*x_coeff;
|
||||
}
|
||||
self.zero_coefficient = -self.zero_coefficient;
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Sub for Poly<F> {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, other: Self) -> Self {
|
||||
self + &-other
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Mul<F> for Poly<F> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(mut self, scalar: F) -> Self {
|
||||
if scalar == F::ZERO {
|
||||
return Poly::zero();
|
||||
}
|
||||
|
||||
for y_coeff in self.y_coefficients.iter_mut() {
|
||||
*y_coeff *= scalar;
|
||||
}
|
||||
for coeffs in self.yx_coefficients.iter_mut() {
|
||||
for coeff in coeffs.iter_mut() {
|
||||
*coeff *= scalar;
|
||||
}
|
||||
}
|
||||
for x_coeff in self.x_coefficients.iter_mut() {
|
||||
*x_coeff *= scalar;
|
||||
}
|
||||
self.zero_coefficient *= scalar;
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Poly<F> {
|
||||
#[must_use]
|
||||
fn shift_by_x(mut self, power_of_x: usize) -> Self {
|
||||
if power_of_x == 0 {
|
||||
return self;
|
||||
}
|
||||
|
||||
// Shift up every x coefficient
|
||||
for _ in 0 .. power_of_x {
|
||||
self.x_coefficients.insert(0, F::ZERO);
|
||||
for yx_coeffs in &mut self.yx_coefficients {
|
||||
yx_coeffs.insert(0, F::ZERO);
|
||||
}
|
||||
}
|
||||
|
||||
// Move the zero coefficient
|
||||
self.x_coefficients[power_of_x - 1] = self.zero_coefficient;
|
||||
self.zero_coefficient = F::ZERO;
|
||||
|
||||
// Move the y coefficients
|
||||
// Start by creating yx coefficients with the necessary powers of x
|
||||
let mut yx_coefficients_to_push = vec![];
|
||||
while yx_coefficients_to_push.len() < power_of_x {
|
||||
yx_coefficients_to_push.push(F::ZERO);
|
||||
}
|
||||
// Now, ensure the yx coefficients has the slots for the y coefficients we're moving
|
||||
while self.yx_coefficients.len() < self.y_coefficients.len() {
|
||||
self.yx_coefficients.push(yx_coefficients_to_push.clone());
|
||||
}
|
||||
// Perform the move
|
||||
for (i, y_coeff) in self.y_coefficients.drain(..).enumerate() {
|
||||
self.yx_coefficients[i][power_of_x - 1] = y_coeff;
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn shift_by_y(mut self, power_of_y: usize) -> Self {
|
||||
if power_of_y == 0 {
|
||||
return self;
|
||||
}
|
||||
|
||||
// Shift up every y coefficient
|
||||
for _ in 0 .. power_of_y {
|
||||
self.y_coefficients.insert(0, F::ZERO);
|
||||
self.yx_coefficients.insert(0, vec![]);
|
||||
}
|
||||
|
||||
// Move the zero coefficient
|
||||
self.y_coefficients[power_of_y - 1] = self.zero_coefficient;
|
||||
self.zero_coefficient = F::ZERO;
|
||||
|
||||
// Move the x coefficients
|
||||
self.yx_coefficients[power_of_y - 1] = self.x_coefficients;
|
||||
self.x_coefficients = vec![];
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Mul for Poly<F> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, other: Self) -> Self {
|
||||
let mut res = self.clone() * other.zero_coefficient;
|
||||
|
||||
for (i, y_coeff) in other.y_coefficients.iter().enumerate() {
|
||||
let scaled = self.clone() * *y_coeff;
|
||||
res = res + &scaled.shift_by_y(i + 1);
|
||||
}
|
||||
|
||||
for (y_i, yx_coeffs) in other.yx_coefficients.iter().enumerate() {
|
||||
for (x_i, yx_coeff) in yx_coeffs.iter().enumerate() {
|
||||
let scaled = self.clone() * *yx_coeff;
|
||||
res = res + &scaled.shift_by_y(y_i + 1).shift_by_x(x_i + 1);
|
||||
}
|
||||
}
|
||||
|
||||
for (i, x_coeff) in other.x_coefficients.iter().enumerate() {
|
||||
let scaled = self.clone() * *x_coeff;
|
||||
res = res + &scaled.shift_by_x(i + 1);
|
||||
}
|
||||
|
||||
res.tidy();
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Poly<F> {
|
||||
/// Perform multiplication mod `modulus`.
|
||||
#[must_use]
|
||||
pub fn mul_mod(self, other: Self, modulus: &Self) -> Self {
|
||||
((self % modulus) * (other % modulus)) % modulus
|
||||
}
|
||||
|
||||
/// Perform division, returning the result and remainder.
|
||||
///
|
||||
/// Panics upon division by zero, with undefined behavior if a non-tidy divisor is used.
|
||||
#[must_use]
|
||||
pub fn div_rem(self, divisor: &Self) -> (Self, Self) {
|
||||
// The leading y coefficient and associated x coefficient.
|
||||
let leading_y = |poly: &Self| -> (_, _) {
|
||||
if poly.y_coefficients.len() > poly.yx_coefficients.len() {
|
||||
(poly.y_coefficients.len(), 0)
|
||||
} else if !poly.yx_coefficients.is_empty() {
|
||||
(poly.yx_coefficients.len(), poly.yx_coefficients.last().unwrap().len())
|
||||
} else {
|
||||
(0, poly.x_coefficients.len())
|
||||
}
|
||||
};
|
||||
|
||||
let (div_y, div_x) = leading_y(divisor);
|
||||
// If this divisor is actually a scalar, don't perform long division
|
||||
if (div_y == 0) && (div_x == 0) {
|
||||
return (self * divisor.zero_coefficient.invert().unwrap(), Poly::zero());
|
||||
}
|
||||
|
||||
// Remove leading terms until the value is less than the divisor
|
||||
let mut quotient: Poly<F> = Poly::zero();
|
||||
let mut remainder = self.clone();
|
||||
loop {
|
||||
// If there's nothing left to divide, return
|
||||
if remainder == Poly::zero() {
|
||||
break;
|
||||
}
|
||||
|
||||
let (rem_y, rem_x) = leading_y(&remainder);
|
||||
if (rem_y < div_y) || (rem_x < div_x) {
|
||||
break;
|
||||
}
|
||||
|
||||
let get = |poly: &Poly<F>, y_pow: usize, x_pow: usize| -> F {
|
||||
if (y_pow == 0) && (x_pow == 0) {
|
||||
poly.zero_coefficient
|
||||
} else if x_pow == 0 {
|
||||
poly.y_coefficients[y_pow - 1]
|
||||
} else if y_pow == 0 {
|
||||
poly.x_coefficients[x_pow - 1]
|
||||
} else {
|
||||
poly.yx_coefficients[y_pow - 1][x_pow - 1]
|
||||
}
|
||||
};
|
||||
let coeff_numerator = get(&remainder, rem_y, rem_x);
|
||||
let coeff_denominator = get(divisor, div_y, div_x);
|
||||
|
||||
// We want coeff_denominator scaled by x to equal coeff_numerator
|
||||
// x * d = n
|
||||
// n / d = x
|
||||
let mut quotient_term = Poly::zero();
|
||||
// Because this is the coefficient for the leading term of a tidied polynomial, it must be
|
||||
// non-zero
|
||||
quotient_term.zero_coefficient = coeff_numerator * coeff_denominator.invert().unwrap();
|
||||
|
||||
// Add the necessary yx powers
|
||||
let delta_y = rem_y - div_y;
|
||||
let delta_x = rem_x - div_x;
|
||||
let quotient_term = quotient_term.shift_by_y(delta_y).shift_by_x(delta_x);
|
||||
|
||||
let to_remove = quotient_term.clone() * divisor.clone();
|
||||
debug_assert_eq!(get(&to_remove, rem_y, rem_x), coeff_numerator);
|
||||
|
||||
remainder = remainder - to_remove;
|
||||
quotient = quotient + "ient_term;
|
||||
}
|
||||
debug_assert_eq!((quotient.clone() * divisor.clone()) + &remainder, self);
|
||||
|
||||
(quotient, remainder)
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Rem<&Self> for Poly<F> {
|
||||
type Output = Self;
|
||||
|
||||
fn rem(self, modulus: &Self) -> Self {
|
||||
self.div_rem(modulus).1
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField + From<u64>> Poly<F> {
|
||||
/// Evaluate this polynomial with the specified x/y values.
|
||||
///
|
||||
/// Panics on polynomials with terms whose powers exceed 2**64.
|
||||
#[must_use]
|
||||
pub fn eval(&self, x: F, y: F) -> F {
|
||||
let mut res = self.zero_coefficient;
|
||||
for (pow, coeff) in
|
||||
self.y_coefficients.iter().enumerate().map(|(i, v)| (u64::try_from(i + 1).unwrap(), v))
|
||||
{
|
||||
res += y.pow([pow]) * coeff;
|
||||
}
|
||||
for (y_pow, coeffs) in
|
||||
self.yx_coefficients.iter().enumerate().map(|(i, v)| (u64::try_from(i + 1).unwrap(), v))
|
||||
{
|
||||
let y_pow = y.pow([y_pow]);
|
||||
for (x_pow, coeff) in
|
||||
coeffs.iter().enumerate().map(|(i, v)| (u64::try_from(i + 1).unwrap(), v))
|
||||
{
|
||||
res += y_pow * x.pow([x_pow]) * coeff;
|
||||
}
|
||||
}
|
||||
for (pow, coeff) in
|
||||
self.x_coefficients.iter().enumerate().map(|(i, v)| (u64::try_from(i + 1).unwrap(), v))
|
||||
{
|
||||
res += x.pow([pow]) * coeff;
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
/// Differentiate a polynomial, reduced by a modulus with a leading y term y**2 x**0, by x and y.
|
||||
///
|
||||
/// This function panics if a y**2 term is present within the polynomial.
|
||||
#[must_use]
|
||||
pub fn differentiate(&self) -> (Poly<F>, Poly<F>) {
|
||||
assert!(self.y_coefficients.len() <= 1);
|
||||
assert!(self.yx_coefficients.len() <= 1);
|
||||
|
||||
// Differentation by x practically involves:
|
||||
// - Dropping everything without an x component
|
||||
// - Shifting everything down a power of x
|
||||
// - Multiplying the new coefficient by the power it prior was used with
|
||||
let diff_x = {
|
||||
let mut diff_x = Poly {
|
||||
y_coefficients: vec![],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![],
|
||||
zero_coefficient: F::ZERO,
|
||||
};
|
||||
if !self.x_coefficients.is_empty() {
|
||||
let mut x_coeffs = self.x_coefficients.clone();
|
||||
diff_x.zero_coefficient = x_coeffs.remove(0);
|
||||
diff_x.x_coefficients = x_coeffs;
|
||||
|
||||
let mut prior_x_power = F::from(2);
|
||||
for x_coeff in &mut diff_x.x_coefficients {
|
||||
*x_coeff *= prior_x_power;
|
||||
prior_x_power += F::ONE;
|
||||
}
|
||||
}
|
||||
|
||||
if !self.yx_coefficients.is_empty() {
|
||||
let mut yx_coeffs = self.yx_coefficients[0].clone();
|
||||
diff_x.y_coefficients = vec![yx_coeffs.remove(0)];
|
||||
diff_x.yx_coefficients = vec![yx_coeffs];
|
||||
|
||||
let mut prior_x_power = F::from(2);
|
||||
for yx_coeff in &mut diff_x.yx_coefficients[0] {
|
||||
*yx_coeff *= prior_x_power;
|
||||
prior_x_power += F::ONE;
|
||||
}
|
||||
}
|
||||
|
||||
diff_x.tidy();
|
||||
diff_x
|
||||
};
|
||||
|
||||
// Differentation by y is trivial
|
||||
// It's the y coefficient as the zero coefficient, and the yx coefficients as the x
|
||||
// coefficients
|
||||
// This is thanks to any y term over y^2 being reduced out
|
||||
let diff_y = Poly {
|
||||
y_coefficients: vec![],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: self.yx_coefficients.first().cloned().unwrap_or(vec![]),
|
||||
zero_coefficient: self.y_coefficients.first().cloned().unwrap_or(F::ZERO),
|
||||
};
|
||||
|
||||
(diff_x, diff_y)
|
||||
}
|
||||
|
||||
/// Normalize the x coefficient to 1.
|
||||
///
|
||||
/// Panics if there is no x coefficient to normalize or if it cannot be normalized to 1.
|
||||
#[must_use]
|
||||
pub fn normalize_x_coefficient(self) -> Self {
|
||||
let scalar = self.x_coefficients[0].invert().unwrap();
|
||||
self * scalar
|
||||
}
|
||||
}
|
||||
235
crypto/evrf/divisors/src/tests/mod.rs
Normal file
235
crypto/evrf/divisors/src/tests/mod.rs
Normal file
@@ -0,0 +1,235 @@
|
||||
use rand_core::OsRng;
|
||||
|
||||
use group::{ff::Field, Group};
|
||||
use dalek_ff_group::EdwardsPoint;
|
||||
use pasta_curves::{Ep, Eq};
|
||||
|
||||
use crate::{DivisorCurve, Poly, new_divisor};
|
||||
|
||||
// Equation 4 in the security proofs
|
||||
fn check_divisor<C: DivisorCurve>(points: Vec<C>) {
|
||||
// Create the divisor
|
||||
let divisor = new_divisor::<C>(&points).unwrap();
|
||||
let eval = |c| {
|
||||
let (x, y) = C::to_xy(c).unwrap();
|
||||
divisor.eval(x, y)
|
||||
};
|
||||
|
||||
// Decide challgenges
|
||||
let c0 = C::random(&mut OsRng);
|
||||
let c1 = C::random(&mut OsRng);
|
||||
let c2 = -(c0 + c1);
|
||||
let (slope, intercept) = crate::slope_intercept::<C>(c0, c1);
|
||||
|
||||
let mut rhs = <C as DivisorCurve>::FieldElement::ONE;
|
||||
for point in points {
|
||||
let (x, y) = C::to_xy(point).unwrap();
|
||||
rhs *= intercept - (y - (slope * x));
|
||||
}
|
||||
assert_eq!(eval(c0) * eval(c1) * eval(c2), rhs);
|
||||
}
|
||||
|
||||
fn test_divisor<C: DivisorCurve>() {
|
||||
for i in 1 ..= 255 {
|
||||
println!("Test iteration {i}");
|
||||
|
||||
// Select points
|
||||
let mut points = vec![];
|
||||
for _ in 0 .. i {
|
||||
points.push(C::random(&mut OsRng));
|
||||
}
|
||||
points.push(-points.iter().sum::<C>());
|
||||
println!("Points {}", points.len());
|
||||
|
||||
// Perform the original check
|
||||
check_divisor(points.clone());
|
||||
|
||||
// Create the divisor
|
||||
let divisor = new_divisor::<C>(&points).unwrap();
|
||||
|
||||
// For a divisor interpolating 256 points, as one does when interpreting a 255-bit discrete log
|
||||
// with the result of its scalar multiplication against a fixed generator, the lengths of the
|
||||
// yx/x coefficients shouldn't supersede the following bounds
|
||||
assert!((divisor.yx_coefficients.first().unwrap_or(&vec![]).len()) <= 126);
|
||||
assert!((divisor.x_coefficients.len() - 1) <= 127);
|
||||
assert!(
|
||||
(1 + divisor.yx_coefficients.first().unwrap_or(&vec![]).len() +
|
||||
(divisor.x_coefficients.len() - 1) +
|
||||
1) <=
|
||||
255
|
||||
);
|
||||
|
||||
// Decide challgenges
|
||||
let c0 = C::random(&mut OsRng);
|
||||
let c1 = C::random(&mut OsRng);
|
||||
let c2 = -(c0 + c1);
|
||||
let (slope, intercept) = crate::slope_intercept::<C>(c0, c1);
|
||||
|
||||
// Perform the Logarithmic derivative check
|
||||
{
|
||||
let dx_over_dz = {
|
||||
let dx = Poly {
|
||||
y_coefficients: vec![],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![C::FieldElement::ZERO, C::FieldElement::from(3)],
|
||||
zero_coefficient: C::a(),
|
||||
};
|
||||
|
||||
let dy = Poly {
|
||||
y_coefficients: vec![C::FieldElement::from(2)],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![],
|
||||
zero_coefficient: C::FieldElement::ZERO,
|
||||
};
|
||||
|
||||
let dz = (dy.clone() * -slope) + &dx;
|
||||
|
||||
// We want dx/dz, and dz/dx is equal to dy/dx - slope
|
||||
// Sagemath claims this, dy / dz, is the proper inverse
|
||||
(dy, dz)
|
||||
};
|
||||
|
||||
{
|
||||
let sanity_eval = |c| {
|
||||
let (x, y) = C::to_xy(c).unwrap();
|
||||
dx_over_dz.0.eval(x, y) * dx_over_dz.1.eval(x, y).invert().unwrap()
|
||||
};
|
||||
let sanity = sanity_eval(c0) + sanity_eval(c1) + sanity_eval(c2);
|
||||
// This verifies the dx/dz polynomial is correct
|
||||
assert_eq!(sanity, C::FieldElement::ZERO);
|
||||
}
|
||||
|
||||
// Logarithmic derivative check
|
||||
let test = |divisor: Poly<_>| {
|
||||
let (dx, dy) = divisor.differentiate();
|
||||
|
||||
let lhs = |c| {
|
||||
let (x, y) = C::to_xy(c).unwrap();
|
||||
|
||||
let n_0 = (C::FieldElement::from(3) * (x * x)) + C::a();
|
||||
let d_0 = (C::FieldElement::from(2) * y).invert().unwrap();
|
||||
let p_0_n_0 = n_0 * d_0;
|
||||
|
||||
let n_1 = dy.eval(x, y);
|
||||
let first = p_0_n_0 * n_1;
|
||||
|
||||
let second = dx.eval(x, y);
|
||||
|
||||
let d_1 = divisor.eval(x, y);
|
||||
|
||||
let fraction_1_n = first + second;
|
||||
let fraction_1_d = d_1;
|
||||
|
||||
let fraction_2_n = dx_over_dz.0.eval(x, y);
|
||||
let fraction_2_d = dx_over_dz.1.eval(x, y);
|
||||
|
||||
fraction_1_n * fraction_2_n * (fraction_1_d * fraction_2_d).invert().unwrap()
|
||||
};
|
||||
let lhs = lhs(c0) + lhs(c1) + lhs(c2);
|
||||
|
||||
let mut rhs = C::FieldElement::ZERO;
|
||||
for point in &points {
|
||||
let (x, y) = <C as DivisorCurve>::to_xy(*point).unwrap();
|
||||
rhs += (intercept - (y - (slope * x))).invert().unwrap();
|
||||
}
|
||||
|
||||
assert_eq!(lhs, rhs);
|
||||
};
|
||||
// Test the divisor and the divisor with a normalized x coefficient
|
||||
test(divisor.clone());
|
||||
test(divisor.normalize_x_coefficient());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_same_point<C: DivisorCurve>() {
|
||||
let mut points = vec![C::random(&mut OsRng)];
|
||||
points.push(points[0]);
|
||||
points.push(-points.iter().sum::<C>());
|
||||
check_divisor(points);
|
||||
}
|
||||
|
||||
fn test_subset_sum_to_infinity<C: DivisorCurve>() {
|
||||
// Internally, a binary tree algorithm is used
|
||||
// This executes the first pass to end up with [0, 0] for further reductions
|
||||
{
|
||||
let mut points = vec![C::random(&mut OsRng)];
|
||||
points.push(-points[0]);
|
||||
|
||||
let next = C::random(&mut OsRng);
|
||||
points.push(next);
|
||||
points.push(-next);
|
||||
check_divisor(points);
|
||||
}
|
||||
|
||||
// This executes the first pass to end up with [0, X, -X, 0]
|
||||
{
|
||||
let mut points = vec![C::random(&mut OsRng)];
|
||||
points.push(-points[0]);
|
||||
|
||||
let x_1 = C::random(&mut OsRng);
|
||||
let x_2 = C::random(&mut OsRng);
|
||||
points.push(x_1);
|
||||
points.push(x_2);
|
||||
|
||||
points.push(-x_1);
|
||||
points.push(-x_2);
|
||||
|
||||
let next = C::random(&mut OsRng);
|
||||
points.push(next);
|
||||
points.push(-next);
|
||||
check_divisor(points);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_divisor_pallas() {
|
||||
test_divisor::<Ep>();
|
||||
test_same_point::<Ep>();
|
||||
test_subset_sum_to_infinity::<Ep>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_divisor_vesta() {
|
||||
test_divisor::<Eq>();
|
||||
test_same_point::<Eq>();
|
||||
test_subset_sum_to_infinity::<Eq>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_divisor_ed25519() {
|
||||
// Since we're implementing Wei25519 ourselves, check the isomorphism works as expected
|
||||
{
|
||||
let incomplete_add = |p1, p2| {
|
||||
let (x1, y1) = EdwardsPoint::to_xy(p1).unwrap();
|
||||
let (x2, y2) = EdwardsPoint::to_xy(p2).unwrap();
|
||||
|
||||
// mmadd-1998-cmo
|
||||
let u = y2 - y1;
|
||||
let uu = u * u;
|
||||
let v = x2 - x1;
|
||||
let vv = v * v;
|
||||
let vvv = v * vv;
|
||||
let R = vv * x1;
|
||||
let A = uu - vvv - R.double();
|
||||
let x3 = v * A;
|
||||
let y3 = (u * (R - A)) - (vvv * y1);
|
||||
let z3 = vvv;
|
||||
|
||||
// Normalize from XYZ to XY
|
||||
let x3 = x3 * z3.invert().unwrap();
|
||||
let y3 = y3 * z3.invert().unwrap();
|
||||
|
||||
// Edwards addition -> Wei25519 coordinates should be equivalent to Wei25519 addition
|
||||
assert_eq!(EdwardsPoint::to_xy(p1 + p2).unwrap(), (x3, y3));
|
||||
};
|
||||
|
||||
for _ in 0 .. 256 {
|
||||
incomplete_add(EdwardsPoint::random(&mut OsRng), EdwardsPoint::random(&mut OsRng));
|
||||
}
|
||||
}
|
||||
|
||||
test_divisor::<EdwardsPoint>();
|
||||
test_same_point::<EdwardsPoint>();
|
||||
test_subset_sum_to_infinity::<EdwardsPoint>();
|
||||
}
|
||||
129
crypto/evrf/divisors/src/tests/poly.rs
Normal file
129
crypto/evrf/divisors/src/tests/poly.rs
Normal file
@@ -0,0 +1,129 @@
|
||||
use group::ff::Field;
|
||||
use pasta_curves::Ep;
|
||||
|
||||
use crate::{DivisorCurve, Poly};
|
||||
|
||||
type F = <Ep as DivisorCurve>::FieldElement;
|
||||
|
||||
#[test]
|
||||
fn test_poly() {
|
||||
let zero = F::ZERO;
|
||||
let one = F::ONE;
|
||||
|
||||
{
|
||||
let mut poly = Poly::zero();
|
||||
poly.y_coefficients = vec![zero, one];
|
||||
|
||||
let mut modulus = Poly::zero();
|
||||
modulus.y_coefficients = vec![one];
|
||||
assert_eq!(poly % &modulus, Poly::zero());
|
||||
}
|
||||
|
||||
{
|
||||
let mut poly = Poly::zero();
|
||||
poly.y_coefficients = vec![zero, one];
|
||||
|
||||
let mut squared = Poly::zero();
|
||||
squared.y_coefficients = vec![zero, zero, zero, one];
|
||||
assert_eq!(poly.clone() * poly.clone(), squared);
|
||||
}
|
||||
|
||||
{
|
||||
let mut a = Poly::zero();
|
||||
a.zero_coefficient = F::from(2u64);
|
||||
|
||||
let mut b = Poly::zero();
|
||||
b.zero_coefficient = F::from(3u64);
|
||||
|
||||
let mut res = Poly::zero();
|
||||
res.zero_coefficient = F::from(6u64);
|
||||
assert_eq!(a.clone() * b.clone(), res);
|
||||
|
||||
b.y_coefficients = vec![F::from(4u64)];
|
||||
res.y_coefficients = vec![F::from(8u64)];
|
||||
assert_eq!(a.clone() * b.clone(), res);
|
||||
assert_eq!(b.clone() * a.clone(), res);
|
||||
|
||||
a.x_coefficients = vec![F::from(5u64)];
|
||||
res.x_coefficients = vec![F::from(15u64)];
|
||||
res.yx_coefficients = vec![vec![F::from(20u64)]];
|
||||
assert_eq!(a.clone() * b.clone(), res);
|
||||
assert_eq!(b * a.clone(), res);
|
||||
|
||||
// res is now 20xy + 8*y + 15*x + 6
|
||||
// res ** 2 =
|
||||
// 400*x^2*y^2 + 320*x*y^2 + 64*y^2 + 600*x^2*y + 480*x*y + 96*y + 225*x^2 + 180*x + 36
|
||||
|
||||
let mut squared = Poly::zero();
|
||||
squared.y_coefficients = vec![F::from(96u64), F::from(64u64)];
|
||||
squared.yx_coefficients =
|
||||
vec![vec![F::from(480u64), F::from(600u64)], vec![F::from(320u64), F::from(400u64)]];
|
||||
squared.x_coefficients = vec![F::from(180u64), F::from(225u64)];
|
||||
squared.zero_coefficient = F::from(36u64);
|
||||
assert_eq!(res.clone() * res, squared);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_differentation() {
|
||||
let random = || F::random(&mut OsRng);
|
||||
|
||||
let input = Poly {
|
||||
y_coefficients: vec![random()],
|
||||
yx_coefficients: vec![vec![random()]],
|
||||
x_coefficients: vec![random(), random(), random()],
|
||||
zero_coefficient: random(),
|
||||
};
|
||||
let (diff_x, diff_y) = input.differentiate();
|
||||
assert_eq!(
|
||||
diff_x,
|
||||
Poly {
|
||||
y_coefficients: vec![input.yx_coefficients[0][0]],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![
|
||||
F::from(2) * input.x_coefficients[1],
|
||||
F::from(3) * input.x_coefficients[2]
|
||||
],
|
||||
zero_coefficient: input.x_coefficients[0],
|
||||
}
|
||||
);
|
||||
assert_eq!(
|
||||
diff_y,
|
||||
Poly {
|
||||
y_coefficients: vec![],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![input.yx_coefficients[0][0]],
|
||||
zero_coefficient: input.y_coefficients[0],
|
||||
}
|
||||
);
|
||||
|
||||
let input = Poly {
|
||||
y_coefficients: vec![random()],
|
||||
yx_coefficients: vec![vec![random(), random()]],
|
||||
x_coefficients: vec![random(), random(), random(), random()],
|
||||
zero_coefficient: random(),
|
||||
};
|
||||
let (diff_x, diff_y) = input.differentiate();
|
||||
assert_eq!(
|
||||
diff_x,
|
||||
Poly {
|
||||
y_coefficients: vec![input.yx_coefficients[0][0]],
|
||||
yx_coefficients: vec![vec![F::from(2) * input.yx_coefficients[0][1]]],
|
||||
x_coefficients: vec![
|
||||
F::from(2) * input.x_coefficients[1],
|
||||
F::from(3) * input.x_coefficients[2],
|
||||
F::from(4) * input.x_coefficients[3],
|
||||
],
|
||||
zero_coefficient: input.x_coefficients[0],
|
||||
}
|
||||
);
|
||||
assert_eq!(
|
||||
diff_y,
|
||||
Poly {
|
||||
y_coefficients: vec![],
|
||||
yx_coefficients: vec![],
|
||||
x_coefficients: vec![input.yx_coefficients[0][0], input.yx_coefficients[0][1]],
|
||||
zero_coefficient: input.y_coefficients[0],
|
||||
}
|
||||
);
|
||||
}
|
||||
Reference in New Issue
Block a user