mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-10 13:09:24 +00:00
Merge branch 'develop' into firo
This commit is contained in:
@@ -1,9 +1,11 @@
|
||||
[package]
|
||||
name = "dalek-ff-group"
|
||||
version = "0.1.0"
|
||||
version = "0.1.1"
|
||||
description = "ff/group bindings around curve25519-dalek"
|
||||
license = "MIT"
|
||||
repository = "https://github.com/serai-dex/serai"
|
||||
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
|
||||
keywords = ["curve25519", "ed25519", "ristretto", "dalek", "group"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
@@ -12,7 +14,8 @@ digest = "0.10"
|
||||
|
||||
subtle = "2.4"
|
||||
|
||||
ff = "0.11"
|
||||
group = "0.11"
|
||||
ff = "0.12"
|
||||
group = "0.12"
|
||||
|
||||
crypto-bigint = "0.4"
|
||||
curve25519-dalek = "3.2"
|
||||
|
||||
@@ -1,3 +1,6 @@
|
||||
# Dalek FF/Group
|
||||
|
||||
ff/group bindings around curve25519-dalek with a random function based around a more modern rand_core.
|
||||
ff/group bindings around curve25519-dalek with a from_hash/random function based
|
||||
around modern dependencies.
|
||||
|
||||
Some functions currently remain unimplemented.
|
||||
|
||||
142
crypto/dalek-ff-group/src/field.rs
Normal file
142
crypto/dalek-ff-group/src/field.rs
Normal file
@@ -0,0 +1,142 @@
|
||||
use core::ops::{Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign};
|
||||
|
||||
use rand_core::RngCore;
|
||||
|
||||
use subtle::{Choice, CtOption, ConstantTimeEq, ConditionallySelectable};
|
||||
use crypto_bigint::{Encoding, U256, U512};
|
||||
|
||||
use ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
|
||||
|
||||
use crate::{choice, constant_time, math_op, math, from_wrapper, from_uint};
|
||||
|
||||
const FIELD_MODULUS: U256 = U256::from_be_hex(
|
||||
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"
|
||||
);
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug, Default)]
|
||||
pub struct FieldElement(U256);
|
||||
|
||||
pub const SQRT_M1: FieldElement = FieldElement(
|
||||
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0")
|
||||
);
|
||||
|
||||
constant_time!(FieldElement, U256);
|
||||
math!(
|
||||
FieldElement,
|
||||
FieldElement,
|
||||
|x, y| U256::add_mod(&x, &y, &FIELD_MODULUS),
|
||||
|x, y| U256::sub_mod(&x, &y, &FIELD_MODULUS),
|
||||
|x, y| {
|
||||
#[allow(non_snake_case)]
|
||||
let WIDE_MODULUS: U512 = U512::from((U256::ZERO, FIELD_MODULUS));
|
||||
debug_assert_eq!(FIELD_MODULUS.to_le_bytes()[..], WIDE_MODULUS.to_le_bytes()[.. 32]);
|
||||
|
||||
let wide = U256::mul_wide(&x, &y);
|
||||
U256::from_le_slice(
|
||||
&U512::from((wide.1, wide.0)).reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32]
|
||||
)
|
||||
}
|
||||
);
|
||||
from_uint!(FieldElement, U256);
|
||||
|
||||
impl Neg for FieldElement {
|
||||
type Output = Self;
|
||||
fn neg(self) -> Self::Output { Self(self.0.neg_mod(&FIELD_MODULUS)) }
|
||||
}
|
||||
|
||||
impl Field for FieldElement {
|
||||
fn random(mut rng: impl RngCore) -> Self {
|
||||
let mut bytes = [0; 64];
|
||||
rng.fill_bytes(&mut bytes);
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
let WIDE_MODULUS: U512 = U512::from((U256::ZERO, FIELD_MODULUS));
|
||||
debug_assert_eq!(FIELD_MODULUS.to_le_bytes()[..], WIDE_MODULUS.to_le_bytes()[.. 32]);
|
||||
|
||||
FieldElement(
|
||||
U256::from_le_slice(
|
||||
&U512::from_be_bytes(bytes).reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32]
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
fn zero() -> Self { Self(U256::ZERO) }
|
||||
fn one() -> Self { Self(U256::ONE) }
|
||||
fn square(&self) -> Self { *self * self }
|
||||
fn double(&self) -> Self { *self + self }
|
||||
|
||||
fn invert(&self) -> CtOption<Self> {
|
||||
CtOption::new(self.pow(-FieldElement(U256::from(2u64))), !self.is_zero())
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
let c1 = SQRT_M1;
|
||||
let c2 = FIELD_MODULUS.saturating_add(&U256::from(3u8)).checked_div(&U256::from(8u8)).unwrap();
|
||||
|
||||
let tv1 = self.pow(FieldElement(c2));
|
||||
let tv2 = tv1 * c1;
|
||||
let res = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
|
||||
debug_assert_eq!(res * res, *self);
|
||||
CtOption::new(Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self)), 1.into())
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> Choice { self.0.ct_eq(&U256::ZERO) }
|
||||
fn cube(&self) -> Self { *self * self * self }
|
||||
fn pow_vartime<S: AsRef<[u64]>>(&self, _exp: S) -> Self { unimplemented!() }
|
||||
}
|
||||
|
||||
impl PrimeField for FieldElement {
|
||||
type Repr = [u8; 32];
|
||||
const NUM_BITS: u32 = 255;
|
||||
const CAPACITY: u32 = 254;
|
||||
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
|
||||
let res = Self(U256::from_le_bytes(bytes));
|
||||
CtOption::new(res, res.0.add_mod(&U256::ZERO, &FIELD_MODULUS).ct_eq(&res.0))
|
||||
}
|
||||
fn to_repr(&self) -> [u8; 32] { self.0.to_le_bytes() }
|
||||
|
||||
const S: u32 = 2;
|
||||
fn is_odd(&self) -> Choice { unimplemented!() }
|
||||
fn multiplicative_generator() -> Self { 2u64.into() }
|
||||
fn root_of_unity() -> Self {
|
||||
FieldElement(
|
||||
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0")
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeFieldBits for FieldElement {
|
||||
type ReprBits = [u8; 32];
|
||||
|
||||
fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
|
||||
self.to_repr().into()
|
||||
}
|
||||
|
||||
fn char_le_bits() -> FieldBits<Self::ReprBits> {
|
||||
FIELD_MODULUS.to_le_bytes().into()
|
||||
}
|
||||
}
|
||||
|
||||
impl FieldElement {
|
||||
pub fn from_square(value: [u8; 32]) -> FieldElement {
|
||||
let value = U256::from_le_bytes(value);
|
||||
FieldElement(value) * FieldElement(value)
|
||||
}
|
||||
|
||||
pub fn pow(&self, other: FieldElement) -> FieldElement {
|
||||
let mut res = FieldElement(U256::ONE);
|
||||
let mut m = *self;
|
||||
for bit in other.to_le_bits() {
|
||||
res *= FieldElement::conditional_select(&FieldElement(U256::ONE), &m, choice(bit));
|
||||
m *= m;
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mul() {
|
||||
assert_eq!(FieldElement(FIELD_MODULUS) * FieldElement::one(), FieldElement::zero());
|
||||
assert_eq!(FieldElement(FIELD_MODULUS) * FieldElement::one().double(), FieldElement::zero());
|
||||
assert_eq!(SQRT_M1.square(), -FieldElement::one());
|
||||
}
|
||||
@@ -1,114 +1,189 @@
|
||||
#![no_std]
|
||||
|
||||
use core::{
|
||||
ops::{Deref, Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign},
|
||||
borrow::Borrow,
|
||||
iter::{Iterator, Sum}
|
||||
};
|
||||
|
||||
use subtle::{ConstantTimeEq, ConditionallySelectable};
|
||||
|
||||
use rand_core::RngCore;
|
||||
use digest::{consts::U64, Digest};
|
||||
|
||||
use subtle::{Choice, CtOption, ConstantTimeEq, ConditionallySelectable};
|
||||
use subtle::{Choice, CtOption};
|
||||
|
||||
pub use curve25519_dalek as dalek;
|
||||
|
||||
use dalek::{
|
||||
constants,
|
||||
traits::{Identity, IsIdentity},
|
||||
traits::Identity,
|
||||
scalar::Scalar as DScalar,
|
||||
edwards::{
|
||||
EdwardsPoint as DPoint,
|
||||
EdwardsBasepointTable as DTable,
|
||||
CompressedEdwardsY as DCompressed
|
||||
EdwardsPoint as DEdwardsPoint,
|
||||
EdwardsBasepointTable as DEdwardsBasepointTable,
|
||||
CompressedEdwardsY as DCompressedEdwards
|
||||
},
|
||||
ristretto::{
|
||||
RistrettoPoint as DRistrettoPoint,
|
||||
RistrettoBasepointTable as DRistrettoBasepointTable,
|
||||
CompressedRistretto as DCompressedRistretto
|
||||
}
|
||||
};
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::Group;
|
||||
use ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
|
||||
use group::{Group, GroupEncoding, prime::PrimeGroup};
|
||||
|
||||
pub mod field;
|
||||
|
||||
// Convert a boolean to a Choice in a *presumably* constant time manner
|
||||
fn choice(value: bool) -> Choice {
|
||||
let bit = value as u8;
|
||||
debug_assert_eq!(bit | 1, 1);
|
||||
Choice::from(bit)
|
||||
}
|
||||
|
||||
macro_rules! deref_borrow {
|
||||
($Source: ident, $Target: ident) => {
|
||||
impl Deref for $Source {
|
||||
type Target = $Target;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl Borrow<$Target> for $Source {
|
||||
fn borrow(&self) -> &$Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl Borrow<$Target> for &$Source {
|
||||
fn borrow(&self) -> &$Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
#[macro_export]
|
||||
macro_rules! constant_time {
|
||||
($Value: ident, $Inner: ident) => {
|
||||
impl ConstantTimeEq for $Value {
|
||||
fn ct_eq(&self, other: &Self) -> Choice { self.0.ct_eq(&other.0) }
|
||||
}
|
||||
|
||||
impl ConditionallySelectable for $Value {
|
||||
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
|
||||
$Value($Inner::conditional_select(&a.0, &b.0, choice))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
#[macro_export]
|
||||
macro_rules! math_op {
|
||||
(
|
||||
$Value: ident,
|
||||
$Other: ident,
|
||||
$Op: ident,
|
||||
$op_fn: ident,
|
||||
$Assign: ident,
|
||||
$assign_fn: ident,
|
||||
$function: expr
|
||||
) => {
|
||||
impl $Op<$Other> for $Value {
|
||||
type Output = $Value;
|
||||
fn $op_fn(self, other: $Other) -> Self::Output {
|
||||
Self($function(self.0, other.0))
|
||||
}
|
||||
}
|
||||
impl $Assign<$Other> for $Value {
|
||||
fn $assign_fn(&mut self, other: $Other) {
|
||||
self.0 = $function(self.0, other.0);
|
||||
}
|
||||
}
|
||||
impl<'a> $Op<&'a $Other> for $Value {
|
||||
type Output = $Value;
|
||||
fn $op_fn(self, other: &'a $Other) -> Self::Output {
|
||||
Self($function(self.0, other.0))
|
||||
}
|
||||
}
|
||||
impl<'a> $Assign<&'a $Other> for $Value {
|
||||
fn $assign_fn(&mut self, other: &'a $Other) {
|
||||
self.0 = $function(self.0, other.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
#[macro_export]
|
||||
macro_rules! math {
|
||||
($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => {
|
||||
math_op!($Value, $Value, Add, add, AddAssign, add_assign, $add);
|
||||
math_op!($Value, $Value, Sub, sub, SubAssign, sub_assign, $sub);
|
||||
math_op!($Value, $Factor, Mul, mul, MulAssign, mul_assign, $mul);
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! math_neg {
|
||||
($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => {
|
||||
math!($Value, $Factor, $add, $sub, $mul);
|
||||
|
||||
impl Neg for $Value {
|
||||
type Output = Self;
|
||||
fn neg(self) -> Self::Output { Self(-self.0) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
#[macro_export]
|
||||
macro_rules! from_wrapper {
|
||||
($wrapper: ident, $inner: ident, $uint: ident) => {
|
||||
impl From<$uint> for $wrapper {
|
||||
fn from(a: $uint) -> $wrapper { Self($inner::from(a)) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
#[macro_export]
|
||||
macro_rules! from_uint {
|
||||
($wrapper: ident, $inner: ident) => {
|
||||
from_wrapper!($wrapper, $inner, u8);
|
||||
from_wrapper!($wrapper, $inner, u16);
|
||||
from_wrapper!($wrapper, $inner, u32);
|
||||
from_wrapper!($wrapper, $inner, u64);
|
||||
}
|
||||
}
|
||||
|
||||
/// Wrapper around the dalek Scalar type
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug, Default)]
|
||||
pub struct Scalar(pub DScalar);
|
||||
deref_borrow!(Scalar, DScalar);
|
||||
constant_time!(Scalar, DScalar);
|
||||
math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul);
|
||||
from_uint!(Scalar, DScalar);
|
||||
|
||||
impl Deref for Scalar {
|
||||
type Target = DScalar;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
impl Scalar {
|
||||
/// Perform wide reduction on a 64-byte array to create a Scalar without bias
|
||||
pub fn from_bytes_mod_order_wide(bytes: &[u8; 64]) -> Scalar {
|
||||
Self(DScalar::from_bytes_mod_order_wide(bytes))
|
||||
}
|
||||
}
|
||||
|
||||
impl Borrow<DScalar> for Scalar {
|
||||
fn borrow(&self) -> &DScalar {
|
||||
&self.0
|
||||
/// Derive a Scalar without bias from a digest via wide reduction
|
||||
pub fn from_hash<D: Digest<OutputSize = U64>>(hash: D) -> Scalar {
|
||||
let mut output = [0u8; 64];
|
||||
output.copy_from_slice(&hash.finalize());
|
||||
Scalar(DScalar::from_bytes_mod_order_wide(&output))
|
||||
}
|
||||
}
|
||||
|
||||
impl Borrow<DScalar> for &Scalar {
|
||||
fn borrow(&self) -> &DScalar {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<Scalar> for Scalar {
|
||||
type Output = Self;
|
||||
fn add(self, other: Scalar) -> Scalar { Self(self.0 + other.0) }
|
||||
}
|
||||
impl AddAssign for Scalar {
|
||||
fn add_assign(&mut self, other: Scalar) { self.0 += other.0 }
|
||||
}
|
||||
|
||||
impl<'a> Add<&'a Scalar> for Scalar {
|
||||
type Output = Self;
|
||||
fn add(self, other: &'a Scalar) -> Scalar { Self(self.0 + other.0) }
|
||||
}
|
||||
impl<'a> AddAssign<&'a Scalar> for Scalar {
|
||||
fn add_assign(&mut self, other: &'a Scalar) { self.0 += other.0 }
|
||||
}
|
||||
|
||||
impl Sub<Scalar> for Scalar {
|
||||
type Output = Self;
|
||||
fn sub(self, other: Scalar) -> Scalar { Self(self.0 - other.0) }
|
||||
}
|
||||
impl SubAssign for Scalar {
|
||||
fn sub_assign(&mut self, other: Scalar) { self.0 -= other.0 }
|
||||
}
|
||||
|
||||
impl<'a> Sub<&'a Scalar> for Scalar {
|
||||
type Output = Self;
|
||||
fn sub(self, other: &'a Scalar) -> Scalar { Self(self.0 - other.0) }
|
||||
}
|
||||
impl<'a> SubAssign<&'a Scalar> for Scalar {
|
||||
fn sub_assign(&mut self, other: &'a Scalar) { self.0 -= other.0 }
|
||||
}
|
||||
|
||||
impl Neg for Scalar {
|
||||
type Output = Self;
|
||||
fn neg(self) -> Scalar { Self(-self.0) }
|
||||
}
|
||||
|
||||
impl Mul<Scalar> for Scalar {
|
||||
type Output = Self;
|
||||
fn mul(self, other: Scalar) -> Scalar { Self(self.0 * other.0) }
|
||||
}
|
||||
impl MulAssign for Scalar {
|
||||
fn mul_assign(&mut self, other: Scalar) { self.0 *= other.0 }
|
||||
}
|
||||
|
||||
impl<'a> Mul<&'a Scalar> for Scalar {
|
||||
type Output = Self;
|
||||
fn mul(self, other: &'a Scalar) -> Scalar { Self(self.0 * other.0) }
|
||||
}
|
||||
impl<'a> MulAssign<&'a Scalar> for Scalar {
|
||||
fn mul_assign(&mut self, other: &'a Scalar) { self.0 *= other.0 }
|
||||
}
|
||||
|
||||
impl ConstantTimeEq for Scalar {
|
||||
fn ct_eq(&self, _: &Self) -> Choice { unimplemented!() }
|
||||
}
|
||||
|
||||
impl ConditionallySelectable for Scalar {
|
||||
fn conditional_select(_: &Self, _: &Self, _: Choice) -> Self { unimplemented!() }
|
||||
}
|
||||
|
||||
impl Field for Scalar {
|
||||
fn random(mut rng: impl RngCore) -> Self {
|
||||
let mut r = [0; 64];
|
||||
@@ -121,194 +196,145 @@ impl Field for Scalar {
|
||||
fn square(&self) -> Self { *self * self }
|
||||
fn double(&self) -> Self { *self + self }
|
||||
fn invert(&self) -> CtOption<Self> {
|
||||
CtOption::new(Self(self.0.invert()), Choice::from(1 as u8))
|
||||
CtOption::new(Self(self.0.invert()), !self.is_zero())
|
||||
}
|
||||
fn sqrt(&self) -> CtOption<Self> { unimplemented!() }
|
||||
fn is_zero(&self) -> Choice { Choice::from(if self.0 == DScalar::zero() { 1 } else { 0 }) }
|
||||
fn is_zero(&self) -> Choice { self.0.ct_eq(&DScalar::zero()) }
|
||||
fn cube(&self) -> Self { *self * self * self }
|
||||
fn pow_vartime<S: AsRef<[u64]>>(&self, _exp: S) -> Self { unimplemented!() }
|
||||
}
|
||||
|
||||
impl From<u64> for Scalar {
|
||||
fn from(a: u64) -> Scalar { Self(DScalar::from(a)) }
|
||||
}
|
||||
|
||||
impl PrimeField for Scalar {
|
||||
type Repr = [u8; 32];
|
||||
const NUM_BITS: u32 = 253;
|
||||
const CAPACITY: u32 = 252;
|
||||
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
|
||||
let scalar = DScalar::from_canonical_bytes(bytes).map(|x| Scalar(x));
|
||||
CtOption::new(
|
||||
scalar.unwrap_or(Scalar::zero()),
|
||||
Choice::from(if scalar.is_some() { 1 } else { 0 })
|
||||
)
|
||||
let scalar = DScalar::from_canonical_bytes(bytes);
|
||||
// TODO: This unwrap_or isn't constant time, yet do we have an alternative?
|
||||
CtOption::new(Scalar(scalar.unwrap_or(DScalar::zero())), choice(scalar.is_some()))
|
||||
}
|
||||
fn to_repr(&self) -> [u8; 32] { self.0.to_bytes() }
|
||||
|
||||
const S: u32 = 0;
|
||||
const S: u32 = 2;
|
||||
fn is_odd(&self) -> Choice { unimplemented!() }
|
||||
fn multiplicative_generator() -> Self { unimplemented!() }
|
||||
fn multiplicative_generator() -> Self { 2u64.into() }
|
||||
fn root_of_unity() -> Self { unimplemented!() }
|
||||
}
|
||||
|
||||
impl Scalar {
|
||||
pub fn from_hash<D: Digest<OutputSize = U64>>(hash: D) -> Scalar {
|
||||
let mut output = [0u8; 64];
|
||||
output.copy_from_slice(&hash.finalize());
|
||||
Scalar(DScalar::from_bytes_mod_order_wide(&output))
|
||||
impl PrimeFieldBits for Scalar {
|
||||
type ReprBits = [u8; 32];
|
||||
|
||||
fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
|
||||
self.to_repr().into()
|
||||
}
|
||||
|
||||
fn char_le_bits() -> FieldBits<Self::ReprBits> {
|
||||
let mut bytes = (Scalar::zero() - Scalar::one()).to_repr();
|
||||
bytes[0] += 1;
|
||||
debug_assert_eq!(DScalar::from_bytes_mod_order(bytes), DScalar::zero());
|
||||
bytes.into()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct EdwardsPoint(pub DPoint);
|
||||
pub const ED25519_BASEPOINT_POINT: EdwardsPoint = EdwardsPoint(constants::ED25519_BASEPOINT_POINT);
|
||||
macro_rules! dalek_group {
|
||||
(
|
||||
$Point: ident,
|
||||
$DPoint: ident,
|
||||
$torsion_free: expr,
|
||||
|
||||
impl Deref for EdwardsPoint {
|
||||
type Target = DPoint;
|
||||
$Table: ident,
|
||||
$DTable: ident,
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
$DCompressed: ident,
|
||||
|
||||
$BASEPOINT_POINT: ident,
|
||||
$BASEPOINT_TABLE: ident
|
||||
) => {
|
||||
/// Wrapper around the dalek Point type. For Ed25519, this is restricted to the prime subgroup
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct $Point(pub $DPoint);
|
||||
deref_borrow!($Point, $DPoint);
|
||||
constant_time!($Point, $DPoint);
|
||||
math_neg!($Point, Scalar, $DPoint::add, $DPoint::sub, $DPoint::mul);
|
||||
|
||||
pub const $BASEPOINT_POINT: $Point = $Point(constants::$BASEPOINT_POINT);
|
||||
|
||||
impl Sum<$Point> for $Point {
|
||||
fn sum<I: Iterator<Item = $Point>>(iter: I) -> $Point { Self($DPoint::sum(iter)) }
|
||||
}
|
||||
impl<'a> Sum<&'a $Point> for $Point {
|
||||
fn sum<I: Iterator<Item = &'a $Point>>(iter: I) -> $Point { Self($DPoint::sum(iter)) }
|
||||
}
|
||||
|
||||
impl Group for $Point {
|
||||
type Scalar = Scalar;
|
||||
// Ideally, this would be cryptographically secure, yet that's not a bound on the trait
|
||||
// k256 also does this
|
||||
fn random(rng: impl RngCore) -> Self { &$BASEPOINT_TABLE * Scalar::random(rng) }
|
||||
fn identity() -> Self { Self($DPoint::identity()) }
|
||||
fn generator() -> Self { $BASEPOINT_POINT }
|
||||
fn is_identity(&self) -> Choice { self.0.ct_eq(&$DPoint::identity()) }
|
||||
fn double(&self) -> Self { *self + self }
|
||||
}
|
||||
|
||||
impl GroupEncoding for $Point {
|
||||
type Repr = [u8; 32];
|
||||
|
||||
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
|
||||
let decompressed = $DCompressed(*bytes).decompress();
|
||||
// TODO: Same note on unwrap_or as above
|
||||
let point = decompressed.unwrap_or($DPoint::identity());
|
||||
CtOption::new($Point(point), choice(decompressed.is_some()) & choice($torsion_free(point)))
|
||||
}
|
||||
|
||||
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
|
||||
$Point::from_bytes(bytes)
|
||||
}
|
||||
|
||||
fn to_bytes(&self) -> Self::Repr {
|
||||
self.0.compress().to_bytes()
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeGroup for $Point {}
|
||||
|
||||
/// Wrapper around the dalek Table type, offering efficient multiplication against the
|
||||
/// basepoint
|
||||
pub struct $Table(pub $DTable);
|
||||
deref_borrow!($Table, $DTable);
|
||||
pub const $BASEPOINT_TABLE: $Table = $Table(constants::$BASEPOINT_TABLE);
|
||||
|
||||
impl Mul<Scalar> for &$Table {
|
||||
type Output = $Point;
|
||||
fn mul(self, b: Scalar) -> $Point { $Point(&b.0 * &self.0) }
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl Borrow<DPoint> for EdwardsPoint {
|
||||
fn borrow(&self) -> &DPoint {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
dalek_group!(
|
||||
EdwardsPoint,
|
||||
DEdwardsPoint,
|
||||
|point: DEdwardsPoint| point.is_torsion_free(),
|
||||
|
||||
impl Borrow<DPoint> for &EdwardsPoint {
|
||||
fn borrow(&self) -> &DPoint {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
EdwardsBasepointTable,
|
||||
DEdwardsBasepointTable,
|
||||
|
||||
impl Add<EdwardsPoint> for EdwardsPoint {
|
||||
type Output = Self;
|
||||
fn add(self, b: EdwardsPoint) -> EdwardsPoint { Self(self.0 + b.0) }
|
||||
}
|
||||
impl AddAssign<EdwardsPoint> for EdwardsPoint {
|
||||
fn add_assign(&mut self, other: EdwardsPoint) { self.0 += other.0 }
|
||||
}
|
||||
impl Sum<EdwardsPoint> for EdwardsPoint {
|
||||
fn sum<I: Iterator<Item = EdwardsPoint>>(iter: I) -> EdwardsPoint { Self(DPoint::sum(iter)) }
|
||||
}
|
||||
DCompressedEdwards,
|
||||
|
||||
impl<'a> Add<&'a EdwardsPoint> for EdwardsPoint {
|
||||
type Output = Self;
|
||||
fn add(self, b: &'a EdwardsPoint) -> EdwardsPoint { Self(self.0 + b.0) }
|
||||
}
|
||||
impl<'a> AddAssign<&'a EdwardsPoint> for EdwardsPoint {
|
||||
fn add_assign(&mut self, other: &'a EdwardsPoint) { self.0 += other.0 }
|
||||
}
|
||||
impl<'a> Sum<&'a EdwardsPoint> for EdwardsPoint {
|
||||
fn sum<I: Iterator<Item = &'a EdwardsPoint>>(iter: I) -> EdwardsPoint { Self(DPoint::sum(iter)) }
|
||||
}
|
||||
|
||||
impl Sub<EdwardsPoint> for EdwardsPoint {
|
||||
type Output = Self;
|
||||
fn sub(self, b: EdwardsPoint) -> EdwardsPoint { Self(self.0 - b.0) }
|
||||
}
|
||||
impl SubAssign<EdwardsPoint> for EdwardsPoint {
|
||||
fn sub_assign(&mut self, other: EdwardsPoint) { self.0 -= other.0 }
|
||||
}
|
||||
|
||||
impl<'a> Sub<&'a EdwardsPoint> for EdwardsPoint {
|
||||
type Output = Self;
|
||||
fn sub(self, b: &'a EdwardsPoint) -> EdwardsPoint { Self(self.0 - b.0) }
|
||||
}
|
||||
impl<'a> SubAssign<&'a EdwardsPoint> for EdwardsPoint {
|
||||
fn sub_assign(&mut self, other: &'a EdwardsPoint) { self.0 -= other.0 }
|
||||
}
|
||||
|
||||
impl Neg for EdwardsPoint {
|
||||
type Output = Self;
|
||||
fn neg(self) -> EdwardsPoint { Self(-self.0) }
|
||||
}
|
||||
|
||||
impl Mul<Scalar> for EdwardsPoint {
|
||||
type Output = Self;
|
||||
fn mul(self, b: Scalar) -> EdwardsPoint { Self(b.0 * self.0) }
|
||||
}
|
||||
impl MulAssign<Scalar> for EdwardsPoint {
|
||||
fn mul_assign(&mut self, other: Scalar) { self.0 *= other.0 }
|
||||
}
|
||||
|
||||
impl<'a> Mul<&'a Scalar> for EdwardsPoint {
|
||||
type Output = Self;
|
||||
fn mul(self, b: &'a Scalar) -> EdwardsPoint { Self(b.0 * self.0) }
|
||||
}
|
||||
impl<'a> MulAssign<&'a Scalar> for EdwardsPoint {
|
||||
fn mul_assign(&mut self, other: &'a Scalar) { self.0 *= other.0 }
|
||||
}
|
||||
|
||||
impl Group for EdwardsPoint {
|
||||
type Scalar = Scalar;
|
||||
fn random(mut _rng: impl RngCore) -> Self { unimplemented!() }
|
||||
fn identity() -> Self { Self(DPoint::identity()) }
|
||||
fn generator() -> Self { ED25519_BASEPOINT_POINT }
|
||||
fn is_identity(&self) -> Choice { (self.0.is_identity() as u8).into() }
|
||||
fn double(&self) -> Self { *self + self }
|
||||
}
|
||||
|
||||
impl Scalar {
|
||||
pub fn from_canonical_bytes(bytes: [u8; 32]) -> Option<Scalar> {
|
||||
DScalar::from_canonical_bytes(bytes).map(|x| Self(x))
|
||||
}
|
||||
pub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar {
|
||||
Self(DScalar::from_bytes_mod_order(bytes))
|
||||
}
|
||||
pub fn from_bytes_mod_order_wide(bytes: &[u8; 64]) -> Scalar {
|
||||
Self(DScalar::from_bytes_mod_order_wide(bytes))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct CompressedEdwardsY(pub DCompressed);
|
||||
impl CompressedEdwardsY {
|
||||
pub fn new(y: [u8; 32]) -> CompressedEdwardsY {
|
||||
Self(DCompressed(y))
|
||||
}
|
||||
|
||||
pub fn decompress(&self) -> Option<EdwardsPoint> {
|
||||
self.0.decompress().map(|x| EdwardsPoint(x))
|
||||
}
|
||||
|
||||
pub fn to_bytes(&self) -> [u8; 32] {
|
||||
self.0.to_bytes()
|
||||
}
|
||||
}
|
||||
|
||||
impl EdwardsPoint {
|
||||
pub fn is_torsion_free(&self) -> bool {
|
||||
self.0.is_torsion_free()
|
||||
}
|
||||
|
||||
pub fn compress(&self) -> CompressedEdwardsY {
|
||||
CompressedEdwardsY(self.0.compress())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct EdwardsBasepointTable(pub DTable);
|
||||
pub const ED25519_BASEPOINT_TABLE: EdwardsBasepointTable = EdwardsBasepointTable(
|
||||
constants::ED25519_BASEPOINT_TABLE
|
||||
ED25519_BASEPOINT_POINT,
|
||||
ED25519_BASEPOINT_TABLE
|
||||
);
|
||||
|
||||
impl Deref for EdwardsBasepointTable {
|
||||
type Target = DTable;
|
||||
dalek_group!(
|
||||
RistrettoPoint,
|
||||
DRistrettoPoint,
|
||||
|_| true,
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
RistrettoBasepointTable,
|
||||
DRistrettoBasepointTable,
|
||||
|
||||
impl Borrow<DTable> for &EdwardsBasepointTable {
|
||||
fn borrow(&self) -> &DTable {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
DCompressedRistretto,
|
||||
|
||||
impl Mul<Scalar> for &EdwardsBasepointTable {
|
||||
type Output = EdwardsPoint;
|
||||
fn mul(self, b: Scalar) -> EdwardsPoint { EdwardsPoint(&b.0 * &self.0) }
|
||||
}
|
||||
RISTRETTO_BASEPOINT_POINT,
|
||||
RISTRETTO_BASEPOINT_TABLE
|
||||
);
|
||||
|
||||
38
crypto/dleq/Cargo.toml
Normal file
38
crypto/dleq/Cargo.toml
Normal file
@@ -0,0 +1,38 @@
|
||||
[package]
|
||||
name = "dleq"
|
||||
version = "0.1.0"
|
||||
description = "Implementation of single and cross-curve Discrete Log Equality proofs"
|
||||
license = "MIT"
|
||||
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
thiserror = "1"
|
||||
rand_core = "0.6"
|
||||
|
||||
digest = "0.10"
|
||||
|
||||
transcript = { package = "flexible-transcript", path = "../transcript", version = "0.1" }
|
||||
|
||||
ff = "0.12"
|
||||
group = "0.12"
|
||||
|
||||
multiexp = { path = "../multiexp", features = ["batch"], optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
hex-literal = "0.3"
|
||||
|
||||
blake2 = "0.10"
|
||||
|
||||
k256 = { version = "0.11", features = ["arithmetic", "bits"] }
|
||||
dalek-ff-group = { path = "../dalek-ff-group" }
|
||||
|
||||
transcript = { package = "flexible-transcript", path = "../transcript", features = ["recommended"] }
|
||||
|
||||
[features]
|
||||
serialize = []
|
||||
experimental = ["multiexp"]
|
||||
secure_capacity_difference = []
|
||||
|
||||
# Only applies to cross_group, yet is default to ensure security
|
||||
default = ["secure_capacity_difference"]
|
||||
21
crypto/dleq/LICENSE
Normal file
21
crypto/dleq/LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2020-2022 Luke Parker, Lee Bousfield
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
63
crypto/dleq/README.md
Normal file
63
crypto/dleq/README.md
Normal file
@@ -0,0 +1,63 @@
|
||||
# Discrete Log Equality
|
||||
|
||||
Implementation of discrete log equality proofs for curves implementing
|
||||
`ff`/`group`. There is also a highly experimental cross-group DLEq proof, under
|
||||
the `experimental` feature, which has no formal proofs available yet is
|
||||
available here regardless. This library has NOT undergone auditing.
|
||||
|
||||
### Cross-Group DLEq
|
||||
|
||||
The present cross-group DLEq is based off
|
||||
[MRL-0010](https://web.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf),
|
||||
which isn't computationally correct as while it proves both keys have the same
|
||||
discrete logarithm for their `G'`/`H'` component, it doesn't prove a lack of a
|
||||
`G`/`H` component. Accordingly, it was augmented with a pair of Schnorr Proof of
|
||||
Knowledges, proving a known `G'`/`H'` component, guaranteeing a lack of a
|
||||
`G`/`H` component (assuming an unknown relation between `G`/`H` and `G'`/`H'`).
|
||||
|
||||
The challenges for the ring signatures were also merged, removing one-element
|
||||
from each bit's proof with only a slight reduction to challenge security (as
|
||||
instead of being uniform over each scalar field, they're uniform over the
|
||||
mutual bit capacity of each scalar field). This reduction is identical to the
|
||||
one applied to the proved-for scalar, and accordingly should not reduce overall
|
||||
security. It does create a lack of domain separation, yet that shouldn't be an
|
||||
issue.
|
||||
|
||||
The following variants are available:
|
||||
|
||||
- `ClassicLinear`. This is only for reference purposes, being the above
|
||||
described proof, with no further optimizations.
|
||||
|
||||
- `ConciseLinear`. This proves for 2 bits at a time, not increasing the
|
||||
signature size for both bits yet decreasing the amount of
|
||||
commitments/challenges in total.
|
||||
|
||||
- `EfficientLinear`. This provides ring signatures in the form
|
||||
`((R_G, R_H), s)`, instead of `(e, s)`, and accordingly enables a batch
|
||||
verification of their final step. It is the most performant, and also the
|
||||
largest, option.
|
||||
|
||||
- `CompromiseLinear`. This provides signatures in the form `((R_G, R_H), s)` AND
|
||||
proves for 2-bits at a time. While this increases the amount of steps in
|
||||
verifying the ring signatures, which aren't batch verified, and decreases the
|
||||
amount of items batched (an operation which grows in efficiency with
|
||||
quantity), it strikes a balance between speed and size.
|
||||
|
||||
The following numbers are from benchmarks performed with k256/curve25519_dalek
|
||||
on a Intel i7-118567:
|
||||
|
||||
| Algorithm | Size | Verification Time |
|
||||
|--------------------|-------------------------|-------------------|
|
||||
| `ClassicLinear` | 56829 bytes (+27%) | 157ms (0%) |
|
||||
| `ConciseLinear` | 44607 bytes (Reference) | 156ms (Reference) |
|
||||
| `EfficientLinear` | 65145 bytes (+46%) | 122ms (-22%) |
|
||||
| `CompromiseLinear` | 48765 bytes (+9%) | 137ms (-12%) |
|
||||
|
||||
`CompromiseLinear` is the best choice by only being marginally sub-optimal
|
||||
regarding size, yet still achieving most of the desired performance
|
||||
improvements. That said, neither the original postulation (which had flaws) nor
|
||||
any construction here has been proven nor audited. Accordingly, they are solely
|
||||
experimental, and none are recommended.
|
||||
|
||||
All proofs are suffixed "Linear" in the hope a logarithmic proof makes itself
|
||||
available, which would likely immediately become the most efficient option.
|
||||
230
crypto/dleq/src/cross_group/aos.rs
Normal file
230
crypto/dleq/src/cross_group/aos.rs
Normal file
@@ -0,0 +1,230 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use group::{ff::{Field, PrimeFieldBits}, prime::PrimeGroup};
|
||||
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::{
|
||||
Generators,
|
||||
cross_group::{DLEqError, scalar::{scalar_convert, mutual_scalar_from_bytes}}
|
||||
};
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{Read, Write};
|
||||
#[cfg(feature = "serialize")]
|
||||
use ff::PrimeField;
|
||||
#[cfg(feature = "serialize")]
|
||||
use crate::{read_scalar, cross_group::read_point};
|
||||
|
||||
#[allow(non_camel_case_types)]
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub(crate) enum Re<G0: PrimeGroup, G1: PrimeGroup> {
|
||||
R(G0, G1),
|
||||
// Merged challenges have a slight security reduction, yet one already applied to the scalar
|
||||
// being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed,
|
||||
// present here, which is then hashed for each of the two challenges, remaining unbiased/unique
|
||||
// while maintaining the bandwidth savings, yet also while adding 252 hashes for
|
||||
// Secp256k1/Ed25519
|
||||
e(G0::Scalar)
|
||||
}
|
||||
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup> Re<G0, G1> {
|
||||
#[allow(non_snake_case)]
|
||||
pub(crate) fn R_default() -> Re<G0, G1> {
|
||||
Re::R(G0::identity(), G1::identity())
|
||||
}
|
||||
|
||||
pub(crate) fn e_default() -> Re<G0, G1> {
|
||||
Re::e(G0::Scalar::zero())
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub(crate) struct Aos<G0: PrimeGroup, G1: PrimeGroup, const RING_LEN: usize> {
|
||||
Re_0: Re<G0, G1>,
|
||||
s: [(G0::Scalar, G1::Scalar); RING_LEN]
|
||||
}
|
||||
|
||||
impl<
|
||||
G0: PrimeGroup,
|
||||
G1: PrimeGroup,
|
||||
const RING_LEN: usize
|
||||
> Aos<G0, G1, RING_LEN> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
#[allow(non_snake_case)]
|
||||
fn nonces<T: Transcript>(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar) {
|
||||
transcript.domain_separate(b"aos_membership_proof");
|
||||
transcript.append_message(b"ring_len", &u8::try_from(RING_LEN).unwrap().to_le_bytes());
|
||||
transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref());
|
||||
transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref());
|
||||
mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref())
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn R(
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
s: (G0::Scalar, G1::Scalar),
|
||||
A: (G0, G1),
|
||||
e: (G0::Scalar, G1::Scalar)
|
||||
) -> (G0, G1) {
|
||||
(((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1)))
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn R_batch(
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
s: (G0::Scalar, G1::Scalar),
|
||||
A: (G0, G1),
|
||||
e: (G0::Scalar, G1::Scalar)
|
||||
) -> (Vec<(G0::Scalar, G0)>, Vec<(G1::Scalar, G1)>) {
|
||||
(vec![(-s.0, generators.0.alt), (e.0, A.0)], vec![(-s.1, generators.1.alt), (e.1, A.1)])
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn R_nonces<T: Transcript>(
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
s: (G0::Scalar, G1::Scalar),
|
||||
A: (G0, G1),
|
||||
e: (G0::Scalar, G1::Scalar)
|
||||
) -> (G0::Scalar, G1::Scalar) {
|
||||
Self::nonces(transcript, Self::R(generators, s, A, e))
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
pub(crate) fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
ring: &[(G0, G1)],
|
||||
actual: usize,
|
||||
blinding_key: (G0::Scalar, G1::Scalar),
|
||||
mut Re_0: Re<G0, G1>
|
||||
) -> Self {
|
||||
// While it is possible to use larger values, it's not efficient to do so
|
||||
// 2 + 2 == 2^2, yet 2 + 2 + 2 < 2^3
|
||||
debug_assert!((RING_LEN == 2) || (RING_LEN == 4));
|
||||
debug_assert_eq!(RING_LEN, ring.len());
|
||||
|
||||
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); RING_LEN];
|
||||
|
||||
let r = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
||||
#[allow(non_snake_case)]
|
||||
let original_R = (generators.0.alt * r.0, generators.1.alt * r.1);
|
||||
#[allow(non_snake_case)]
|
||||
let mut R = original_R;
|
||||
|
||||
for i in ((actual + 1) .. (actual + RING_LEN + 1)).map(|i| i % RING_LEN) {
|
||||
let e = Self::nonces(transcript.clone(), R);
|
||||
if i == 0 {
|
||||
match Re_0 {
|
||||
Re::R(ref mut R0_0, ref mut R1_0) => { *R0_0 = R.0; *R1_0 = R.1 },
|
||||
Re::e(ref mut e_0) => *e_0 = e.0
|
||||
}
|
||||
}
|
||||
|
||||
// Solve for the real index
|
||||
if i == actual {
|
||||
s[i] = (r.0 + (e.0 * blinding_key.0), r.1 + (e.1 * blinding_key.1));
|
||||
debug_assert_eq!(Self::R(generators, s[i], ring[actual], e), original_R);
|
||||
break;
|
||||
// Generate a decoy response
|
||||
} else {
|
||||
s[i] = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
||||
}
|
||||
|
||||
R = Self::R(generators, s[i], ring[i], e);
|
||||
}
|
||||
|
||||
Aos { Re_0, s }
|
||||
}
|
||||
|
||||
// Assumes the ring has already been transcripted in some form. Critically insecure if it hasn't
|
||||
pub(crate) fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
batch: &mut (BatchVerifier<(), G0>, BatchVerifier<(), G1>),
|
||||
ring: &[(G0, G1)]
|
||||
) -> Result<(), DLEqError> {
|
||||
debug_assert!((RING_LEN == 2) || (RING_LEN == 4));
|
||||
debug_assert_eq!(RING_LEN, ring.len());
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
match self.Re_0 {
|
||||
Re::R(R0_0, R1_0) => {
|
||||
let mut e = Self::nonces(transcript.clone(), (R0_0, R1_0));
|
||||
for i in 0 .. (RING_LEN - 1) {
|
||||
e = Self::R_nonces(transcript.clone(), generators, self.s[i], ring[i], e);
|
||||
}
|
||||
|
||||
let mut statements = Self::R_batch(
|
||||
generators,
|
||||
*self.s.last().unwrap(),
|
||||
*ring.last().unwrap(),
|
||||
e
|
||||
);
|
||||
statements.0.push((G0::Scalar::one(), R0_0));
|
||||
statements.1.push((G1::Scalar::one(), R1_0));
|
||||
batch.0.queue(&mut *rng, (), statements.0);
|
||||
batch.1.queue(&mut *rng, (), statements.1);
|
||||
},
|
||||
|
||||
Re::e(e_0) => {
|
||||
let e_0 = (e_0, scalar_convert(e_0).ok_or(DLEqError::InvalidChallenge)?);
|
||||
let mut e = None;
|
||||
for i in 0 .. RING_LEN {
|
||||
e = Some(
|
||||
Self::R_nonces(transcript.clone(), generators, self.s[i], ring[i], e.unwrap_or(e_0))
|
||||
);
|
||||
}
|
||||
|
||||
// Will panic if the above loop is never run somehow
|
||||
// If e wasn't an Option, and instead initially set to e_0, it'd always pass
|
||||
if e_0 != e.unwrap() {
|
||||
Err(DLEqError::InvalidProof)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub(crate) fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
#[allow(non_snake_case)]
|
||||
match self.Re_0 {
|
||||
Re::R(R0, R1) => {
|
||||
w.write_all(R0.to_bytes().as_ref())?;
|
||||
w.write_all(R1.to_bytes().as_ref())?;
|
||||
},
|
||||
Re::e(e) => w.write_all(e.to_repr().as_ref())?
|
||||
}
|
||||
|
||||
for i in 0 .. RING_LEN {
|
||||
w.write_all(self.s[i].0.to_repr().as_ref())?;
|
||||
w.write_all(self.s[i].1.to_repr().as_ref())?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[cfg(feature = "serialize")]
|
||||
pub(crate) fn deserialize<R: Read>(r: &mut R, mut Re_0: Re<G0, G1>) -> std::io::Result<Self> {
|
||||
match Re_0 {
|
||||
Re::R(ref mut R0, ref mut R1) => { *R0 = read_point(r)?; *R1 = read_point(r)? },
|
||||
Re::e(ref mut e) => *e = read_scalar(r)?
|
||||
}
|
||||
|
||||
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); RING_LEN];
|
||||
for i in 0 .. RING_LEN {
|
||||
s[i] = (read_scalar(r)?, read_scalar(r)?);
|
||||
}
|
||||
|
||||
Ok(Aos { Re_0, s })
|
||||
}
|
||||
}
|
||||
175
crypto/dleq/src/cross_group/bits.rs
Normal file
175
crypto/dleq/src/cross_group/bits.rs
Normal file
@@ -0,0 +1,175 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use group::{ff::PrimeFieldBits, prime::PrimeGroup};
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::{Generators, cross_group::{DLEqError, aos::{Re, Aos}}};
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{Read, Write};
|
||||
#[cfg(feature = "serialize")]
|
||||
use crate::cross_group::read_point;
|
||||
|
||||
pub(crate) enum BitSignature {
|
||||
ClassicLinear,
|
||||
ConciseLinear,
|
||||
EfficientLinear,
|
||||
CompromiseLinear
|
||||
}
|
||||
|
||||
impl BitSignature {
|
||||
pub(crate) const fn to_u8(&self) -> u8 {
|
||||
match self {
|
||||
BitSignature::ClassicLinear => 0,
|
||||
BitSignature::ConciseLinear => 1,
|
||||
BitSignature::EfficientLinear => 2,
|
||||
BitSignature::CompromiseLinear => 3
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) const fn from(algorithm: u8) -> BitSignature {
|
||||
match algorithm {
|
||||
0 => BitSignature::ClassicLinear,
|
||||
1 => BitSignature::ConciseLinear,
|
||||
2 => BitSignature::EfficientLinear,
|
||||
3 => BitSignature::CompromiseLinear,
|
||||
_ => panic!("Unknown algorithm")
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) const fn bits(&self) -> usize {
|
||||
match self {
|
||||
BitSignature::ClassicLinear => 1,
|
||||
BitSignature::ConciseLinear => 2,
|
||||
BitSignature::EfficientLinear => 1,
|
||||
BitSignature::CompromiseLinear => 2
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) const fn ring_len(&self) -> usize {
|
||||
2_usize.pow(self.bits() as u32)
|
||||
}
|
||||
|
||||
fn aos_form<G0: PrimeGroup, G1: PrimeGroup>(&self) -> Re<G0, G1> {
|
||||
match self {
|
||||
BitSignature::ClassicLinear => Re::e_default(),
|
||||
BitSignature::ConciseLinear => Re::e_default(),
|
||||
BitSignature::EfficientLinear => Re::R_default(),
|
||||
BitSignature::CompromiseLinear => Re::R_default()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub(crate) struct Bits<
|
||||
G0: PrimeGroup,
|
||||
G1: PrimeGroup,
|
||||
const SIGNATURE: u8,
|
||||
const RING_LEN: usize
|
||||
> {
|
||||
pub(crate) commitments: (G0, G1),
|
||||
signature: Aos<G0, G1, RING_LEN>
|
||||
}
|
||||
|
||||
impl<
|
||||
G0: PrimeGroup,
|
||||
G1: PrimeGroup,
|
||||
const SIGNATURE: u8,
|
||||
const RING_LEN: usize
|
||||
> Bits<G0, G1, SIGNATURE, RING_LEN> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
fn transcript<T: Transcript>(transcript: &mut T, i: usize, commitments: (G0, G1)) {
|
||||
transcript.domain_separate(b"bits");
|
||||
transcript.append_message(b"group", &u16::try_from(i).unwrap().to_le_bytes());
|
||||
transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref());
|
||||
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
|
||||
}
|
||||
|
||||
fn ring(pow_2: (G0, G1), commitments: (G0, G1)) -> Vec<(G0, G1)> {
|
||||
let mut res = vec![commitments; RING_LEN];
|
||||
for i in 1 .. RING_LEN {
|
||||
res[i] = (res[i - 1].0 - pow_2.0, res[i - 1].1 - pow_2.1);
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
fn shift(pow_2: &mut (G0, G1)) {
|
||||
for _ in 0 .. BitSignature::from(SIGNATURE).bits() {
|
||||
pow_2.0 = pow_2.0.double();
|
||||
pow_2.1 = pow_2.1.double();
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
i: usize,
|
||||
pow_2: &mut (G0, G1),
|
||||
bits: u8,
|
||||
blinding_key: (G0::Scalar, G1::Scalar)
|
||||
) -> Self {
|
||||
let mut commitments = (
|
||||
(generators.0.alt * blinding_key.0),
|
||||
(generators.1.alt * blinding_key.1)
|
||||
);
|
||||
commitments.0 += pow_2.0 * G0::Scalar::from(bits.into());
|
||||
commitments.1 += pow_2.1 * G1::Scalar::from(bits.into());
|
||||
|
||||
Self::transcript(transcript, i, commitments);
|
||||
|
||||
let signature = Aos::prove(
|
||||
rng,
|
||||
transcript.clone(),
|
||||
generators,
|
||||
&Self::ring(*pow_2, commitments),
|
||||
usize::from(bits),
|
||||
blinding_key,
|
||||
BitSignature::from(SIGNATURE).aos_form()
|
||||
);
|
||||
|
||||
Self::shift(pow_2);
|
||||
Bits { commitments, signature }
|
||||
}
|
||||
|
||||
pub(crate) fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
batch: &mut (BatchVerifier<(), G0>, BatchVerifier<(), G1>),
|
||||
i: usize,
|
||||
pow_2: &mut (G0, G1)
|
||||
) -> Result<(), DLEqError> {
|
||||
Self::transcript(transcript, i, self.commitments);
|
||||
|
||||
self.signature.verify(
|
||||
rng,
|
||||
transcript.clone(),
|
||||
generators,
|
||||
batch,
|
||||
&Self::ring(*pow_2, self.commitments)
|
||||
)?;
|
||||
|
||||
Self::shift(pow_2);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub(crate) fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
w.write_all(self.commitments.0.to_bytes().as_ref())?;
|
||||
w.write_all(self.commitments.1.to_bytes().as_ref())?;
|
||||
self.signature.serialize(w)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub(crate) fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
|
||||
Ok(
|
||||
Bits {
|
||||
commitments: (read_point(r)?, read_point(r)?),
|
||||
signature: Aos::deserialize(r, BitSignature::from(SIGNATURE).aos_form())?
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
366
crypto/dleq/src/cross_group/mod.rs
Normal file
366
crypto/dleq/src/cross_group/mod.rs
Normal file
@@ -0,0 +1,366 @@
|
||||
use thiserror::Error;
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
use digest::Digest;
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::Generators;
|
||||
|
||||
pub mod scalar;
|
||||
use scalar::{scalar_convert, mutual_scalar_from_bytes};
|
||||
|
||||
pub(crate) mod schnorr;
|
||||
use schnorr::SchnorrPoK;
|
||||
|
||||
pub(crate) mod aos;
|
||||
|
||||
mod bits;
|
||||
use bits::{BitSignature, Bits};
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{Read, Write};
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G> {
|
||||
let mut repr = G::Repr::default();
|
||||
r.read_exact(repr.as_mut())?;
|
||||
let point = G::from_bytes(&repr);
|
||||
if point.is_none().into() {
|
||||
Err(std::io::Error::new(std::io::ErrorKind::Other, "invalid point"))?;
|
||||
}
|
||||
Ok(point.unwrap())
|
||||
}
|
||||
|
||||
#[derive(Error, PartialEq, Eq, Debug)]
|
||||
pub enum DLEqError {
|
||||
#[error("invalid proof of knowledge")]
|
||||
InvalidProofOfKnowledge,
|
||||
#[error("invalid proof length")]
|
||||
InvalidProofLength,
|
||||
#[error("invalid challenge")]
|
||||
InvalidChallenge,
|
||||
#[error("invalid proof")]
|
||||
InvalidProof
|
||||
}
|
||||
|
||||
// This should never be directly instantiated and uses a u8 to represent internal values
|
||||
// Any external usage is likely invalid
|
||||
#[doc(hidden)]
|
||||
// Debug would be such a dump of data this likely isn't helpful, but at least it's available to
|
||||
// anyone who wants it
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct __DLEqProof<
|
||||
G0: PrimeGroup,
|
||||
G1: PrimeGroup,
|
||||
const SIGNATURE: u8,
|
||||
const RING_LEN: usize,
|
||||
const REMAINDER_RING_LEN: usize
|
||||
> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
bits: Vec<Bits<G0, G1, SIGNATURE, RING_LEN>>,
|
||||
remainder: Option<Bits<G0, G1, SIGNATURE, REMAINDER_RING_LEN>>,
|
||||
poks: (SchnorrPoK<G0>, SchnorrPoK<G1>)
|
||||
}
|
||||
|
||||
macro_rules! dleq {
|
||||
($name: ident, $signature: expr, $remainder: literal) => {
|
||||
pub type $name<G0, G1> = __DLEqProof<
|
||||
G0,
|
||||
G1,
|
||||
{ $signature.to_u8() },
|
||||
{ $signature.ring_len() },
|
||||
// There may not be a remainder, yet if there is one, it'll be just one bit
|
||||
// A ring for one bit has a RING_LEN of 2
|
||||
{ if $remainder { 2 } else { 0 } }
|
||||
>;
|
||||
}
|
||||
}
|
||||
|
||||
// Proves for 1-bit at a time with the signature form (e, s), as originally described in MRL-0010.
|
||||
// Uses a merged challenge, unlike MRL-0010, for the ring signature, saving an element from each
|
||||
// bit and removing a hash while slightly reducing challenge security. This security reduction is
|
||||
// already applied to the scalar being proven for, a result of the requirement it's mutually valid
|
||||
// over both scalar fields, hence its application here as well. This is mainly here as a point of
|
||||
// reference for the following DLEq proofs, all which use merged challenges, and isn't performant
|
||||
// in comparison to the others
|
||||
dleq!(ClassicLinearDLEq, BitSignature::ClassicLinear, false);
|
||||
|
||||
// Proves for 2-bits at a time to save 3/7 elements of every other bit
|
||||
// <9% smaller than CompromiseLinear, yet ~12% slower
|
||||
dleq!(ConciseLinearDLEq, BitSignature::ConciseLinear, true);
|
||||
|
||||
// Uses AOS signatures of the form R, s, to enable the final step of the ring signature to be
|
||||
// batch verified, at the cost of adding an additional element per bit
|
||||
dleq!(EfficientLinearDLEq, BitSignature::EfficientLinear, false);
|
||||
|
||||
// Proves for 2-bits at a time while using the R, s form. This saves 3/7 elements of every other
|
||||
// bit, while adding 1 element to every bit, and is more efficient than ConciseLinear yet less
|
||||
// efficient than EfficientLinear due to having more ring signature steps which aren't batched
|
||||
// >25% smaller than EfficientLinear and just 11% slower, making it the recommended option
|
||||
dleq!(CompromiseLinearDLEq, BitSignature::CompromiseLinear, true);
|
||||
|
||||
impl<
|
||||
G0: PrimeGroup,
|
||||
G1: PrimeGroup,
|
||||
const SIGNATURE: u8,
|
||||
const RING_LEN: usize,
|
||||
const REMAINDER_RING_LEN: usize
|
||||
> __DLEqProof<G0, G1, SIGNATURE, RING_LEN, REMAINDER_RING_LEN> where
|
||||
G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
|
||||
pub(crate) fn transcript<T: Transcript>(
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
keys: (G0, G1)
|
||||
) {
|
||||
transcript.domain_separate(b"cross_group_dleq");
|
||||
generators.0.transcript(transcript);
|
||||
generators.1.transcript(transcript);
|
||||
transcript.domain_separate(b"points");
|
||||
transcript.append_message(b"point_0", keys.0.to_bytes().as_ref());
|
||||
transcript.append_message(b"point_1", keys.1.to_bytes().as_ref());
|
||||
}
|
||||
|
||||
pub(crate) fn blinding_key<R: RngCore + CryptoRng, F: PrimeField>(
|
||||
rng: &mut R,
|
||||
total: &mut F,
|
||||
last: bool
|
||||
) -> F {
|
||||
let blinding_key = if last {
|
||||
-*total
|
||||
} else {
|
||||
F::random(&mut *rng)
|
||||
};
|
||||
*total += blinding_key;
|
||||
blinding_key
|
||||
}
|
||||
|
||||
fn reconstruct_keys(&self) -> (G0, G1) {
|
||||
let mut res = (
|
||||
self.bits.iter().map(|bit| bit.commitments.0).sum::<G0>(),
|
||||
self.bits.iter().map(|bit| bit.commitments.1).sum::<G1>()
|
||||
);
|
||||
|
||||
if let Some(bit) = &self.remainder {
|
||||
res.0 += bit.commitments.0;
|
||||
res.1 += bit.commitments.1;
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f: (G0::Scalar, G1::Scalar)
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
Self::transcript(
|
||||
transcript,
|
||||
generators,
|
||||
((generators.0.primary * f.0), (generators.1.primary * f.1))
|
||||
);
|
||||
|
||||
let poks = (
|
||||
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
|
||||
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
|
||||
);
|
||||
|
||||
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
|
||||
let mut blinding_key = |rng: &mut R, last| {
|
||||
let blinding_key = (
|
||||
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
|
||||
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
|
||||
);
|
||||
if last {
|
||||
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
|
||||
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
|
||||
}
|
||||
blinding_key
|
||||
};
|
||||
|
||||
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
|
||||
let bits_per_group = BitSignature::from(SIGNATURE).bits();
|
||||
|
||||
let mut pow_2 = (generators.0.primary, generators.1.primary);
|
||||
|
||||
let raw_bits = f.0.to_le_bits();
|
||||
let mut bits = Vec::with_capacity(capacity);
|
||||
let mut these_bits: u8 = 0;
|
||||
for (i, bit) in raw_bits.iter().enumerate() {
|
||||
if i == capacity {
|
||||
break;
|
||||
}
|
||||
|
||||
let bit = *bit as u8;
|
||||
debug_assert_eq!(bit | 1, 1);
|
||||
|
||||
// Accumulate this bit
|
||||
these_bits |= bit << (i % bits_per_group);
|
||||
if (i % bits_per_group) == (bits_per_group - 1) {
|
||||
let last = i == (capacity - 1);
|
||||
let blinding_key = blinding_key(&mut *rng, last);
|
||||
bits.push(
|
||||
Bits::prove(
|
||||
&mut *rng,
|
||||
transcript,
|
||||
generators,
|
||||
i / bits_per_group,
|
||||
&mut pow_2,
|
||||
these_bits,
|
||||
blinding_key
|
||||
)
|
||||
);
|
||||
these_bits = 0;
|
||||
}
|
||||
}
|
||||
debug_assert_eq!(bits.len(), capacity / bits_per_group);
|
||||
|
||||
let mut remainder = None;
|
||||
if capacity != ((capacity / bits_per_group) * bits_per_group) {
|
||||
let blinding_key = blinding_key(&mut *rng, true);
|
||||
remainder = Some(
|
||||
Bits::prove(
|
||||
&mut *rng,
|
||||
transcript,
|
||||
generators,
|
||||
capacity / bits_per_group,
|
||||
&mut pow_2,
|
||||
these_bits,
|
||||
blinding_key
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
let proof = __DLEqProof { bits, remainder, poks };
|
||||
debug_assert_eq!(
|
||||
proof.reconstruct_keys(),
|
||||
(generators.0.primary * f.0, generators.1.primary * f.1)
|
||||
);
|
||||
(proof, f)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
|
||||
/// the output of the passed in Digest. Given the non-standard requirements to achieve
|
||||
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
|
||||
/// to safely and securely generate a Scalar, without risk of failure, nor bias
|
||||
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
|
||||
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
|
||||
/// the relationship between keys would allow breaking all swaps after just one
|
||||
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
digest: D
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
Self::prove_internal(
|
||||
rng,
|
||||
transcript,
|
||||
generators,
|
||||
mutual_scalar_from_bytes(digest.finalize().as_ref())
|
||||
)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
|
||||
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
|
||||
/// scalars until they're safely usable, as needed
|
||||
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f0: G0::Scalar
|
||||
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
|
||||
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
|
||||
}
|
||||
|
||||
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
|
||||
pub fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>)
|
||||
) -> Result<(G0, G1), DLEqError> {
|
||||
let capacity = usize::try_from(
|
||||
G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)
|
||||
).unwrap();
|
||||
let bits_per_group = BitSignature::from(SIGNATURE).bits();
|
||||
let has_remainder = (capacity % bits_per_group) != 0;
|
||||
|
||||
// These shouldn't be possible, as locally created and deserialized proofs should be properly
|
||||
// formed in these regards, yet it doesn't hurt to check and would be problematic if true
|
||||
if (self.bits.len() != (capacity / bits_per_group)) || (
|
||||
(self.remainder.is_none() && has_remainder) || (self.remainder.is_some() && !has_remainder)
|
||||
) {
|
||||
return Err(DLEqError::InvalidProofLength);
|
||||
}
|
||||
|
||||
let keys = self.reconstruct_keys();
|
||||
Self::transcript(transcript, generators, keys);
|
||||
|
||||
let batch_capacity = match BitSignature::from(SIGNATURE) {
|
||||
BitSignature::ClassicLinear => 3,
|
||||
BitSignature::ConciseLinear => 3,
|
||||
BitSignature::EfficientLinear => (self.bits.len() + 1) * 3,
|
||||
BitSignature::CompromiseLinear => (self.bits.len() + 1) * 3
|
||||
};
|
||||
let mut batch = (BatchVerifier::new(batch_capacity), BatchVerifier::new(batch_capacity));
|
||||
|
||||
self.poks.0.verify(&mut *rng, transcript, generators.0.primary, keys.0, &mut batch.0);
|
||||
self.poks.1.verify(&mut *rng, transcript, generators.1.primary, keys.1, &mut batch.1);
|
||||
|
||||
let mut pow_2 = (generators.0.primary, generators.1.primary);
|
||||
for (i, bits) in self.bits.iter().enumerate() {
|
||||
bits.verify(&mut *rng, transcript, generators, &mut batch, i, &mut pow_2)?;
|
||||
}
|
||||
if let Some(bit) = &self.remainder {
|
||||
bit.verify(&mut *rng, transcript, generators, &mut batch, self.bits.len(), &mut pow_2)?;
|
||||
}
|
||||
|
||||
if (!batch.0.verify_vartime()) || (!batch.1.verify_vartime()) {
|
||||
Err(DLEqError::InvalidProof)?;
|
||||
}
|
||||
|
||||
Ok(keys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
for bit in &self.bits {
|
||||
bit.serialize(w)?;
|
||||
}
|
||||
if let Some(bit) = &self.remainder {
|
||||
bit.serialize(w)?;
|
||||
}
|
||||
self.poks.0.serialize(w)?;
|
||||
self.poks.1.serialize(w)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
|
||||
let capacity = usize::try_from(
|
||||
G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)
|
||||
).unwrap();
|
||||
let bits_per_group = BitSignature::from(SIGNATURE).bits();
|
||||
|
||||
let mut bits = Vec::with_capacity(capacity / bits_per_group);
|
||||
for _ in 0 .. (capacity / bits_per_group) {
|
||||
bits.push(Bits::deserialize(r)?);
|
||||
}
|
||||
|
||||
let mut remainder = None;
|
||||
if (capacity % bits_per_group) != 0 {
|
||||
remainder = Some(Bits::deserialize(r)?);
|
||||
}
|
||||
|
||||
Ok(
|
||||
__DLEqProof {
|
||||
bits,
|
||||
remainder,
|
||||
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
49
crypto/dleq/src/cross_group/scalar.rs
Normal file
49
crypto/dleq/src/cross_group/scalar.rs
Normal file
@@ -0,0 +1,49 @@
|
||||
use ff::PrimeFieldBits;
|
||||
|
||||
/// Convert a uniform scalar into one usable on both fields, clearing the top bits as needed
|
||||
pub fn scalar_normalize<F0: PrimeFieldBits, F1: PrimeFieldBits>(scalar: F0) -> (F0, F1) {
|
||||
let mutual_capacity = F0::CAPACITY.min(F1::CAPACITY);
|
||||
|
||||
// The security of a mutual key is the security of the lower field. Accordingly, this bans a
|
||||
// difference of more than 4 bits
|
||||
#[cfg(feature = "secure_capacity_difference")]
|
||||
assert!((F0::CAPACITY.max(F1::CAPACITY) - mutual_capacity) < 4);
|
||||
|
||||
let mut res1 = F0::zero();
|
||||
let mut res2 = F1::zero();
|
||||
// Uses the bit view API to ensure a consistent endianess
|
||||
let mut bits = scalar.to_le_bits();
|
||||
// Convert it to big endian
|
||||
bits.reverse();
|
||||
for bit in bits.iter().skip(bits.len() - usize::try_from(mutual_capacity).unwrap()) {
|
||||
res1 = res1.double();
|
||||
res2 = res2.double();
|
||||
|
||||
let bit = *bit as u8;
|
||||
debug_assert_eq!(bit | 1, 1);
|
||||
|
||||
res1 += F0::from(bit.into());
|
||||
res2 += F1::from(bit.into());
|
||||
}
|
||||
|
||||
(res1, res2)
|
||||
}
|
||||
|
||||
/// Helper to convert a scalar between fields. Returns None if the scalar isn't mutually valid
|
||||
pub fn scalar_convert<F0: PrimeFieldBits, F1: PrimeFieldBits>(scalar: F0) -> Option<F1> {
|
||||
let (valid, converted) = scalar_normalize(scalar);
|
||||
Some(converted).filter(|_| scalar == valid)
|
||||
}
|
||||
|
||||
/// Create a mutually valid scalar from bytes via bit truncation to not introduce bias
|
||||
pub fn mutual_scalar_from_bytes<F0: PrimeFieldBits, F1: PrimeFieldBits>(bytes: &[u8]) -> (F0, F1) {
|
||||
let capacity = usize::try_from(F0::CAPACITY.min(F1::CAPACITY)).unwrap();
|
||||
debug_assert!((bytes.len() * 8) >= capacity);
|
||||
|
||||
let mut accum = F0::zero();
|
||||
for b in 0 .. capacity {
|
||||
accum = accum.double();
|
||||
accum += F0::from(((bytes[b / 8] >> (b % 8)) & 1).into());
|
||||
}
|
||||
(accum, scalar_convert(accum).unwrap())
|
||||
}
|
||||
79
crypto/dleq/src/cross_group/schnorr.rs
Normal file
79
crypto/dleq/src/cross_group/schnorr.rs
Normal file
@@ -0,0 +1,79 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use group::{ff::{Field, PrimeFieldBits}, prime::PrimeGroup};
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::challenge;
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{Read, Write};
|
||||
#[cfg(feature = "serialize")]
|
||||
use ff::PrimeField;
|
||||
#[cfg(feature = "serialize")]
|
||||
use crate::{read_scalar, cross_group::read_point};
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub(crate) struct SchnorrPoK<G: PrimeGroup> {
|
||||
R: G,
|
||||
s: G::Scalar
|
||||
}
|
||||
|
||||
impl<G: PrimeGroup> SchnorrPoK<G> where G::Scalar: PrimeFieldBits {
|
||||
// Not hram due to the lack of m
|
||||
#[allow(non_snake_case)]
|
||||
fn hra<T: Transcript>(transcript: &mut T, generator: G, R: G, A: G) -> G::Scalar {
|
||||
transcript.domain_separate(b"schnorr_proof_of_knowledge");
|
||||
transcript.append_message(b"generator", generator.to_bytes().as_ref());
|
||||
transcript.append_message(b"nonce", R.to_bytes().as_ref());
|
||||
transcript.append_message(b"public_key", A.to_bytes().as_ref());
|
||||
challenge(transcript)
|
||||
}
|
||||
|
||||
pub(crate) fn prove<R: RngCore + CryptoRng, T: Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generator: G,
|
||||
private_key: G::Scalar
|
||||
) -> SchnorrPoK<G> {
|
||||
let nonce = G::Scalar::random(rng);
|
||||
#[allow(non_snake_case)]
|
||||
let R = generator * nonce;
|
||||
SchnorrPoK {
|
||||
R,
|
||||
s: nonce + (private_key * SchnorrPoK::hra(transcript, generator, R, generator * private_key))
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn verify<R: RngCore + CryptoRng, T: Transcript>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generator: G,
|
||||
public_key: G,
|
||||
batch: &mut BatchVerifier<(), G>
|
||||
) {
|
||||
batch.queue(
|
||||
rng,
|
||||
(),
|
||||
[
|
||||
(-self.s, generator),
|
||||
(G::Scalar::one(), self.R),
|
||||
(Self::hra(transcript, generator, self.R, public_key), public_key)
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
w.write_all(self.R.to_bytes().as_ref())?;
|
||||
w.write_all(self.s.to_repr().as_ref())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<SchnorrPoK<G>> {
|
||||
Ok(SchnorrPoK { R: read_point(r)?, s: read_scalar(r)? })
|
||||
}
|
||||
}
|
||||
151
crypto/dleq/src/lib.rs
Normal file
151
crypto/dleq/src/lib.rs
Normal file
@@ -0,0 +1,151 @@
|
||||
use thiserror::Error;
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::prime::PrimeGroup;
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{self, ErrorKind, Error, Read, Write};
|
||||
|
||||
#[cfg(feature = "experimental")]
|
||||
pub mod cross_group;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq)]
|
||||
pub struct Generators<G: PrimeGroup> {
|
||||
primary: G,
|
||||
alt: G
|
||||
}
|
||||
|
||||
impl<G: PrimeGroup> Generators<G> {
|
||||
pub fn new(primary: G, alt: G) -> Generators<G> {
|
||||
Generators { primary, alt }
|
||||
}
|
||||
|
||||
fn transcript<T: Transcript>(&self, transcript: &mut T) {
|
||||
transcript.domain_separate(b"generators");
|
||||
transcript.append_message(b"primary", self.primary.to_bytes().as_ref());
|
||||
transcript.append_message(b"alternate", self.alt.to_bytes().as_ref());
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn challenge<T: Transcript, F: PrimeField>(transcript: &mut T) -> F {
|
||||
// From here, there are three ways to get a scalar under the ff/group API
|
||||
// 1: Scalar::random(ChaCha12Rng::from_seed(self.transcript.rng_seed(b"challenge")))
|
||||
// 2: Grabbing a UInt library to perform reduction by the modulus, then determining endianess
|
||||
// and loading it in
|
||||
// 3: Iterating over each byte and manually doubling/adding. This is simplest
|
||||
|
||||
// Get a wide amount of bytes to safely reduce without bias
|
||||
let target = ((usize::try_from(F::NUM_BITS).unwrap() + 7) / 8) * 2;
|
||||
let mut challenge_bytes = transcript.challenge(b"challenge").as_ref().to_vec();
|
||||
while challenge_bytes.len() < target {
|
||||
// Secure given transcripts updating on challenge
|
||||
challenge_bytes.extend(transcript.challenge(b"challenge_extension").as_ref());
|
||||
}
|
||||
challenge_bytes.truncate(target);
|
||||
|
||||
let mut challenge = F::zero();
|
||||
for b in challenge_bytes {
|
||||
for _ in 0 .. 8 {
|
||||
challenge = challenge.double();
|
||||
}
|
||||
challenge += F::from(u64::from(b));
|
||||
}
|
||||
challenge
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
fn read_scalar<R: Read, F: PrimeField>(r: &mut R) -> io::Result<F> {
|
||||
let mut repr = F::Repr::default();
|
||||
r.read_exact(repr.as_mut())?;
|
||||
let scalar = F::from_repr(repr);
|
||||
if scalar.is_none().into() {
|
||||
Err(Error::new(ErrorKind::Other, "invalid scalar"))?;
|
||||
}
|
||||
Ok(scalar.unwrap())
|
||||
}
|
||||
|
||||
#[derive(Error, Debug)]
|
||||
pub enum DLEqError {
|
||||
#[error("invalid proof")]
|
||||
InvalidProof
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct DLEqProof<G: PrimeGroup> {
|
||||
c: G::Scalar,
|
||||
s: G::Scalar
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
impl<G: PrimeGroup> DLEqProof<G> {
|
||||
fn challenge<T: Transcript>(
|
||||
transcript: &mut T,
|
||||
generators: Generators<G>,
|
||||
nonces: (G, G),
|
||||
points: (G, G)
|
||||
) -> G::Scalar {
|
||||
generators.transcript(transcript);
|
||||
transcript.domain_separate(b"dleq");
|
||||
transcript.append_message(b"nonce_primary", nonces.0.to_bytes().as_ref());
|
||||
transcript.append_message(b"nonce_alternate", nonces.1.to_bytes().as_ref());
|
||||
transcript.append_message(b"point_primary", points.0.to_bytes().as_ref());
|
||||
transcript.append_message(b"point_alternate", points.1.to_bytes().as_ref());
|
||||
challenge(transcript)
|
||||
}
|
||||
|
||||
pub fn prove<R: RngCore + CryptoRng, T: Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: Generators<G>,
|
||||
scalar: G::Scalar
|
||||
) -> DLEqProof<G> {
|
||||
let r = G::Scalar::random(rng);
|
||||
let c = Self::challenge(
|
||||
transcript,
|
||||
generators,
|
||||
(generators.primary * r, generators.alt * r),
|
||||
(generators.primary * scalar, generators.alt * scalar)
|
||||
);
|
||||
let s = r + (c * scalar);
|
||||
|
||||
DLEqProof { c, s }
|
||||
}
|
||||
|
||||
pub fn verify<T: Transcript>(
|
||||
&self,
|
||||
transcript: &mut T,
|
||||
generators: Generators<G>,
|
||||
points: (G, G)
|
||||
) -> Result<(), DLEqError> {
|
||||
if self.c != Self::challenge(
|
||||
transcript,
|
||||
generators,
|
||||
(
|
||||
(generators.primary * self.s) - (points.0 * self.c),
|
||||
(generators.alt * self.s) - (points.1 * self.c)
|
||||
),
|
||||
points
|
||||
) {
|
||||
Err(DLEqError::InvalidProof)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn serialize<W: Write>(&self, w: &mut W) -> io::Result<()> {
|
||||
w.write_all(self.c.to_repr().as_ref())?;
|
||||
w.write_all(self.s.to_repr().as_ref())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn deserialize<R: Read>(r: &mut R) -> io::Result<DLEqProof<G>> {
|
||||
Ok(DLEqProof { c: read_scalar(r)?, s: read_scalar(r)? })
|
||||
}
|
||||
}
|
||||
69
crypto/dleq/src/tests/cross_group/aos.rs
Normal file
69
crypto/dleq/src/tests/cross_group/aos.rs
Normal file
@@ -0,0 +1,69 @@
|
||||
use rand_core::OsRng;
|
||||
|
||||
use group::{ff::Field, Group};
|
||||
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::{
|
||||
cross_group::aos::{Re, Aos},
|
||||
tests::cross_group::{G0, G1, transcript, generators}
|
||||
};
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[cfg(feature = "serialize")]
|
||||
fn test_aos_serialization<const RING_LEN: usize>(proof: Aos<G0, G1, RING_LEN>, Re_0: Re<G0, G1>) {
|
||||
let mut buf = vec![];
|
||||
proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = Aos::deserialize(&mut std::io::Cursor::new(buf), Re_0).unwrap();
|
||||
assert_eq!(proof, deserialized);
|
||||
}
|
||||
|
||||
fn test_aos<const RING_LEN: usize>(default: Re<G0, G1>) {
|
||||
let generators = generators();
|
||||
|
||||
let mut ring_keys = [(<G0 as Group>::Scalar::zero(), <G1 as Group>::Scalar::zero()); RING_LEN];
|
||||
// Side-effect of G0 being a type-alias with identity() deprecated
|
||||
#[allow(deprecated)]
|
||||
let mut ring = [(G0::identity(), G1::identity()); RING_LEN];
|
||||
for i in 0 .. RING_LEN {
|
||||
ring_keys[i] = (
|
||||
<G0 as Group>::Scalar::random(&mut OsRng),
|
||||
<G1 as Group>::Scalar::random(&mut OsRng)
|
||||
);
|
||||
ring[i] = (generators.0.alt * ring_keys[i].0, generators.1.alt * ring_keys[i].1);
|
||||
}
|
||||
|
||||
for actual in 0 .. RING_LEN {
|
||||
let proof = Aos::<_, _, RING_LEN>::prove(
|
||||
&mut OsRng,
|
||||
transcript(),
|
||||
generators,
|
||||
&ring,
|
||||
actual,
|
||||
ring_keys[actual],
|
||||
default.clone()
|
||||
);
|
||||
|
||||
let mut batch = (BatchVerifier::new(0), BatchVerifier::new(0));
|
||||
proof.verify(&mut OsRng, transcript(), generators, &mut batch, &ring).unwrap();
|
||||
// For e, these should have nothing. For R, these should have 6 elements each which sum to 0
|
||||
assert!(batch.0.verify_vartime());
|
||||
assert!(batch.1.verify_vartime());
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
test_aos_serialization(proof, default.clone());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aos_e() {
|
||||
test_aos::<2>(Re::e_default());
|
||||
test_aos::<4>(Re::e_default());
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[test]
|
||||
fn test_aos_R() {
|
||||
// Batch verification appreciates the longer vectors, which means not batching bits
|
||||
test_aos::<2>(Re::R_default());
|
||||
}
|
||||
192
crypto/dleq/src/tests/cross_group/mod.rs
Normal file
192
crypto/dleq/src/tests/cross_group/mod.rs
Normal file
@@ -0,0 +1,192 @@
|
||||
use hex_literal::hex;
|
||||
use rand_core::{RngCore, OsRng};
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::{Group, GroupEncoding};
|
||||
|
||||
use blake2::{Digest, Blake2b512};
|
||||
|
||||
use k256::{Scalar, ProjectivePoint};
|
||||
use dalek_ff_group::{self as dfg, EdwardsPoint, CompressedEdwardsY};
|
||||
|
||||
use transcript::RecommendedTranscript;
|
||||
|
||||
use crate::{
|
||||
Generators,
|
||||
cross_group::{
|
||||
scalar::mutual_scalar_from_bytes,
|
||||
ClassicLinearDLEq, EfficientLinearDLEq, ConciseLinearDLEq, CompromiseLinearDLEq
|
||||
}
|
||||
};
|
||||
|
||||
mod scalar;
|
||||
mod schnorr;
|
||||
mod aos;
|
||||
|
||||
type G0 = ProjectivePoint;
|
||||
type G1 = EdwardsPoint;
|
||||
|
||||
pub(crate) fn transcript() -> RecommendedTranscript {
|
||||
RecommendedTranscript::new(b"Cross-Group DLEq Proof Test")
|
||||
}
|
||||
|
||||
pub(crate) fn generators() -> (Generators<G0>, Generators<G1>) {
|
||||
(
|
||||
Generators::new(
|
||||
ProjectivePoint::GENERATOR,
|
||||
ProjectivePoint::from_bytes(
|
||||
&(hex!("0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0").into())
|
||||
).unwrap()
|
||||
),
|
||||
|
||||
Generators::new(
|
||||
EdwardsPoint::generator(),
|
||||
CompressedEdwardsY::new(
|
||||
hex!("8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94")
|
||||
).decompress().unwrap()
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
macro_rules! verify_and_deserialize {
|
||||
($type: ty, $proof: ident, $generators: ident, $keys: ident) => {
|
||||
let public_keys = $proof.verify(&mut OsRng, &mut transcript(), $generators).unwrap();
|
||||
assert_eq!($generators.0.primary * $keys.0, public_keys.0);
|
||||
assert_eq!($generators.1.primary * $keys.1, public_keys.1);
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
$proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = <$type>::deserialize(&mut std::io::Cursor::new(&buf)).unwrap();
|
||||
assert_eq!($proof, deserialized);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! test_dleq {
|
||||
($str: literal, $benchmark: ident, $name: ident, $type: ident) => {
|
||||
#[ignore]
|
||||
#[test]
|
||||
fn $benchmark() {
|
||||
println!("Benchmarking with Secp256k1/Ed25519");
|
||||
let generators = generators();
|
||||
|
||||
let mut seed = [0; 32];
|
||||
OsRng.fill_bytes(&mut seed);
|
||||
let key = Blake2b512::new().chain_update(seed);
|
||||
|
||||
let runs = 200;
|
||||
let mut proofs = Vec::with_capacity(usize::try_from(runs).unwrap());
|
||||
let time = std::time::Instant::now();
|
||||
for _ in 0 .. runs {
|
||||
proofs.push($type::prove(&mut OsRng, &mut transcript(), generators, key.clone()).0);
|
||||
}
|
||||
println!("{} had a average prove time of {}ms", $str, time.elapsed().as_millis() / runs);
|
||||
|
||||
let time = std::time::Instant::now();
|
||||
for proof in &proofs {
|
||||
proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
|
||||
}
|
||||
println!("{} had a average verify time of {}ms", $str, time.elapsed().as_millis() / runs);
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
proofs[0].serialize(&mut buf).unwrap();
|
||||
println!("{} had a proof size of {} bytes", $str, buf.len());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn $name() {
|
||||
let generators = generators();
|
||||
|
||||
for i in 0 .. 1 {
|
||||
let (proof, keys) = if i == 0 {
|
||||
let mut seed = [0; 32];
|
||||
OsRng.fill_bytes(&mut seed);
|
||||
|
||||
$type::prove(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
Blake2b512::new().chain_update(seed)
|
||||
)
|
||||
} else {
|
||||
let mut key;
|
||||
let mut res;
|
||||
while {
|
||||
key = Scalar::random(&mut OsRng);
|
||||
res = $type::prove_without_bias(&mut OsRng, &mut transcript(), generators, key);
|
||||
res.is_none()
|
||||
} {}
|
||||
let res = res.unwrap();
|
||||
assert_eq!(key, res.1.0);
|
||||
res
|
||||
};
|
||||
|
||||
verify_and_deserialize!($type::<G0, G1>, proof, generators, keys);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
test_dleq!("ClassicLinear", benchmark_classic_linear, test_classic_linear, ClassicLinearDLEq);
|
||||
test_dleq!("ConciseLinear", benchmark_concise_linear, test_concise_linear, ConciseLinearDLEq);
|
||||
test_dleq!(
|
||||
"EfficientLinear",
|
||||
benchmark_efficient_linear,
|
||||
test_efficient_linear,
|
||||
EfficientLinearDLEq
|
||||
);
|
||||
test_dleq!(
|
||||
"CompromiseLinear",
|
||||
benchmark_compromise_linear,
|
||||
test_compromise_linear,
|
||||
CompromiseLinearDLEq
|
||||
);
|
||||
|
||||
#[test]
|
||||
fn test_rejection_sampling() {
|
||||
let mut pow_2 = Scalar::one();
|
||||
for _ in 0 .. dfg::Scalar::CAPACITY {
|
||||
pow_2 = pow_2.double();
|
||||
}
|
||||
|
||||
assert!(
|
||||
// Either would work
|
||||
EfficientLinearDLEq::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators(),
|
||||
pow_2
|
||||
).is_none()
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_remainder() {
|
||||
// Uses Secp256k1 for both to achieve an odd capacity of 255
|
||||
assert_eq!(Scalar::CAPACITY, 255);
|
||||
let generators = (generators().0, generators().0);
|
||||
// This will ignore any unused bits, ensuring every remaining one is set
|
||||
let keys = mutual_scalar_from_bytes(&[0xFF; 32]);
|
||||
assert_eq!(keys.0 + Scalar::one(), Scalar::from(2u64).pow_vartime(&[255]));
|
||||
assert_eq!(keys.0, keys.1);
|
||||
|
||||
let (proof, res) = ConciseLinearDLEq::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
keys.0
|
||||
).unwrap();
|
||||
assert_eq!(keys, res);
|
||||
|
||||
verify_and_deserialize!(
|
||||
ConciseLinearDLEq::<ProjectivePoint, ProjectivePoint>,
|
||||
proof,
|
||||
generators,
|
||||
keys
|
||||
);
|
||||
}
|
||||
47
crypto/dleq/src/tests/cross_group/scalar.rs
Normal file
47
crypto/dleq/src/tests/cross_group/scalar.rs
Normal file
@@ -0,0 +1,47 @@
|
||||
use rand_core::OsRng;
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
|
||||
use k256::Scalar as K256Scalar;
|
||||
use dalek_ff_group::Scalar as DalekScalar;
|
||||
|
||||
use crate::cross_group::scalar::{scalar_normalize, scalar_convert};
|
||||
|
||||
#[test]
|
||||
fn test_scalar() {
|
||||
assert_eq!(
|
||||
scalar_normalize::<_, DalekScalar>(K256Scalar::zero()),
|
||||
(K256Scalar::zero(), DalekScalar::zero())
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
scalar_normalize::<_, DalekScalar>(K256Scalar::one()),
|
||||
(K256Scalar::one(), DalekScalar::one())
|
||||
);
|
||||
|
||||
let mut initial;
|
||||
while {
|
||||
initial = K256Scalar::random(&mut OsRng);
|
||||
let (k, ed) = scalar_normalize::<_, DalekScalar>(initial);
|
||||
|
||||
// The initial scalar should equal the new scalar with Ed25519's capacity
|
||||
let mut initial_bytes = (&initial.to_repr()).to_vec();
|
||||
// Drop the first 4 bits to hit 252
|
||||
initial_bytes[0] = initial_bytes[0] & 0b00001111;
|
||||
let k_bytes = (&k.to_repr()).to_vec();
|
||||
assert_eq!(initial_bytes, k_bytes);
|
||||
|
||||
let mut ed_bytes = ed.to_repr().as_ref().to_vec();
|
||||
// Reverse to big endian
|
||||
ed_bytes.reverse();
|
||||
assert_eq!(k_bytes, ed_bytes);
|
||||
|
||||
// Verify conversion works as expected
|
||||
assert_eq!(scalar_convert::<_, DalekScalar>(k), Some(ed));
|
||||
|
||||
// Run this test again if this secp256k1 scalar didn't have any bits cleared
|
||||
initial == k
|
||||
} {}
|
||||
// Verify conversion returns None when the scalar isn't mutually valid
|
||||
assert!(scalar_convert::<_, DalekScalar>(initial).is_none());
|
||||
}
|
||||
38
crypto/dleq/src/tests/cross_group/schnorr.rs
Normal file
38
crypto/dleq/src/tests/cross_group/schnorr.rs
Normal file
@@ -0,0 +1,38 @@
|
||||
use rand_core::OsRng;
|
||||
|
||||
use group::{ff::{Field, PrimeFieldBits}, prime::PrimeGroup};
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use transcript::RecommendedTranscript;
|
||||
|
||||
use crate::cross_group::schnorr::SchnorrPoK;
|
||||
|
||||
fn test_schnorr<G: PrimeGroup>() where G::Scalar: PrimeFieldBits {
|
||||
let private = G::Scalar::random(&mut OsRng);
|
||||
|
||||
let transcript = RecommendedTranscript::new(b"Schnorr Test");
|
||||
let mut batch = BatchVerifier::new(3);
|
||||
SchnorrPoK::prove(
|
||||
&mut OsRng,
|
||||
&mut transcript.clone(),
|
||||
G::generator(),
|
||||
private
|
||||
).verify(
|
||||
&mut OsRng,
|
||||
&mut transcript.clone(),
|
||||
G::generator(),
|
||||
G::generator() * private,
|
||||
&mut batch
|
||||
);
|
||||
assert!(batch.verify_vartime());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_secp256k1() {
|
||||
test_schnorr::<k256::ProjectivePoint>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ed25519() {
|
||||
test_schnorr::<dalek_ff_group::EdwardsPoint>();
|
||||
}
|
||||
43
crypto/dleq/src/tests/mod.rs
Normal file
43
crypto/dleq/src/tests/mod.rs
Normal file
@@ -0,0 +1,43 @@
|
||||
#[cfg(feature = "experimental")]
|
||||
mod cross_group;
|
||||
|
||||
use hex_literal::hex;
|
||||
use rand_core::OsRng;
|
||||
|
||||
use ff::Field;
|
||||
use group::GroupEncoding;
|
||||
|
||||
use k256::{Scalar, ProjectivePoint};
|
||||
|
||||
use transcript::RecommendedTranscript;
|
||||
|
||||
use crate::{Generators, DLEqProof};
|
||||
|
||||
#[test]
|
||||
fn test_dleq() {
|
||||
let transcript = || RecommendedTranscript::new(b"DLEq Proof Test");
|
||||
|
||||
let generators = Generators::new(
|
||||
ProjectivePoint::GENERATOR,
|
||||
ProjectivePoint::from_bytes(
|
||||
&(hex!("0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0").into())
|
||||
).unwrap()
|
||||
);
|
||||
|
||||
let key = Scalar::random(&mut OsRng);
|
||||
let proof = DLEqProof::prove(&mut OsRng, &mut transcript(), generators, key);
|
||||
|
||||
let keys = (generators.primary * key, generators.alt * key);
|
||||
proof.verify(&mut transcript(), generators, keys).unwrap();
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = DLEqProof::<ProjectivePoint>::deserialize(
|
||||
&mut std::io::Cursor::new(&buf)
|
||||
).unwrap();
|
||||
assert_eq!(proof, deserialized);
|
||||
deserialized.verify(&mut transcript(), generators, keys).unwrap();
|
||||
}
|
||||
}
|
||||
@@ -1,24 +1,46 @@
|
||||
[package]
|
||||
name = "frost"
|
||||
name = "modular-frost"
|
||||
version = "0.1.0"
|
||||
description = "Implementation of FROST over ff/group"
|
||||
description = "Modular implementation of FROST over ff/group"
|
||||
license = "MIT"
|
||||
repository = "https://github.com/serai-dex/serai"
|
||||
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
|
||||
keywords = ["frost", "multisig", "threshold"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
thiserror = "1"
|
||||
|
||||
rand_core = "0.6"
|
||||
hex = "0.4"
|
||||
|
||||
ff = "0.11"
|
||||
group = "0.11"
|
||||
sha2 = { version = "0.10", optional = true }
|
||||
|
||||
transcript = { path = "../transcript" }
|
||||
ff = "0.12"
|
||||
group = "0.12"
|
||||
|
||||
multiexp = { path = "../multiexp", features = ["batch"] }
|
||||
elliptic-curve = { version = "0.12", features = ["hash2curve"], optional = true }
|
||||
p256 = { version = "0.11", features = ["arithmetic", "bits", "hash2curve"], optional = true }
|
||||
k256 = { version = "0.11", features = ["arithmetic", "bits", "hash2curve"], optional = true }
|
||||
dalek-ff-group = { path = "../dalek-ff-group", version = "0.1", optional = true }
|
||||
|
||||
transcript = { package = "flexible-transcript", path = "../transcript", version = "0.1" }
|
||||
|
||||
multiexp = { path = "../multiexp", version = "0.1", features = ["batch"] }
|
||||
|
||||
dleq = { package = "dleq", path = "../dleq", version = "0.1", features = ["serialize"] }
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8"
|
||||
|
||||
sha2 = "0.10"
|
||||
k256 = { version = "0.10", features = ["arithmetic"] }
|
||||
dalek-ff-group = { path = "../dalek-ff-group" }
|
||||
|
||||
[features]
|
||||
curves = ["sha2"] # All officially denoted curves use the SHA2 family of hashes
|
||||
kp256 = ["elliptic-curve", "curves"]
|
||||
p256 = ["kp256", "dep:p256"]
|
||||
secp256k1 = ["kp256", "k256"]
|
||||
dalek = ["curves", "dalek-ff-group"]
|
||||
ed25519 = ["dalek"]
|
||||
ristretto = ["dalek"]
|
||||
|
||||
@@ -1,3 +1,6 @@
|
||||
# FROST
|
||||
# Modular FROST
|
||||
|
||||
Implementation of FROST for any curve with a ff/group API.
|
||||
A modular implementation of FROST for any curve with a ff/group API. Notably,
|
||||
beyond curve modularity, custom algorithms may be specified, providing support
|
||||
for privacy coins. The provided Schnorr algorithm also has a modular HRAM due
|
||||
to the variety in existence, enabling integration with existing systems.
|
||||
|
||||
@@ -4,7 +4,7 @@ use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use crate::{Curve, FrostError, MultisigView, schnorr};
|
||||
use crate::{Curve, FrostError, FrostView, schnorr};
|
||||
pub use schnorr::SchnorrSignature;
|
||||
|
||||
/// Algorithm to use FROST with
|
||||
@@ -13,22 +13,25 @@ pub trait Algorithm<C: Curve>: Clone {
|
||||
/// The resulting type of the signatures this algorithm will produce
|
||||
type Signature: Clone + PartialEq + Debug;
|
||||
|
||||
/// Obtain a mutable borrow of the underlying transcript
|
||||
fn transcript(&mut self) -> &mut Self::Transcript;
|
||||
|
||||
/// Obtain the list of nonces to generate, as specified by the basepoints to create commitments
|
||||
/// against per-nonce. These are not committed to by FROST on the underlying transcript
|
||||
fn nonces(&self) -> Vec<Vec<C::G>>;
|
||||
|
||||
/// Generate an addendum to FROST"s preprocessing stage
|
||||
fn preprocess_addendum<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
rng: &mut R,
|
||||
params: &MultisigView<C>,
|
||||
nonces: &[C::F; 2],
|
||||
params: &FrostView<C>,
|
||||
) -> Vec<u8>;
|
||||
|
||||
/// Proccess the addendum for the specified participant. Guaranteed to be ordered
|
||||
fn process_addendum(
|
||||
&mut self,
|
||||
params: &MultisigView<C>,
|
||||
params: &FrostView<C>,
|
||||
l: u16,
|
||||
commitments: &[C::G; 2],
|
||||
serialized: &[u8],
|
||||
) -> Result<(), FrostError>;
|
||||
|
||||
@@ -38,23 +41,24 @@ pub trait Algorithm<C: Curve>: Clone {
|
||||
/// The nonce will already have been processed into the combined form d + (e * p)
|
||||
fn sign_share(
|
||||
&mut self,
|
||||
params: &MultisigView<C>,
|
||||
nonce_sum: C::G,
|
||||
binding: C::F,
|
||||
nonce: C::F,
|
||||
params: &FrostView<C>,
|
||||
nonce_sums: &[Vec<C::G>],
|
||||
nonces: &[C::F],
|
||||
msg: &[u8],
|
||||
) -> C::F;
|
||||
|
||||
/// Verify a signature
|
||||
fn verify(&self, group_key: C::G, nonce: C::G, sum: C::F) -> Option<Self::Signature>;
|
||||
#[must_use]
|
||||
fn verify(&self, group_key: C::G, nonces: &[Vec<C::G>], sum: C::F) -> Option<Self::Signature>;
|
||||
|
||||
/// Verify a specific share given as a response. Used to determine blame if signature
|
||||
/// verification fails
|
||||
#[must_use]
|
||||
fn verify_share(
|
||||
&self,
|
||||
l: u16,
|
||||
verification_share: C::G,
|
||||
nonce: C::G,
|
||||
nonces: &[Vec<C::G>],
|
||||
share: C::F,
|
||||
) -> bool;
|
||||
}
|
||||
@@ -63,6 +67,12 @@ pub trait Algorithm<C: Curve>: Clone {
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct IetfTranscript(Vec<u8>);
|
||||
impl Transcript for IetfTranscript {
|
||||
type Challenge = Vec<u8>;
|
||||
|
||||
fn new(_: &'static [u8]) -> IetfTranscript {
|
||||
unimplemented!("IetfTranscript should not be used with multiple nonce protocols");
|
||||
}
|
||||
|
||||
fn domain_separate(&mut self, _: &[u8]) {}
|
||||
|
||||
fn append_message(&mut self, _: &'static [u8], message: &[u8]) {
|
||||
@@ -112,20 +122,22 @@ impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
|
||||
&mut self.transcript
|
||||
}
|
||||
|
||||
fn nonces(&self) -> Vec<Vec<C::G>> {
|
||||
vec![vec![C::GENERATOR]]
|
||||
}
|
||||
|
||||
fn preprocess_addendum<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
_: &mut R,
|
||||
_: &MultisigView<C>,
|
||||
_: &[C::F; 2],
|
||||
_: &FrostView<C>,
|
||||
) -> Vec<u8> {
|
||||
vec![]
|
||||
}
|
||||
|
||||
fn process_addendum(
|
||||
&mut self,
|
||||
_: &MultisigView<C>,
|
||||
_: &FrostView<C>,
|
||||
_: u16,
|
||||
_: &[C::G; 2],
|
||||
_: &[u8],
|
||||
) -> Result<(), FrostError> {
|
||||
Ok(())
|
||||
@@ -133,19 +145,19 @@ impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
|
||||
|
||||
fn sign_share(
|
||||
&mut self,
|
||||
params: &MultisigView<C>,
|
||||
nonce_sum: C::G,
|
||||
_: C::F,
|
||||
nonce: C::F,
|
||||
params: &FrostView<C>,
|
||||
nonce_sums: &[Vec<C::G>],
|
||||
nonces: &[C::F],
|
||||
msg: &[u8],
|
||||
) -> C::F {
|
||||
let c = H::hram(&nonce_sum, ¶ms.group_key(), msg);
|
||||
let c = H::hram(&nonce_sums[0][0], ¶ms.group_key(), msg);
|
||||
self.c = Some(c);
|
||||
schnorr::sign::<C>(params.secret_share(), nonce, c).s
|
||||
schnorr::sign::<C>(params.secret_share(), nonces[0], c).s
|
||||
}
|
||||
|
||||
fn verify(&self, group_key: C::G, nonce: C::G, sum: C::F) -> Option<Self::Signature> {
|
||||
let sig = SchnorrSignature { R: nonce, s: sum };
|
||||
#[must_use]
|
||||
fn verify(&self, group_key: C::G, nonces: &[Vec<C::G>], sum: C::F) -> Option<Self::Signature> {
|
||||
let sig = SchnorrSignature { R: nonces[0][0], s: sum };
|
||||
if schnorr::verify::<C>(group_key, self.c.unwrap(), &sig) {
|
||||
Some(sig)
|
||||
} else {
|
||||
@@ -153,17 +165,18 @@ impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn verify_share(
|
||||
&self,
|
||||
_: u16,
|
||||
verification_share: C::G,
|
||||
nonce: C::G,
|
||||
nonces: &[Vec<C::G>],
|
||||
share: C::F,
|
||||
) -> bool {
|
||||
schnorr::verify::<C>(
|
||||
verification_share,
|
||||
self.c.unwrap(),
|
||||
&SchnorrSignature { R: nonce, s: share}
|
||||
&SchnorrSignature { R: nonces[0][0], s: share}
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
91
crypto/frost/src/curve/dalek.rs
Normal file
91
crypto/frost/src/curve/dalek.rs
Normal file
@@ -0,0 +1,91 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use sha2::{Digest, Sha512};
|
||||
|
||||
use dalek_ff_group::Scalar;
|
||||
|
||||
use crate::{curve::Curve, algorithm::Hram};
|
||||
|
||||
macro_rules! dalek_curve {
|
||||
(
|
||||
$Curve: ident,
|
||||
$Hram: ident,
|
||||
$Point: ident,
|
||||
|
||||
$POINT: ident,
|
||||
|
||||
$ID: literal,
|
||||
$CONTEXT: literal,
|
||||
$chal: literal,
|
||||
$digest: literal,
|
||||
) => {
|
||||
use dalek_ff_group::{$Point, $POINT};
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct $Curve;
|
||||
impl Curve for $Curve {
|
||||
type F = Scalar;
|
||||
type G = $Point;
|
||||
|
||||
const ID: &'static [u8] = $ID;
|
||||
const GENERATOR: Self::G = $POINT;
|
||||
|
||||
fn random_nonce<R: RngCore + CryptoRng>(secret: Self::F, rng: &mut R) -> Self::F {
|
||||
let mut seed = vec![0; 32];
|
||||
rng.fill_bytes(&mut seed);
|
||||
seed.extend(&secret.to_bytes());
|
||||
Self::hash_to_F(b"nonce", &seed)
|
||||
}
|
||||
|
||||
fn hash_msg(msg: &[u8]) -> Vec<u8> {
|
||||
Sha512::new()
|
||||
.chain_update($CONTEXT)
|
||||
.chain_update($digest)
|
||||
.chain_update(msg)
|
||||
.finalize()
|
||||
.to_vec()
|
||||
}
|
||||
|
||||
fn hash_binding_factor(binding: &[u8]) -> Self::F {
|
||||
Self::hash_to_F(b"rho", binding)
|
||||
}
|
||||
|
||||
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
|
||||
Scalar::from_hash(Sha512::new().chain_update($CONTEXT).chain_update(dst).chain_update(msg))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct $Hram;
|
||||
impl Hram<$Curve> for $Hram {
|
||||
#[allow(non_snake_case)]
|
||||
fn hram(R: &$Point, A: &$Point, m: &[u8]) -> Scalar {
|
||||
$Curve::hash_to_F($chal, &[&R.compress().to_bytes(), &A.compress().to_bytes(), m].concat())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(any(test, feature = "ristretto"))]
|
||||
dalek_curve!(
|
||||
Ristretto,
|
||||
IetfRistrettoHram,
|
||||
RistrettoPoint,
|
||||
RISTRETTO_BASEPOINT_POINT,
|
||||
b"ristretto",
|
||||
b"FROST-RISTRETTO255-SHA512-v5",
|
||||
b"chal",
|
||||
b"digest",
|
||||
);
|
||||
|
||||
#[cfg(feature = "ed25519")]
|
||||
dalek_curve!(
|
||||
Ed25519,
|
||||
IetfEd25519Hram,
|
||||
EdwardsPoint,
|
||||
ED25519_BASEPOINT_POINT,
|
||||
b"edwards25519",
|
||||
b"",
|
||||
b"",
|
||||
b"",
|
||||
);
|
||||
105
crypto/frost/src/curve/kp256.rs
Normal file
105
crypto/frost/src/curve/kp256.rs
Normal file
@@ -0,0 +1,105 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use sha2::{digest::Update, Digest, Sha256};
|
||||
|
||||
use group::{ff::Field, GroupEncoding};
|
||||
|
||||
use elliptic_curve::{bigint::{Encoding, U384}, hash2curve::{Expander, ExpandMsg, ExpandMsgXmd}};
|
||||
|
||||
use crate::{curve::{Curve, F_from_slice}, algorithm::Hram};
|
||||
|
||||
macro_rules! kp_curve {
|
||||
(
|
||||
$lib: ident,
|
||||
$Curve: ident,
|
||||
$Hram: ident,
|
||||
|
||||
$ID: literal,
|
||||
$CONTEXT: literal
|
||||
) => {
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct $Curve;
|
||||
impl Curve for $Curve {
|
||||
type F = $lib::Scalar;
|
||||
type G = $lib::ProjectivePoint;
|
||||
|
||||
const ID: &'static [u8] = $ID;
|
||||
const GENERATOR: Self::G = $lib::ProjectivePoint::GENERATOR;
|
||||
|
||||
fn random_nonce<R: RngCore + CryptoRng>(secret: Self::F, rng: &mut R) -> Self::F {
|
||||
let mut seed = vec![0; 32];
|
||||
rng.fill_bytes(&mut seed);
|
||||
seed.extend(secret.to_bytes());
|
||||
Self::hash_to_F(&[$CONTEXT as &[u8], b"nonce"].concat(), &seed)
|
||||
}
|
||||
|
||||
fn hash_msg(msg: &[u8]) -> Vec<u8> {
|
||||
(&Sha256::new()
|
||||
.chain($CONTEXT)
|
||||
.chain(b"digest")
|
||||
.chain(msg)
|
||||
.finalize()
|
||||
).to_vec()
|
||||
}
|
||||
|
||||
fn hash_binding_factor(binding: &[u8]) -> Self::F {
|
||||
Self::hash_to_F(&[$CONTEXT as &[u8], b"rho"].concat(), binding)
|
||||
}
|
||||
|
||||
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
|
||||
let mut dst = dst;
|
||||
let oversize = Sha256::digest([b"H2C-OVERSIZE-DST-", dst].concat());
|
||||
if dst.len() > 255 {
|
||||
dst = &oversize;
|
||||
}
|
||||
|
||||
// While one of these two libraries does support directly hashing to the Scalar field, the
|
||||
// other doesn't. While that's probably an oversight, this is a universally working method
|
||||
let mut modulus = vec![0; 16];
|
||||
modulus.extend((Self::F::zero() - Self::F::one()).to_bytes());
|
||||
let modulus = U384::from_be_slice(&modulus).wrapping_add(&U384::ONE);
|
||||
F_from_slice::<Self::F>(
|
||||
&U384::from_be_slice(&{
|
||||
let mut bytes = [0; 48];
|
||||
ExpandMsgXmd::<Sha256>::expand_message(
|
||||
&[msg],
|
||||
dst,
|
||||
48
|
||||
).unwrap().fill_bytes(&mut bytes);
|
||||
bytes
|
||||
}).reduce(&modulus).unwrap().to_be_bytes()[16 ..]
|
||||
).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct $Hram;
|
||||
impl Hram<$Curve> for $Hram {
|
||||
#[allow(non_snake_case)]
|
||||
fn hram(R: &$lib::ProjectivePoint, A: &$lib::ProjectivePoint, m: &[u8]) -> $lib::Scalar {
|
||||
$Curve::hash_to_F(
|
||||
&[$CONTEXT as &[u8], b"chal"].concat(),
|
||||
&[R.to_bytes().as_ref(), A.to_bytes().as_ref(), m].concat()
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "p256")]
|
||||
kp_curve!(
|
||||
p256,
|
||||
P256,
|
||||
IetfP256Hram,
|
||||
b"P-256",
|
||||
b"FROST-P256-SHA256-v5"
|
||||
);
|
||||
|
||||
#[cfg(feature = "secp256k1")]
|
||||
kp_curve!(
|
||||
k256,
|
||||
Secp256k1,
|
||||
NonIetfSecp256k1Hram,
|
||||
b"secp256k1",
|
||||
b"FROST-secp256k1-SHA256-v5"
|
||||
);
|
||||
117
crypto/frost/src/curve/mod.rs
Normal file
117
crypto/frost/src/curve/mod.rs
Normal file
@@ -0,0 +1,117 @@
|
||||
use core::fmt::Debug;
|
||||
|
||||
use thiserror::Error;
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::{PrimeField, PrimeFieldBits};
|
||||
use group::{Group, GroupOps, GroupEncoding, prime::PrimeGroup};
|
||||
|
||||
#[cfg(any(test, feature = "dalek"))]
|
||||
mod dalek;
|
||||
#[cfg(any(test, feature = "ristretto"))]
|
||||
pub use dalek::{Ristretto, IetfRistrettoHram};
|
||||
#[cfg(feature = "ed25519")]
|
||||
pub use dalek::{Ed25519, IetfEd25519Hram};
|
||||
|
||||
#[cfg(feature = "kp256")]
|
||||
mod kp256;
|
||||
#[cfg(feature = "secp256k1")]
|
||||
pub use kp256::{Secp256k1, NonIetfSecp256k1Hram};
|
||||
#[cfg(feature = "p256")]
|
||||
pub use kp256::{P256, IetfP256Hram};
|
||||
|
||||
/// Set of errors for curve-related operations, namely encoding and decoding
|
||||
#[derive(Clone, Error, Debug)]
|
||||
pub enum CurveError {
|
||||
#[error("invalid length for data (expected {0}, got {0})")]
|
||||
InvalidLength(usize, usize),
|
||||
#[error("invalid scalar")]
|
||||
InvalidScalar,
|
||||
#[error("invalid point")]
|
||||
InvalidPoint,
|
||||
}
|
||||
|
||||
/// Unified trait to manage a field/group
|
||||
// This should be moved into its own crate if the need for generic cryptography over ff/group
|
||||
// continues, which is the exact reason ff/group exists (to provide a generic interface)
|
||||
// elliptic-curve exists, yet it doesn't really serve the same role, nor does it use &[u8]/Vec<u8>
|
||||
// It uses GenericArray which will hopefully be deprecated as Rust evolves and doesn't offer enough
|
||||
// advantages in the modern day to be worth the hassle -- Kayaba
|
||||
pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
|
||||
/// Scalar field element type
|
||||
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
|
||||
type F: PrimeField + PrimeFieldBits;
|
||||
/// Group element type
|
||||
type G: Group<Scalar = Self::F> + GroupOps + PrimeGroup;
|
||||
|
||||
/// ID for this curve
|
||||
const ID: &'static [u8];
|
||||
|
||||
/// Generator for the group
|
||||
// While group does provide this in its API, privacy coins may want to use a custom basepoint
|
||||
const GENERATOR: Self::G;
|
||||
|
||||
/// Securely generate a random nonce. H4 from the IETF draft
|
||||
fn random_nonce<R: RngCore + CryptoRng>(secret: Self::F, rng: &mut R) -> Self::F;
|
||||
|
||||
/// Hash the message for the binding factor. H3 from the IETF draft
|
||||
// This doesn't actually need to be part of Curve as it does nothing with the curve
|
||||
// This also solely relates to FROST and with a proper Algorithm/HRAM, all projects using
|
||||
// aggregatable signatures over this curve will work without issue
|
||||
// It is kept here as Curve + H{1, 2, 3} is effectively a ciphersuite according to the IETF draft
|
||||
// and moving it to Schnorr would force all of them into being ciphersuite-specific
|
||||
// H2 is left to the Schnorr Algorithm as H2 is the H used in HRAM, which Schnorr further
|
||||
// modularizes
|
||||
fn hash_msg(msg: &[u8]) -> Vec<u8>;
|
||||
|
||||
/// Hash the commitments and message to calculate the binding factor. H1 from the IETF draft
|
||||
fn hash_binding_factor(binding: &[u8]) -> Self::F;
|
||||
|
||||
// The following methods would optimally be F:: and G:: yet developers can't control F/G
|
||||
// They can control a trait they pass into this library
|
||||
|
||||
/// Field element from hash. Used during key gen and by other crates under Serai as a general
|
||||
/// utility
|
||||
// Not parameterized by Digest as it's fine for it to use its own hash function as relevant to
|
||||
// hash_msg and hash_binding_factor
|
||||
#[allow(non_snake_case)]
|
||||
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F;
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
pub(crate) fn F_len<C: Curve>() -> usize {
|
||||
<C::F as PrimeField>::Repr::default().as_ref().len()
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
pub(crate) fn G_len<C: Curve>() -> usize {
|
||||
<C::G as GroupEncoding>::Repr::default().as_ref().len()
|
||||
}
|
||||
|
||||
/// Field element from slice
|
||||
#[allow(non_snake_case)]
|
||||
pub(crate) fn F_from_slice<F: PrimeField>(slice: &[u8]) -> Result<F, CurveError> {
|
||||
let mut encoding = F::Repr::default();
|
||||
encoding.as_mut().copy_from_slice(slice);
|
||||
|
||||
let point = Option::<F>::from(F::from_repr(encoding)).ok_or(CurveError::InvalidScalar)?;
|
||||
if point.to_repr().as_ref() != slice {
|
||||
Err(CurveError::InvalidScalar)?;
|
||||
}
|
||||
Ok(point)
|
||||
}
|
||||
|
||||
/// Group element from slice
|
||||
#[allow(non_snake_case)]
|
||||
pub(crate) fn G_from_slice<G: PrimeGroup>(slice: &[u8]) -> Result<G, CurveError> {
|
||||
let mut encoding = G::Repr::default();
|
||||
encoding.as_mut().copy_from_slice(slice);
|
||||
|
||||
let point = Option::<G>::from(G::from_bytes(&encoding)).ok_or(CurveError::InvalidPoint)?;
|
||||
// Ban the identity, per the FROST spec, and non-canonical points
|
||||
if (point.is_identity().into()) || (point.to_bytes().as_ref() != slice) {
|
||||
Err(CurveError::InvalidPoint)?;
|
||||
}
|
||||
Ok(point)
|
||||
}
|
||||
@@ -1,14 +1,14 @@
|
||||
use core::fmt;
|
||||
use std::collections::HashMap;
|
||||
use std::{marker::PhantomData, collections::HashMap};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::{ff::{Field, PrimeField}, GroupEncoding};
|
||||
|
||||
use multiexp::{multiexp_vartime, BatchVerifier};
|
||||
|
||||
use crate::{
|
||||
Curve, MultisigParams, MultisigKeys, FrostError,
|
||||
curve::{Curve, F_len, G_len, F_from_slice, G_from_slice},
|
||||
FrostError, FrostParams, FrostKeys,
|
||||
schnorr::{self, SchnorrSignature},
|
||||
validate_map
|
||||
};
|
||||
@@ -16,29 +16,34 @@ use crate::{
|
||||
#[allow(non_snake_case)]
|
||||
fn challenge<C: Curve>(context: &str, l: u16, R: &[u8], Am: &[u8]) -> C::F {
|
||||
const DST: &'static [u8] = b"FROST Schnorr Proof of Knowledge";
|
||||
|
||||
// Uses hash_msg to get a fixed size value out of the context string
|
||||
C::hash_to_F(&[DST, &C::hash_msg(context.as_bytes()), &l.to_be_bytes(), R, Am].concat())
|
||||
let mut transcript = C::hash_msg(context.as_bytes());
|
||||
transcript.extend(l.to_be_bytes());
|
||||
transcript.extend(R);
|
||||
transcript.extend(Am);
|
||||
C::hash_to_F(DST, &transcript)
|
||||
}
|
||||
|
||||
// Implements steps 1 through 3 of round 1 of FROST DKG. Returns the coefficients, commitments, and
|
||||
// the serialized commitments to be broadcasted over an authenticated channel to all parties
|
||||
fn generate_key_r1<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R,
|
||||
params: &MultisigParams,
|
||||
params: &FrostParams,
|
||||
context: &str,
|
||||
) -> (Vec<C::F>, Vec<u8>) {
|
||||
let t = usize::from(params.t);
|
||||
let mut coefficients = Vec::with_capacity(t);
|
||||
let mut commitments = Vec::with_capacity(t);
|
||||
let mut serialized = Vec::with_capacity((C::G_len() * t) + C::G_len() + C::F_len());
|
||||
let mut serialized = Vec::with_capacity((G_len::<C>() * t) + G_len::<C>() + F_len::<C>());
|
||||
|
||||
for i in 0 .. t {
|
||||
// Step 1: Generate t random values to form a polynomial with
|
||||
coefficients.push(C::F::random(&mut *rng));
|
||||
// Step 3: Generate public commitments
|
||||
commitments.push(C::generator_table() * coefficients[i]);
|
||||
commitments.push(C::GENERATOR * coefficients[i]);
|
||||
// Serialize them for publication
|
||||
serialized.extend(&C::G_to_bytes(&commitments[i]));
|
||||
serialized.extend(commitments[i].to_bytes().as_ref());
|
||||
}
|
||||
|
||||
// Step 2: Provide a proof of knowledge
|
||||
@@ -54,7 +59,7 @@ fn generate_key_r1<R: RngCore + CryptoRng, C: Curve>(
|
||||
challenge::<C>(
|
||||
context,
|
||||
params.i(),
|
||||
&C::G_to_bytes(&(C::generator_table() * r)),
|
||||
(C::GENERATOR * r).to_bytes().as_ref(),
|
||||
&serialized
|
||||
)
|
||||
).serialize()
|
||||
@@ -67,7 +72,7 @@ fn generate_key_r1<R: RngCore + CryptoRng, C: Curve>(
|
||||
// Verify the received data from the first round of key generation
|
||||
fn verify_r1<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R,
|
||||
params: &MultisigParams,
|
||||
params: &FrostParams,
|
||||
context: &str,
|
||||
our_commitments: Vec<u8>,
|
||||
mut serialized: HashMap<u16, Vec<u8>>,
|
||||
@@ -78,19 +83,19 @@ fn verify_r1<R: RngCore + CryptoRng, C: Curve>(
|
||||
(params.i(), our_commitments)
|
||||
)?;
|
||||
|
||||
let commitments_len = usize::from(params.t()) * C::G_len();
|
||||
let commitments_len = usize::from(params.t()) * G_len::<C>();
|
||||
|
||||
let mut commitments = HashMap::new();
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
let R_bytes = |l| &serialized[&l][commitments_len .. commitments_len + C::G_len()];
|
||||
let R_bytes = |l| &serialized[&l][commitments_len .. commitments_len + G_len::<C>()];
|
||||
#[allow(non_snake_case)]
|
||||
let R = |l| C::G_from_slice(R_bytes(l)).map_err(|_| FrostError::InvalidProofOfKnowledge(l));
|
||||
let R = |l| G_from_slice::<C::G>(R_bytes(l)).map_err(|_| FrostError::InvalidProofOfKnowledge(l));
|
||||
#[allow(non_snake_case)]
|
||||
let Am = |l| &serialized[&l][0 .. commitments_len];
|
||||
|
||||
let s = |l| C::F_from_slice(
|
||||
&serialized[&l][commitments_len + C::G_len() ..]
|
||||
let s = |l| F_from_slice::<C::F>(
|
||||
&serialized[&l][commitments_len + G_len::<C>() ..]
|
||||
).map_err(|_| FrostError::InvalidProofOfKnowledge(l));
|
||||
|
||||
let mut signatures = Vec::with_capacity(usize::from(params.n() - 1));
|
||||
@@ -98,8 +103,8 @@ fn verify_r1<R: RngCore + CryptoRng, C: Curve>(
|
||||
let mut these_commitments = vec![];
|
||||
for c in 0 .. usize::from(params.t()) {
|
||||
these_commitments.push(
|
||||
C::G_from_slice(
|
||||
&serialized[&l][(c * C::G_len()) .. ((c + 1) * C::G_len())]
|
||||
G_from_slice::<C::G>(
|
||||
&serialized[&l][(c * G_len::<C>()) .. ((c + 1) * G_len::<C>())]
|
||||
).map_err(|_| FrostError::InvalidCommitment(l.try_into().unwrap()))?
|
||||
);
|
||||
}
|
||||
@@ -144,7 +149,7 @@ fn polynomial<F: PrimeField>(
|
||||
// counterparty to receive
|
||||
fn generate_key_r2<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R,
|
||||
params: &MultisigParams,
|
||||
params: &FrostParams,
|
||||
context: &str,
|
||||
coefficients: Vec<C::F>,
|
||||
our_commitments: Vec<u8>,
|
||||
@@ -161,7 +166,7 @@ fn generate_key_r2<R: RngCore + CryptoRng, C: Curve>(
|
||||
continue;
|
||||
}
|
||||
|
||||
res.insert(l, C::F_to_bytes(&polynomial(&coefficients, l)));
|
||||
res.insert(l, polynomial(&coefficients, l).to_repr().as_ref().to_vec());
|
||||
}
|
||||
|
||||
// Calculate our own share
|
||||
@@ -185,22 +190,22 @@ fn generate_key_r2<R: RngCore + CryptoRng, C: Curve>(
|
||||
/// broadcasted initially
|
||||
fn complete_r2<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R,
|
||||
params: MultisigParams,
|
||||
params: FrostParams,
|
||||
mut secret_share: C::F,
|
||||
commitments: HashMap<u16, Vec<C::G>>,
|
||||
// Vec to preserve ownership
|
||||
mut serialized: HashMap<u16, Vec<u8>>,
|
||||
) -> Result<MultisigKeys<C>, FrostError> {
|
||||
) -> Result<FrostKeys<C>, FrostError> {
|
||||
validate_map(
|
||||
&mut serialized,
|
||||
&(1 ..= params.n()).into_iter().collect::<Vec<_>>(),
|
||||
(params.i(), C::F_to_bytes(&secret_share))
|
||||
(params.i(), secret_share.to_repr().as_ref().to_vec())
|
||||
)?;
|
||||
|
||||
// Step 2. Verify each share
|
||||
let mut shares = HashMap::new();
|
||||
for (l, share) in serialized {
|
||||
shares.insert(l, C::F_from_slice(&share).map_err(|_| FrostError::InvalidShare(l))?);
|
||||
shares.insert(l, F_from_slice::<C::F>(&share).map_err(|_| FrostError::InvalidShare(l))?);
|
||||
}
|
||||
|
||||
// Calculate the exponent for a given participant and apply it to a series of commitments
|
||||
@@ -219,7 +224,7 @@ fn complete_r2<R: RngCore + CryptoRng, C: Curve>(
|
||||
res
|
||||
};
|
||||
|
||||
let mut batch = BatchVerifier::new(shares.len(), C::little_endian());
|
||||
let mut batch = BatchVerifier::new(shares.len());
|
||||
for (l, share) in &shares {
|
||||
if *l == params.i() {
|
||||
continue;
|
||||
@@ -232,7 +237,7 @@ fn complete_r2<R: RngCore + CryptoRng, C: Curve>(
|
||||
// ensure that malleability isn't present is to use this n * t algorithm, which runs
|
||||
// per sender and not as an aggregate of all senders, which also enables blame
|
||||
let mut values = exponential(params.i, &commitments[l]);
|
||||
values.push((-*share, C::generator()));
|
||||
values.push((-*share, C::GENERATOR));
|
||||
batch.queue(rng, *l, values);
|
||||
}
|
||||
batch.verify_with_vartime_blame().map_err(|l| FrostError::InvalidCommitment(l))?;
|
||||
@@ -249,14 +254,15 @@ fn complete_r2<R: RngCore + CryptoRng, C: Curve>(
|
||||
// Calculate each user's verification share
|
||||
let mut verification_shares = HashMap::new();
|
||||
for i in 1 ..= params.n() {
|
||||
verification_shares.insert(i, multiexp_vartime(exponential(i, &stripes), C::little_endian()));
|
||||
verification_shares.insert(i, multiexp_vartime(&exponential(i, &stripes)));
|
||||
}
|
||||
debug_assert_eq!(C::generator_table() * secret_share, verification_shares[¶ms.i()]);
|
||||
// Removing this check would enable optimizing the above from t + (n * t) to t + ((n - 1) * t)
|
||||
debug_assert_eq!(C::GENERATOR * secret_share, verification_shares[¶ms.i()]);
|
||||
|
||||
// TODO: Clear serialized and shares
|
||||
|
||||
Ok(
|
||||
MultisigKeys {
|
||||
FrostKeys {
|
||||
params,
|
||||
secret_share,
|
||||
group_key: stripes[0],
|
||||
@@ -266,100 +272,76 @@ fn complete_r2<R: RngCore + CryptoRng, C: Curve>(
|
||||
)
|
||||
}
|
||||
|
||||
/// State of a Key Generation machine
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub enum State {
|
||||
Fresh,
|
||||
GeneratedCoefficients,
|
||||
GeneratedSecretShares,
|
||||
Complete,
|
||||
}
|
||||
|
||||
impl fmt::Display for State {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "{:?}", self)
|
||||
}
|
||||
}
|
||||
|
||||
/// State machine which manages key generation
|
||||
#[allow(non_snake_case)]
|
||||
pub struct StateMachine<C: Curve> {
|
||||
params: MultisigParams,
|
||||
pub struct KeyGenMachine<C: Curve> {
|
||||
params: FrostParams,
|
||||
context: String,
|
||||
state: State,
|
||||
coefficients: Option<Vec<C::F>>,
|
||||
our_commitments: Option<Vec<u8>>,
|
||||
secret: Option<C::F>,
|
||||
commitments: Option<HashMap<u16, Vec<C::G>>>
|
||||
_curve: PhantomData<C>,
|
||||
}
|
||||
|
||||
impl<C: Curve> StateMachine<C> {
|
||||
pub struct SecretShareMachine<C: Curve> {
|
||||
params: FrostParams,
|
||||
context: String,
|
||||
coefficients: Vec<C::F>,
|
||||
our_commitments: Vec<u8>,
|
||||
}
|
||||
|
||||
pub struct KeyMachine<C: Curve> {
|
||||
params: FrostParams,
|
||||
secret: C::F,
|
||||
commitments: HashMap<u16, Vec<C::G>>,
|
||||
}
|
||||
|
||||
impl<C: Curve> KeyGenMachine<C> {
|
||||
/// Creates a new machine to generate a key for the specified curve in the specified multisig
|
||||
// The context string must be unique among multisigs
|
||||
pub fn new(params: MultisigParams, context: String) -> StateMachine<C> {
|
||||
StateMachine {
|
||||
params,
|
||||
context,
|
||||
state: State::Fresh,
|
||||
coefficients: None,
|
||||
our_commitments: None,
|
||||
secret: None,
|
||||
commitments: None
|
||||
}
|
||||
pub fn new(params: FrostParams, context: String) -> KeyGenMachine<C> {
|
||||
KeyGenMachine { params, context, _curve: PhantomData }
|
||||
}
|
||||
|
||||
/// Start generating a key according to the FROST DKG spec
|
||||
/// Returns a serialized list of commitments to be sent to all parties over an authenticated
|
||||
/// channel. If any party submits multiple sets of commitments, they MUST be treated as malicious
|
||||
pub fn generate_coefficients<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
self,
|
||||
rng: &mut R
|
||||
) -> Result<Vec<u8>, FrostError> {
|
||||
if self.state != State::Fresh {
|
||||
Err(FrostError::InvalidKeyGenTransition(State::Fresh, self.state))?;
|
||||
}
|
||||
|
||||
let (coefficients, serialized) = generate_key_r1::<R, C>(
|
||||
rng,
|
||||
&self.params,
|
||||
&self.context,
|
||||
);
|
||||
|
||||
self.coefficients = Some(coefficients);
|
||||
self.our_commitments = Some(serialized.clone());
|
||||
self.state = State::GeneratedCoefficients;
|
||||
Ok(serialized)
|
||||
) -> (SecretShareMachine<C>, Vec<u8>) {
|
||||
let (coefficients, serialized) = generate_key_r1::<R, C>(rng, &self.params, &self.context);
|
||||
(
|
||||
SecretShareMachine {
|
||||
params: self.params,
|
||||
context: self.context,
|
||||
coefficients,
|
||||
our_commitments: serialized.clone()
|
||||
},
|
||||
serialized,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<C: Curve> SecretShareMachine<C> {
|
||||
/// Continue generating a key
|
||||
/// Takes in everyone else's commitments, which are expected to be in a Vec where participant
|
||||
/// index = Vec index. An empty vector is expected at index 0 to allow for this. An empty vector
|
||||
/// is also expected at index i which is locally handled. Returns a byte vector representing a
|
||||
/// secret share for each other participant which should be encrypted before sending
|
||||
pub fn generate_secret_shares<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
self,
|
||||
rng: &mut R,
|
||||
commitments: HashMap<u16, Vec<u8>>,
|
||||
) -> Result<HashMap<u16, Vec<u8>>, FrostError> {
|
||||
if self.state != State::GeneratedCoefficients {
|
||||
Err(FrostError::InvalidKeyGenTransition(State::GeneratedCoefficients, self.state))?;
|
||||
}
|
||||
|
||||
) -> Result<(KeyMachine<C>, HashMap<u16, Vec<u8>>), FrostError> {
|
||||
let (secret, commitments, shares) = generate_key_r2::<R, C>(
|
||||
rng,
|
||||
&self.params,
|
||||
&self.context,
|
||||
self.coefficients.take().unwrap(),
|
||||
self.our_commitments.take().unwrap(),
|
||||
self.coefficients,
|
||||
self.our_commitments,
|
||||
commitments,
|
||||
)?;
|
||||
|
||||
self.secret = Some(secret);
|
||||
self.commitments = Some(commitments);
|
||||
self.state = State::GeneratedSecretShares;
|
||||
Ok(shares)
|
||||
Ok((KeyMachine { params: self.params, secret, commitments }, shares))
|
||||
}
|
||||
}
|
||||
|
||||
impl<C: Curve> KeyMachine<C> {
|
||||
/// Complete key generation
|
||||
/// Takes in everyone elses' shares submitted to us as a Vec, expecting participant index =
|
||||
/// Vec index with an empty vector at index 0 and index i. Returns a byte vector representing the
|
||||
@@ -367,31 +349,10 @@ impl<C: Curve> StateMachine<C> {
|
||||
/// must report completion without issue before this key can be considered usable, yet you should
|
||||
/// wait for all participants to report as such
|
||||
pub fn complete<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
self,
|
||||
rng: &mut R,
|
||||
shares: HashMap<u16, Vec<u8>>,
|
||||
) -> Result<MultisigKeys<C>, FrostError> {
|
||||
if self.state != State::GeneratedSecretShares {
|
||||
Err(FrostError::InvalidKeyGenTransition(State::GeneratedSecretShares, self.state))?;
|
||||
}
|
||||
|
||||
let keys = complete_r2(
|
||||
rng,
|
||||
self.params,
|
||||
self.secret.take().unwrap(),
|
||||
self.commitments.take().unwrap(),
|
||||
shares,
|
||||
)?;
|
||||
|
||||
self.state = State::Complete;
|
||||
Ok(keys)
|
||||
}
|
||||
|
||||
pub fn params(&self) -> MultisigParams {
|
||||
self.params.clone()
|
||||
}
|
||||
|
||||
pub fn state(&self) -> State {
|
||||
self.state
|
||||
) -> Result<FrostKeys<C>, FrostError> {
|
||||
complete_r2(rng, self.params, self.secret, self.commitments, shares)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,124 +1,24 @@
|
||||
use core::{ops::Mul, fmt::Debug};
|
||||
use core::fmt::Debug;
|
||||
use std::collections::HashMap;
|
||||
|
||||
use thiserror::Error;
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::{Group, GroupOps};
|
||||
use group::{ff::{Field, PrimeField}, GroupEncoding};
|
||||
|
||||
mod schnorr;
|
||||
|
||||
pub mod curve;
|
||||
use curve::{Curve, F_len, G_len, F_from_slice, G_from_slice};
|
||||
pub mod key_gen;
|
||||
pub mod algorithm;
|
||||
pub mod sign;
|
||||
|
||||
pub mod tests;
|
||||
|
||||
/// Set of errors for curve-related operations, namely encoding and decoding
|
||||
#[derive(Clone, Error, Debug)]
|
||||
pub enum CurveError {
|
||||
#[error("invalid length for data (expected {0}, got {0})")]
|
||||
InvalidLength(usize, usize),
|
||||
#[error("invalid scalar")]
|
||||
InvalidScalar,
|
||||
#[error("invalid point")]
|
||||
InvalidPoint,
|
||||
}
|
||||
|
||||
/// Unified trait to manage a field/group
|
||||
// This should be moved into its own crate if the need for generic cryptography over ff/group
|
||||
// continues, which is the exact reason ff/group exists (to provide a generic interface)
|
||||
// elliptic-curve exists, yet it doesn't really serve the same role, nor does it use &[u8]/Vec<u8>
|
||||
// It uses GenericArray which will hopefully be deprecated as Rust evolves and doesn't offer enough
|
||||
// advantages in the modern day to be worth the hassle -- Kayaba
|
||||
pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
|
||||
/// Field element type
|
||||
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
|
||||
type F: PrimeField;
|
||||
/// Group element type
|
||||
type G: Group<Scalar = Self::F> + GroupOps;
|
||||
/// Precomputed table type
|
||||
type T: Mul<Self::F, Output = Self::G>;
|
||||
|
||||
/// ID for this curve
|
||||
fn id() -> String;
|
||||
/// Byte length of the curve ID
|
||||
// While curve.id().len() is trivial, this bounds it to u8 and lets us ignore the possibility it
|
||||
// contains Unicode, therefore having a String length which is different from its byte length
|
||||
fn id_len() -> u8;
|
||||
|
||||
/// Generator for the group
|
||||
// While group does provide this in its API, Jubjub users will want to use a custom basepoint
|
||||
fn generator() -> Self::G;
|
||||
|
||||
/// Table for the generator for the group
|
||||
/// If there isn't a precomputed table available, the generator itself should be used
|
||||
fn generator_table() -> Self::T;
|
||||
|
||||
/// If little endian is used for the scalar field's Repr
|
||||
fn little_endian() -> bool;
|
||||
|
||||
/// Hash the message for the binding factor. H3 from the IETF draft
|
||||
// This doesn't actually need to be part of Curve as it does nothing with the curve
|
||||
// This also solely relates to FROST and with a proper Algorithm/HRAM, all projects using
|
||||
// aggregatable signatures over this curve will work without issue
|
||||
// It is kept here as Curve + H{1, 2, 3} is effectively a ciphersuite according to the IETF draft
|
||||
// and moving it to Schnorr would force all of them into being ciphersuite-specific
|
||||
// H2 is left to the Schnorr Algorithm as H2 is the H used in HRAM, which Schnorr further
|
||||
// modularizes
|
||||
fn hash_msg(msg: &[u8]) -> Vec<u8>;
|
||||
|
||||
/// Hash the commitments and message to calculate the binding factor. H1 from the IETF draft
|
||||
fn hash_binding_factor(binding: &[u8]) -> Self::F;
|
||||
|
||||
// The following methods would optimally be F:: and G:: yet developers can't control F/G
|
||||
// They can control a trait they pass into this library
|
||||
|
||||
/// Field element from hash. Used during key gen and by other crates under Serai as a general
|
||||
/// utility
|
||||
// Not parameterized by Digest as it's fine for it to use its own hash function as relevant to
|
||||
// hash_msg and hash_binding_factor
|
||||
#[allow(non_snake_case)]
|
||||
fn hash_to_F(data: &[u8]) -> Self::F;
|
||||
|
||||
/// Constant size of a serialized field element
|
||||
// The alternative way to grab this would be either serializing a junk element and getting its
|
||||
// length or doing a naive division of its BITS property by 8 and assuming a lack of padding
|
||||
#[allow(non_snake_case)]
|
||||
fn F_len() -> usize;
|
||||
|
||||
/// Constant size of a serialized group element
|
||||
// We could grab the serialization as described above yet a naive developer may use a
|
||||
// non-constant size encoding, proving yet another reason to force this to be a provided constant
|
||||
// A naive developer could still provide a constant for a variable length encoding, yet at least
|
||||
// that is on them
|
||||
#[allow(non_snake_case)]
|
||||
fn G_len() -> usize;
|
||||
|
||||
/// Field element from slice. Preferred to be canonical yet does not have to be
|
||||
// Required due to the lack of standardized encoding functions provided by ff/group
|
||||
// While they do technically exist, their usage of Self::Repr breaks all potential library usage
|
||||
// without helper functions like this
|
||||
#[allow(non_snake_case)]
|
||||
fn F_from_slice(slice: &[u8]) -> Result<Self::F, CurveError>;
|
||||
|
||||
/// Group element from slice. Must require canonicity or risks differing binding factors
|
||||
#[allow(non_snake_case)]
|
||||
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError>;
|
||||
|
||||
/// Obtain a vector of the byte encoding of F
|
||||
#[allow(non_snake_case)]
|
||||
fn F_to_bytes(f: &Self::F) -> Vec<u8>;
|
||||
|
||||
/// Obtain a vector of the byte encoding of G
|
||||
#[allow(non_snake_case)]
|
||||
fn G_to_bytes(g: &Self::G) -> Vec<u8>;
|
||||
}
|
||||
|
||||
/// Parameters for a multisig
|
||||
// These fields can not be made public as they should be static
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct MultisigParams {
|
||||
pub struct FrostParams {
|
||||
/// Participants needed to sign on behalf of the group
|
||||
t: u16,
|
||||
/// Amount of participants
|
||||
@@ -127,12 +27,12 @@ pub struct MultisigParams {
|
||||
i: u16,
|
||||
}
|
||||
|
||||
impl MultisigParams {
|
||||
impl FrostParams {
|
||||
pub fn new(
|
||||
t: u16,
|
||||
n: u16,
|
||||
i: u16
|
||||
) -> Result<MultisigParams, FrostError> {
|
||||
) -> Result<FrostParams, FrostError> {
|
||||
if (t == 0) || (n == 0) {
|
||||
Err(FrostError::ZeroParameter(t, n))?;
|
||||
}
|
||||
@@ -146,7 +46,7 @@ impl MultisigParams {
|
||||
Err(FrostError::InvalidParticipantIndex(n, i))?;
|
||||
}
|
||||
|
||||
Ok(MultisigParams{ t, n, i })
|
||||
Ok(FrostParams{ t, n, i })
|
||||
}
|
||||
|
||||
pub fn t(&self) -> u16 { self.t }
|
||||
@@ -179,11 +79,6 @@ pub enum FrostError {
|
||||
InvalidProofOfKnowledge(u16),
|
||||
#[error("invalid share (participant {0})")]
|
||||
InvalidShare(u16),
|
||||
#[error("invalid key generation state machine transition (expected {0}, was {1})")]
|
||||
InvalidKeyGenTransition(key_gen::State, key_gen::State),
|
||||
|
||||
#[error("invalid sign state machine transition (expected {0}, was {1})")]
|
||||
InvalidSignTransition(sign::State, sign::State),
|
||||
|
||||
#[error("internal error ({0})")]
|
||||
InternalError(String),
|
||||
@@ -191,14 +86,14 @@ pub enum FrostError {
|
||||
|
||||
// View of keys passable to algorithm implementations
|
||||
#[derive(Clone)]
|
||||
pub struct MultisigView<C: Curve> {
|
||||
pub struct FrostView<C: Curve> {
|
||||
group_key: C::G,
|
||||
included: Vec<u16>,
|
||||
secret_share: C::F,
|
||||
verification_shares: HashMap<u16, C::G>,
|
||||
}
|
||||
|
||||
impl<C: Curve> MultisigView<C> {
|
||||
impl<C: Curve> FrostView<C> {
|
||||
pub fn group_key(&self) -> C::G {
|
||||
self.group_key
|
||||
}
|
||||
@@ -239,9 +134,9 @@ pub fn lagrange<F: PrimeField>(
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct MultisigKeys<C: Curve> {
|
||||
/// Multisig Parameters
|
||||
params: MultisigParams,
|
||||
pub struct FrostKeys<C: Curve> {
|
||||
/// FROST Parameters
|
||||
params: FrostParams,
|
||||
|
||||
/// Secret share key
|
||||
secret_share: C::F,
|
||||
@@ -254,21 +149,26 @@ pub struct MultisigKeys<C: Curve> {
|
||||
offset: Option<C::F>,
|
||||
}
|
||||
|
||||
impl<C: Curve> MultisigKeys<C> {
|
||||
pub fn offset(&self, offset: C::F) -> MultisigKeys<C> {
|
||||
impl<C: Curve> FrostKeys<C> {
|
||||
/// Offset the keys by a given scalar to allow for account and privacy schemes
|
||||
/// This offset is ephemeral and will not be included when these keys are serialized
|
||||
/// Keys offset multiple times will form a new offset of their sum
|
||||
/// Not IETF compliant
|
||||
pub fn offset(&self, offset: C::F) -> FrostKeys<C> {
|
||||
let mut res = self.clone();
|
||||
// Carry any existing offset
|
||||
// Enables schemes like Monero's subaddresses which have a per-subaddress offset and then a
|
||||
// one-time-key offset
|
||||
res.offset = Some(offset + res.offset.unwrap_or(C::F::zero()));
|
||||
res.group_key += C::GENERATOR * offset;
|
||||
res
|
||||
}
|
||||
|
||||
pub fn params(&self) -> MultisigParams {
|
||||
pub fn params(&self) -> FrostParams {
|
||||
self.params
|
||||
}
|
||||
|
||||
pub fn secret_share(&self) -> C::F {
|
||||
fn secret_share(&self) -> C::F {
|
||||
self.secret_share
|
||||
}
|
||||
|
||||
@@ -276,11 +176,11 @@ impl<C: Curve> MultisigKeys<C> {
|
||||
self.group_key
|
||||
}
|
||||
|
||||
pub fn verification_shares(&self) -> HashMap<u16, C::G> {
|
||||
fn verification_shares(&self) -> HashMap<u16, C::G> {
|
||||
self.verification_shares.clone()
|
||||
}
|
||||
|
||||
pub fn view(&self, included: &[u16]) -> Result<MultisigView<C>, FrostError> {
|
||||
pub fn view(&self, included: &[u16]) -> Result<FrostView<C>, FrostError> {
|
||||
if (included.len() < self.params.t.into()) || (usize::from(self.params.n) < included.len()) {
|
||||
Err(FrostError::InvalidSigningSet("invalid amount of participants included".to_string()))?;
|
||||
}
|
||||
@@ -289,13 +189,13 @@ impl<C: Curve> MultisigKeys<C> {
|
||||
let offset = self.offset.unwrap_or(C::F::zero());
|
||||
let offset_share = offset * C::F::from(included.len().try_into().unwrap()).invert().unwrap();
|
||||
|
||||
Ok(MultisigView {
|
||||
group_key: self.group_key + (C::generator_table() * offset),
|
||||
Ok(FrostView {
|
||||
group_key: self.group_key,
|
||||
secret_share: secret_share + offset_share,
|
||||
verification_shares: self.verification_shares.iter().map(
|
||||
|(l, share)| (
|
||||
*l,
|
||||
(*share * lagrange::<C::F>(*l, &included)) + (C::generator_table() * offset_share)
|
||||
(*share * lagrange::<C::F>(*l, &included)) + (C::GENERATOR * offset_share)
|
||||
)
|
||||
).collect(),
|
||||
included: included.to_vec(),
|
||||
@@ -303,84 +203,76 @@ impl<C: Curve> MultisigKeys<C> {
|
||||
}
|
||||
|
||||
pub fn serialized_len(n: u16) -> usize {
|
||||
1 + usize::from(C::id_len()) + (3 * 2) + C::F_len() + C::G_len() + (usize::from(n) * C::G_len())
|
||||
8 + C::ID.len() + (3 * 2) + F_len::<C>() + G_len::<C>() + (usize::from(n) * G_len::<C>())
|
||||
}
|
||||
|
||||
pub fn serialize(&self) -> Vec<u8> {
|
||||
let mut serialized = Vec::with_capacity(
|
||||
1 + usize::from(C::id_len()) + MultisigKeys::<C>::serialized_len(self.params.n)
|
||||
);
|
||||
serialized.push(C::id_len());
|
||||
serialized.extend(C::id().as_bytes());
|
||||
serialized.extend(&self.params.n.to_le_bytes());
|
||||
serialized.extend(&self.params.t.to_le_bytes());
|
||||
serialized.extend(&self.params.i.to_le_bytes());
|
||||
serialized.extend(&C::F_to_bytes(&self.secret_share));
|
||||
serialized.extend(&C::G_to_bytes(&self.group_key));
|
||||
let mut serialized = Vec::with_capacity(FrostKeys::<C>::serialized_len(self.params.n));
|
||||
serialized.extend(u64::try_from(C::ID.len()).unwrap().to_be_bytes());
|
||||
serialized.extend(C::ID);
|
||||
serialized.extend(&self.params.t.to_be_bytes());
|
||||
serialized.extend(&self.params.n.to_be_bytes());
|
||||
serialized.extend(&self.params.i.to_be_bytes());
|
||||
serialized.extend(self.secret_share.to_repr().as_ref());
|
||||
serialized.extend(self.group_key.to_bytes().as_ref());
|
||||
for l in 1 ..= self.params.n.into() {
|
||||
serialized.extend(&C::G_to_bytes(&self.verification_shares[&l]));
|
||||
serialized.extend(self.verification_shares[&l].to_bytes().as_ref());
|
||||
}
|
||||
|
||||
serialized
|
||||
}
|
||||
|
||||
pub fn deserialize(serialized: &[u8]) -> Result<MultisigKeys<C>, FrostError> {
|
||||
if serialized.len() < 1 {
|
||||
Err(FrostError::InternalError("MultisigKeys serialization is empty".to_string()))?;
|
||||
pub fn deserialize(serialized: &[u8]) -> Result<FrostKeys<C>, FrostError> {
|
||||
let mut start = u64::try_from(C::ID.len()).unwrap().to_be_bytes().to_vec();
|
||||
start.extend(C::ID);
|
||||
let mut cursor = start.len();
|
||||
|
||||
if serialized.len() < (cursor + 4) {
|
||||
Err(
|
||||
FrostError::InternalError(
|
||||
"FrostKeys serialization is missing its curve/participant quantities".to_string()
|
||||
)
|
||||
)?;
|
||||
}
|
||||
|
||||
let id_len: usize = serialized[0].into();
|
||||
let mut cursor = 1;
|
||||
|
||||
if serialized.len() < (cursor + id_len) {
|
||||
Err(FrostError::InternalError("ID wasn't included".to_string()))?;
|
||||
}
|
||||
|
||||
let id = &serialized[cursor .. (cursor + id_len)];
|
||||
if C::id().as_bytes() != id {
|
||||
if &start != &serialized[.. cursor] {
|
||||
Err(
|
||||
FrostError::InternalError(
|
||||
"curve is distinct between serialization and deserialization".to_string()
|
||||
)
|
||||
)?;
|
||||
}
|
||||
cursor += id_len;
|
||||
|
||||
if serialized.len() < (cursor + 8) {
|
||||
Err(FrostError::InternalError("participant quantity wasn't included".to_string()))?;
|
||||
}
|
||||
|
||||
let n = u16::from_le_bytes(serialized[cursor .. (cursor + 2)].try_into().unwrap());
|
||||
let t = u16::from_be_bytes(serialized[cursor .. (cursor + 2)].try_into().unwrap());
|
||||
cursor += 2;
|
||||
if serialized.len() != MultisigKeys::<C>::serialized_len(n) {
|
||||
|
||||
let n = u16::from_be_bytes(serialized[cursor .. (cursor + 2)].try_into().unwrap());
|
||||
cursor += 2;
|
||||
if serialized.len() != FrostKeys::<C>::serialized_len(n) {
|
||||
Err(FrostError::InternalError("incorrect serialization length".to_string()))?;
|
||||
}
|
||||
|
||||
let t = u16::from_le_bytes(serialized[cursor .. (cursor + 2)].try_into().unwrap());
|
||||
cursor += 2;
|
||||
let i = u16::from_le_bytes(serialized[cursor .. (cursor + 2)].try_into().unwrap());
|
||||
let i = u16::from_be_bytes(serialized[cursor .. (cursor + 2)].try_into().unwrap());
|
||||
cursor += 2;
|
||||
|
||||
let secret_share = C::F_from_slice(&serialized[cursor .. (cursor + C::F_len())])
|
||||
let secret_share = F_from_slice::<C::F>(&serialized[cursor .. (cursor + F_len::<C>())])
|
||||
.map_err(|_| FrostError::InternalError("invalid secret share".to_string()))?;
|
||||
cursor += C::F_len();
|
||||
let group_key = C::G_from_slice(&serialized[cursor .. (cursor + C::G_len())])
|
||||
cursor += F_len::<C>();
|
||||
let group_key = G_from_slice::<C::G>(&serialized[cursor .. (cursor + G_len::<C>())])
|
||||
.map_err(|_| FrostError::InternalError("invalid group key".to_string()))?;
|
||||
cursor += C::G_len();
|
||||
cursor += G_len::<C>();
|
||||
|
||||
let mut verification_shares = HashMap::new();
|
||||
for l in 1 ..= n {
|
||||
verification_shares.insert(
|
||||
l,
|
||||
C::G_from_slice(&serialized[cursor .. (cursor + C::G_len())])
|
||||
G_from_slice::<C::G>(&serialized[cursor .. (cursor + G_len::<C>())])
|
||||
.map_err(|_| FrostError::InternalError("invalid verification share".to_string()))?
|
||||
);
|
||||
cursor += C::G_len();
|
||||
cursor += G_len::<C>();
|
||||
}
|
||||
|
||||
Ok(
|
||||
MultisigKeys {
|
||||
params: MultisigParams::new(t, n, i)
|
||||
FrostKeys {
|
||||
params: FrostParams::new(t, n, i)
|
||||
.map_err(|_| FrostError::InternalError("invalid parameters".to_string()))?,
|
||||
secret_share,
|
||||
group_key,
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::Field;
|
||||
use group::{ff::{Field, PrimeField}, GroupEncoding};
|
||||
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::Curve;
|
||||
use crate::{Curve, F_len, G_len};
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
@@ -15,9 +15,9 @@ pub struct SchnorrSignature<C: Curve> {
|
||||
|
||||
impl<C: Curve> SchnorrSignature<C> {
|
||||
pub fn serialize(&self) -> Vec<u8> {
|
||||
let mut res = Vec::with_capacity(C::G_len() + C::F_len());
|
||||
res.extend(C::G_to_bytes(&self.R));
|
||||
res.extend(C::F_to_bytes(&self.s));
|
||||
let mut res = Vec::with_capacity(G_len::<C>() + F_len::<C>());
|
||||
res.extend(self.R.to_bytes().as_ref());
|
||||
res.extend(self.s.to_repr().as_ref());
|
||||
res
|
||||
}
|
||||
}
|
||||
@@ -28,25 +28,26 @@ pub(crate) fn sign<C: Curve>(
|
||||
challenge: C::F
|
||||
) -> SchnorrSignature<C> {
|
||||
SchnorrSignature {
|
||||
R: C::generator_table() * nonce,
|
||||
R: C::GENERATOR * nonce,
|
||||
s: nonce + (private_key * challenge)
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub(crate) fn verify<C: Curve>(
|
||||
public_key: C::G,
|
||||
challenge: C::F,
|
||||
signature: &SchnorrSignature<C>
|
||||
) -> bool {
|
||||
(C::generator_table() * signature.s) == (signature.R + (public_key * challenge))
|
||||
(C::GENERATOR * signature.s) == (signature.R + (public_key * challenge))
|
||||
}
|
||||
|
||||
pub(crate) fn batch_verify<C: Curve, R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
triplets: &[(u16, C::G, C::F, SchnorrSignature<C>)]
|
||||
) -> Result<(), u16> {
|
||||
let mut values = [(C::F::one(), C::generator()); 3];
|
||||
let mut batch = BatchVerifier::new(triplets.len(), C::little_endian());
|
||||
let mut values = [(C::F::one(), C::GENERATOR); 3];
|
||||
let mut batch = BatchVerifier::new(triplets.len());
|
||||
for triple in triplets {
|
||||
// s = r + ca
|
||||
// sG == R + cA
|
||||
|
||||
@@ -1,33 +1,35 @@
|
||||
use core::fmt;
|
||||
use std::{rc::Rc, collections::HashMap};
|
||||
use std::{sync::Arc, collections::HashMap};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::Field;
|
||||
use group::{ff::{Field, PrimeField}, Group, GroupEncoding};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use dleq::{Generators, DLEqProof};
|
||||
|
||||
use crate::{
|
||||
Curve,
|
||||
curve::{Curve, F_len, G_len, F_from_slice, G_from_slice},
|
||||
FrostError,
|
||||
MultisigParams, MultisigKeys, MultisigView,
|
||||
FrostParams, FrostKeys, FrostView,
|
||||
algorithm::Algorithm,
|
||||
validate_map
|
||||
};
|
||||
|
||||
/// Pairing of an Algorithm with a MultisigKeys instance and this specific signing set
|
||||
/// Pairing of an Algorithm with a FrostKeys instance and this specific signing set
|
||||
#[derive(Clone)]
|
||||
pub struct Params<C: Curve, A: Algorithm<C>> {
|
||||
algorithm: A,
|
||||
keys: Rc<MultisigKeys<C>>,
|
||||
view: MultisigView<C>,
|
||||
keys: Arc<FrostKeys<C>>,
|
||||
view: FrostView<C>,
|
||||
}
|
||||
|
||||
// Currently public to enable more complex operations as desired, yet solely used in testing
|
||||
impl<C: Curve, A: Algorithm<C>> Params<C, A> {
|
||||
pub fn new(
|
||||
algorithm: A,
|
||||
keys: Rc<MultisigKeys<C>>,
|
||||
keys: Arc<FrostKeys<C>>,
|
||||
included: &[u16],
|
||||
) -> Result<Params<C, A>, FrostError> {
|
||||
let mut included = included.to_vec();
|
||||
@@ -60,18 +62,22 @@ impl<C: Curve, A: Algorithm<C>> Params<C, A> {
|
||||
Ok(Params { algorithm, view: keys.view(&included).unwrap(), keys })
|
||||
}
|
||||
|
||||
pub fn multisig_params(&self) -> MultisigParams {
|
||||
pub fn multisig_params(&self) -> FrostParams {
|
||||
self.keys.params
|
||||
}
|
||||
|
||||
pub fn view(&self) -> MultisigView<C> {
|
||||
pub fn view(&self) -> FrostView<C> {
|
||||
self.view.clone()
|
||||
}
|
||||
}
|
||||
|
||||
struct PreprocessPackage<C: Curve> {
|
||||
nonces: [C::F; 2],
|
||||
serialized: Vec<u8>,
|
||||
fn nonce_transcript<T: Transcript>() -> T {
|
||||
T::new(b"FROST_nonce_dleq")
|
||||
}
|
||||
|
||||
pub(crate) struct PreprocessPackage<C: Curve> {
|
||||
pub(crate) nonces: Vec<[C::F; 2]>,
|
||||
pub(crate) serialized: Vec<u8>,
|
||||
}
|
||||
|
||||
// This library unifies the preprocessing step with signing due to security concerns and to provide
|
||||
@@ -80,27 +86,53 @@ fn preprocess<R: RngCore + CryptoRng, C: Curve, A: Algorithm<C>>(
|
||||
rng: &mut R,
|
||||
params: &mut Params<C, A>,
|
||||
) -> PreprocessPackage<C> {
|
||||
let nonces = [C::F::random(&mut *rng), C::F::random(&mut *rng)];
|
||||
let commitments = [C::generator_table() * nonces[0], C::generator_table() * nonces[1]];
|
||||
let mut serialized = C::G_to_bytes(&commitments[0]);
|
||||
serialized.extend(&C::G_to_bytes(&commitments[1]));
|
||||
let mut serialized = Vec::with_capacity(2 * G_len::<C>());
|
||||
let nonces = params.algorithm.nonces().iter().cloned().map(
|
||||
|mut generators| {
|
||||
let nonces = [
|
||||
C::random_nonce(params.view().secret_share(), &mut *rng),
|
||||
C::random_nonce(params.view().secret_share(), &mut *rng)
|
||||
];
|
||||
|
||||
serialized.extend(
|
||||
¶ms.algorithm.preprocess_addendum(
|
||||
rng,
|
||||
¶ms.view,
|
||||
&nonces
|
||||
)
|
||||
);
|
||||
let commit = |generator: C::G| {
|
||||
let commitments = [generator * nonces[0], generator * nonces[1]];
|
||||
[commitments[0].to_bytes().as_ref(), commitments[1].to_bytes().as_ref()].concat().to_vec()
|
||||
};
|
||||
|
||||
let first = generators.remove(0);
|
||||
serialized.extend(commit(first));
|
||||
|
||||
// Iterate over the rest
|
||||
for generator in generators.iter() {
|
||||
serialized.extend(commit(*generator));
|
||||
// Provide a DLEq to verify these commitments are for the same nonce
|
||||
// TODO: Provide a single DLEq. See https://github.com/serai-dex/serai/issues/34
|
||||
for nonce in nonces {
|
||||
DLEqProof::prove(
|
||||
&mut *rng,
|
||||
// Uses an independent transcript as each signer must do this now, yet we validate them
|
||||
// sequentially by the global order. Avoids needing to clone the transcript around
|
||||
&mut nonce_transcript::<A::Transcript>(),
|
||||
Generators::new(first, *generator),
|
||||
nonce
|
||||
).serialize(&mut serialized).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
nonces
|
||||
}
|
||||
).collect::<Vec<_>>();
|
||||
|
||||
serialized.extend(¶ms.algorithm.preprocess_addendum(rng, ¶ms.view));
|
||||
|
||||
PreprocessPackage { nonces, serialized }
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
struct Package<C: Curve> {
|
||||
B: HashMap<u16, [C::G; 2]>,
|
||||
B: HashMap<u16, Vec<Vec<[C::G; 2]>>>,
|
||||
binding: C::F,
|
||||
R: C::G,
|
||||
Rs: Vec<Vec<C::G>>,
|
||||
share: Vec<u8>
|
||||
}
|
||||
|
||||
@@ -126,7 +158,7 @@ fn sign_with_share<C: Curve, A: Algorithm<C>>(
|
||||
transcript.domain_separate(b"FROST");
|
||||
// Include the offset, if one exists
|
||||
if let Some(offset) = params.keys.offset {
|
||||
transcript.append_message(b"offset", &C::F_to_bytes(&offset));
|
||||
transcript.append_message(b"offset", offset.to_repr().as_ref());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -134,61 +166,98 @@ fn sign_with_share<C: Curve, A: Algorithm<C>>(
|
||||
let mut B = HashMap::<u16, _>::with_capacity(params.view.included.len());
|
||||
|
||||
// Get the binding factor
|
||||
let nonces = params.algorithm.nonces();
|
||||
let mut addendums = HashMap::new();
|
||||
let binding = {
|
||||
let transcript = params.algorithm.transcript();
|
||||
// Parse the commitments
|
||||
for l in ¶ms.view.included {
|
||||
transcript.append_message(b"participant", &l.to_be_bytes());
|
||||
let serialized = commitments.remove(l).unwrap();
|
||||
|
||||
let commitments = commitments.remove(l).unwrap();
|
||||
let mut read_commitment = |c, label| {
|
||||
let commitment = &commitments[c .. (c + C::G_len())];
|
||||
let commitment = &serialized[c .. (c + G_len::<C>())];
|
||||
transcript.append_message(label, commitment);
|
||||
C::G_from_slice(commitment).map_err(|_| FrostError::InvalidCommitment(*l))
|
||||
G_from_slice::<C::G>(commitment).map_err(|_| FrostError::InvalidCommitment(*l))
|
||||
};
|
||||
|
||||
// While this doesn't note which nonce/basepoint this is for, those are expected to be
|
||||
// static. Beyond that, they're committed to in the DLEq proof transcripts, ensuring
|
||||
// consistency. While this is suboptimal, it maintains IETF compliance, and Algorithm is
|
||||
// documented accordingly
|
||||
#[allow(non_snake_case)]
|
||||
let mut read_D_E = || Ok(
|
||||
[read_commitment(0, b"commitment_D")?, read_commitment(C::G_len(), b"commitment_E")?]
|
||||
);
|
||||
let mut read_D_E = |c| Ok([
|
||||
read_commitment(c, b"commitment_D")?,
|
||||
read_commitment(c + G_len::<C>(), b"commitment_E")?
|
||||
]);
|
||||
|
||||
B.insert(*l, read_D_E()?);
|
||||
addendums.insert(*l, commitments[(C::G_len() * 2) ..].to_vec());
|
||||
let mut c = 0;
|
||||
let mut commitments = Vec::with_capacity(nonces.len());
|
||||
for (n, nonce_generators) in nonces.clone().iter_mut().enumerate() {
|
||||
commitments.push(Vec::with_capacity(nonce_generators.len()));
|
||||
|
||||
let first = nonce_generators.remove(0);
|
||||
commitments[n].push(read_D_E(c)?);
|
||||
c += 2 * G_len::<C>();
|
||||
|
||||
let mut c = 2 * G_len::<C>();
|
||||
for generator in nonce_generators {
|
||||
commitments[n].push(read_D_E(c)?);
|
||||
c += 2 * G_len::<C>();
|
||||
for de in 0 .. 2 {
|
||||
DLEqProof::deserialize(
|
||||
&mut std::io::Cursor::new(&serialized[c .. (c + (2 * F_len::<C>()))])
|
||||
).map_err(|_| FrostError::InvalidCommitment(*l))?.verify(
|
||||
&mut nonce_transcript::<A::Transcript>(),
|
||||
Generators::new(first, *generator),
|
||||
(commitments[n][0][de], commitments[n][commitments[n].len() - 1][de])
|
||||
).map_err(|_| FrostError::InvalidCommitment(*l))?;
|
||||
c += 2 * F_len::<C>();
|
||||
}
|
||||
}
|
||||
|
||||
addendums.insert(*l, serialized[c ..].to_vec());
|
||||
}
|
||||
B.insert(*l, commitments);
|
||||
}
|
||||
|
||||
// Append the message to the transcript
|
||||
transcript.append_message(b"message", &C::hash_msg(&msg));
|
||||
|
||||
// Calculate the binding factor
|
||||
C::hash_binding_factor(&transcript.challenge(b"binding"))
|
||||
C::hash_binding_factor(transcript.challenge(b"binding").as_ref())
|
||||
};
|
||||
|
||||
// Process the addendums
|
||||
for l in ¶ms.view.included {
|
||||
params.algorithm.process_addendum(¶ms.view, *l, &B[l], &addendums[l])?;
|
||||
params.algorithm.process_addendum(¶ms.view, *l, &addendums[l])?;
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
let R = {
|
||||
B.values().map(|B| B[0]).sum::<C::G>() + (B.values().map(|B| B[1]).sum::<C::G>() * binding)
|
||||
};
|
||||
let share = C::F_to_bytes(
|
||||
¶ms.algorithm.sign_share(
|
||||
¶ms.view,
|
||||
R,
|
||||
binding,
|
||||
our_preprocess.nonces[0] + (our_preprocess.nonces[1] * binding),
|
||||
msg
|
||||
)
|
||||
);
|
||||
let mut Rs = Vec::with_capacity(nonces.len());
|
||||
for n in 0 .. nonces.len() {
|
||||
Rs.push(vec![C::G::identity(); nonces[n].len()]);
|
||||
#[allow(non_snake_case)]
|
||||
for g in 0 .. nonces[n].len() {
|
||||
Rs[n][g] = {
|
||||
B.values().map(|B| B[n][g][0]).sum::<C::G>() +
|
||||
(B.values().map(|B| B[n][g][1]).sum::<C::G>() * binding)
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
Ok((Package { B, binding, R, share: share.clone() }, share))
|
||||
let share = params.algorithm.sign_share(
|
||||
¶ms.view,
|
||||
&Rs,
|
||||
&our_preprocess.nonces.iter().map(
|
||||
|nonces| nonces[0] + (nonces[1] * binding)
|
||||
).collect::<Vec<_>>(),
|
||||
msg
|
||||
).to_repr().as_ref().to_vec();
|
||||
|
||||
Ok((Package { B, binding, Rs, share: share.clone() }, share))
|
||||
}
|
||||
|
||||
// This doesn't check the signing set is as expected and unexpected changes can cause false blames
|
||||
// if legitimate participants are still using the original, expected, signing set. This library
|
||||
// could be made more robust in that regard
|
||||
fn complete<C: Curve, A: Algorithm<C>>(
|
||||
sign_params: &Params<C, A>,
|
||||
sign: Package<C>,
|
||||
@@ -200,7 +269,7 @@ fn complete<C: Curve, A: Algorithm<C>>(
|
||||
let mut responses = HashMap::new();
|
||||
let mut sum = C::F::zero();
|
||||
for l in &sign_params.view.included {
|
||||
let part = C::F_from_slice(&shares[l]).map_err(|_| FrostError::InvalidShare(*l))?;
|
||||
let part = F_from_slice::<C::F>(&shares[l]).map_err(|_| FrostError::InvalidShare(*l))?;
|
||||
sum += part;
|
||||
responses.insert(*l, part);
|
||||
}
|
||||
@@ -208,7 +277,7 @@ fn complete<C: Curve, A: Algorithm<C>>(
|
||||
// Perform signature validation instead of individual share validation
|
||||
// For the success route, which should be much more frequent, this should be faster
|
||||
// It also acts as an integrity check of this library's signing function
|
||||
let res = sign_params.algorithm.verify(sign_params.view.group_key, sign.R, sum);
|
||||
let res = sign_params.algorithm.verify(sign_params.view.group_key, &sign.Rs, sum);
|
||||
if let Some(res) = res {
|
||||
return Ok(res);
|
||||
}
|
||||
@@ -219,7 +288,11 @@ fn complete<C: Curve, A: Algorithm<C>>(
|
||||
if !sign_params.algorithm.verify_share(
|
||||
*l,
|
||||
sign_params.view.verification_share(*l),
|
||||
sign.B[l][0] + (sign.B[l][1] * sign.binding),
|
||||
&sign.B[l].iter().map(
|
||||
|nonces| nonces.iter().map(
|
||||
|commitments| commitments[0] + (commitments[1] * sign.binding)
|
||||
).collect()
|
||||
).collect::<Vec<_>>(),
|
||||
responses[l]
|
||||
) {
|
||||
Err(FrostError::InvalidShare(*l))?;
|
||||
@@ -234,31 +307,21 @@ fn complete<C: Curve, A: Algorithm<C>>(
|
||||
)
|
||||
}
|
||||
|
||||
/// State of a Sign machine
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub enum State {
|
||||
Fresh,
|
||||
Preprocessed,
|
||||
Signed,
|
||||
Complete,
|
||||
}
|
||||
|
||||
impl fmt::Display for State {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "{:?}", self)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait StateMachine {
|
||||
pub trait PreprocessMachine {
|
||||
type Signature: Clone + PartialEq + fmt::Debug;
|
||||
type SignMachine: SignMachine<Self::Signature>;
|
||||
|
||||
/// Perform the preprocessing round required in order to sign
|
||||
/// Returns a byte vector which must be transmitted to all parties selected for this signing
|
||||
/// process, over an authenticated channel
|
||||
fn preprocess<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
self,
|
||||
rng: &mut R
|
||||
) -> Result<Vec<u8>, FrostError>;
|
||||
) -> (Self::SignMachine, Vec<u8>);
|
||||
}
|
||||
|
||||
pub trait SignMachine<S> {
|
||||
type SignatureMachine: SignatureMachine<S>;
|
||||
|
||||
/// Sign a message
|
||||
/// Takes in the participant's commitments, which are expected to be in a Vec where participant
|
||||
@@ -266,107 +329,88 @@ pub trait StateMachine {
|
||||
/// index i which is locally handled. Returns a byte vector representing a share of the signature
|
||||
/// for every other participant to receive, over an authenticated channel
|
||||
fn sign(
|
||||
&mut self,
|
||||
self,
|
||||
commitments: HashMap<u16, Vec<u8>>,
|
||||
msg: &[u8],
|
||||
) -> Result<Vec<u8>, FrostError>;
|
||||
) -> Result<(Self::SignatureMachine, Vec<u8>), FrostError>;
|
||||
}
|
||||
|
||||
pub trait SignatureMachine<S> {
|
||||
/// Complete signing
|
||||
/// Takes in everyone elses' shares submitted to us as a Vec, expecting participant index =
|
||||
/// Vec index with None at index 0 and index i. Returns a byte vector representing the serialized
|
||||
/// signature
|
||||
fn complete(&mut self, shares: HashMap<u16, Vec<u8>>) -> Result<Self::Signature, FrostError>;
|
||||
|
||||
fn multisig_params(&self) -> MultisigParams;
|
||||
|
||||
fn state(&self) -> State;
|
||||
fn complete(self, shares: HashMap<u16, Vec<u8>>) -> Result<S, FrostError>;
|
||||
}
|
||||
|
||||
/// State machine which manages signing for an arbitrary signature algorithm
|
||||
#[allow(non_snake_case)]
|
||||
pub struct AlgorithmMachine<C: Curve, A: Algorithm<C>> {
|
||||
params: Params<C, A>
|
||||
}
|
||||
|
||||
pub struct AlgorithmSignMachine<C: Curve, A: Algorithm<C>> {
|
||||
params: Params<C, A>,
|
||||
state: State,
|
||||
preprocess: Option<PreprocessPackage<C>>,
|
||||
sign: Option<Package<C>>,
|
||||
preprocess: PreprocessPackage<C>,
|
||||
}
|
||||
|
||||
pub struct AlgorithmSignatureMachine<C: Curve, A: Algorithm<C>> {
|
||||
params: Params<C, A>,
|
||||
sign: Package<C>,
|
||||
}
|
||||
|
||||
impl<C: Curve, A: Algorithm<C>> AlgorithmMachine<C, A> {
|
||||
/// Creates a new machine to generate a key for the specified curve in the specified multisig
|
||||
pub fn new(
|
||||
algorithm: A,
|
||||
keys: Rc<MultisigKeys<C>>,
|
||||
keys: Arc<FrostKeys<C>>,
|
||||
included: &[u16],
|
||||
) -> Result<AlgorithmMachine<C, A>, FrostError> {
|
||||
Ok(
|
||||
AlgorithmMachine {
|
||||
params: Params::new(algorithm, keys, included)?,
|
||||
state: State::Fresh,
|
||||
preprocess: None,
|
||||
sign: None,
|
||||
}
|
||||
)
|
||||
Ok(AlgorithmMachine { params: Params::new(algorithm, keys, included)? })
|
||||
}
|
||||
|
||||
pub(crate) fn unsafe_override_preprocess(
|
||||
self,
|
||||
preprocess: PreprocessPackage<C>
|
||||
) -> (AlgorithmSignMachine<C, A>, Vec<u8>) {
|
||||
let serialized = preprocess.serialized.clone();
|
||||
(AlgorithmSignMachine { params: self.params, preprocess }, serialized)
|
||||
}
|
||||
}
|
||||
|
||||
impl<C: Curve, A: Algorithm<C>> StateMachine for AlgorithmMachine<C, A> {
|
||||
impl<C: Curve, A: Algorithm<C>> PreprocessMachine for AlgorithmMachine<C, A> {
|
||||
type Signature = A::Signature;
|
||||
type SignMachine = AlgorithmSignMachine<C, A>;
|
||||
|
||||
fn preprocess<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
self,
|
||||
rng: &mut R
|
||||
) -> Result<Vec<u8>, FrostError> {
|
||||
if self.state != State::Fresh {
|
||||
Err(FrostError::InvalidSignTransition(State::Fresh, self.state))?;
|
||||
}
|
||||
let preprocess = preprocess::<R, C, A>(rng, &mut self.params);
|
||||
) -> (Self::SignMachine, Vec<u8>) {
|
||||
let mut params = self.params;
|
||||
let preprocess = preprocess::<R, C, A>(rng, &mut params);
|
||||
let serialized = preprocess.serialized.clone();
|
||||
self.preprocess = Some(preprocess);
|
||||
self.state = State::Preprocessed;
|
||||
Ok(serialized)
|
||||
}
|
||||
|
||||
fn sign(
|
||||
&mut self,
|
||||
commitments: HashMap<u16, Vec<u8>>,
|
||||
msg: &[u8],
|
||||
) -> Result<Vec<u8>, FrostError> {
|
||||
if self.state != State::Preprocessed {
|
||||
Err(FrostError::InvalidSignTransition(State::Preprocessed, self.state))?;
|
||||
}
|
||||
|
||||
let (sign, serialized) = sign_with_share(
|
||||
&mut self.params,
|
||||
self.preprocess.take().unwrap(),
|
||||
commitments,
|
||||
msg,
|
||||
)?;
|
||||
|
||||
self.sign = Some(sign);
|
||||
self.state = State::Signed;
|
||||
Ok(serialized)
|
||||
}
|
||||
|
||||
fn complete(&mut self, shares: HashMap<u16, Vec<u8>>) -> Result<A::Signature, FrostError> {
|
||||
if self.state != State::Signed {
|
||||
Err(FrostError::InvalidSignTransition(State::Signed, self.state))?;
|
||||
}
|
||||
|
||||
let signature = complete(
|
||||
&self.params,
|
||||
self.sign.take().unwrap(),
|
||||
shares,
|
||||
)?;
|
||||
|
||||
self.state = State::Complete;
|
||||
Ok(signature)
|
||||
}
|
||||
|
||||
fn multisig_params(&self) -> MultisigParams {
|
||||
self.params.multisig_params().clone()
|
||||
}
|
||||
|
||||
fn state(&self) -> State {
|
||||
self.state
|
||||
(AlgorithmSignMachine { params, preprocess }, serialized)
|
||||
}
|
||||
}
|
||||
|
||||
impl<C: Curve, A: Algorithm<C>> SignMachine<A::Signature> for AlgorithmSignMachine<C, A> {
|
||||
type SignatureMachine = AlgorithmSignatureMachine<C, A>;
|
||||
|
||||
fn sign(
|
||||
self,
|
||||
commitments: HashMap<u16, Vec<u8>>,
|
||||
msg: &[u8]
|
||||
) -> Result<(Self::SignatureMachine, Vec<u8>), FrostError> {
|
||||
let mut params = self.params;
|
||||
let (sign, serialized) = sign_with_share(&mut params, self.preprocess, commitments, msg)?;
|
||||
Ok((AlgorithmSignatureMachine { params, sign }, serialized))
|
||||
}
|
||||
}
|
||||
|
||||
impl<
|
||||
C: Curve,
|
||||
A: Algorithm<C>
|
||||
> SignatureMachine<A::Signature> for AlgorithmSignatureMachine<C, A> {
|
||||
fn complete(self, shares: HashMap<u16, Vec<u8>>) -> Result<A::Signature, FrostError> {
|
||||
complete(&self.params, self.sign, shares)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use crate::{
|
||||
Curve, MultisigKeys,
|
||||
tests::{schnorr::{sign, verify, batch_verify}, key_gen}
|
||||
};
|
||||
use group::{ff::Field, Group};
|
||||
|
||||
use crate::{Curve, FrostKeys, tests::key_gen};
|
||||
|
||||
// Test generation of FROST keys
|
||||
fn key_generation<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
@@ -14,21 +13,30 @@ fn key_generation<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
// Test serialization of generated keys
|
||||
fn keys_serialization<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
for (_, keys) in key_gen::<_, C>(rng) {
|
||||
assert_eq!(&MultisigKeys::<C>::deserialize(&keys.serialize()).unwrap(), &*keys);
|
||||
assert_eq!(&FrostKeys::<C>::deserialize(&keys.serialize()).unwrap(), &*keys);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn test_curve<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
// TODO: Test the Curve functions themselves
|
||||
|
||||
// Test Schnorr signatures work as expected
|
||||
// This is a bit unnecessary, as they should for any valid curve, yet this provides tests with
|
||||
// meaning, which the above tests won't have
|
||||
sign::<_, C>(rng);
|
||||
verify::<_, C>(rng);
|
||||
batch_verify::<_, C>(rng);
|
||||
// Test successful multiexp, with enough pairs to trigger its variety of algorithms
|
||||
// Multiexp has its own tests, yet only against k256 and Ed25519 (which should be sufficient
|
||||
// as-is to prove multiexp), and this doesn't hurt
|
||||
{
|
||||
let mut pairs = Vec::with_capacity(1000);
|
||||
let mut sum = C::G::identity();
|
||||
for _ in 0 .. 10 {
|
||||
for _ in 0 .. 100 {
|
||||
pairs.push((C::F::random(&mut *rng), C::GENERATOR * C::F::random(&mut *rng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
}
|
||||
assert_eq!(multiexp::multiexp(&pairs), sum);
|
||||
assert_eq!(multiexp::multiexp_vartime(&pairs), sum);
|
||||
}
|
||||
}
|
||||
|
||||
// Test FROST key generation and serialization of MultisigKeys works as expected
|
||||
// Test FROST key generation and serialization of FrostKeys works as expected
|
||||
key_generation::<_, C>(rng);
|
||||
keys_serialization::<_, C>(rng);
|
||||
}
|
||||
|
||||
77
crypto/frost/src/tests/literal/dalek.rs
Normal file
77
crypto/frost/src/tests/literal/dalek.rs
Normal file
@@ -0,0 +1,77 @@
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
use crate::{curve, tests::vectors::{Vectors, test_with_vectors}};
|
||||
|
||||
#[cfg(any(test, feature = "ristretto"))]
|
||||
#[test]
|
||||
fn ristretto_vectors() {
|
||||
test_with_vectors::<_, curve::Ristretto, curve::IetfRistrettoHram>(
|
||||
&mut OsRng,
|
||||
Vectors {
|
||||
threshold: 2,
|
||||
shares: &[
|
||||
"5c3430d391552f6e60ecdc093ff9f6f4488756aa6cebdbad75a768010b8f830e",
|
||||
"b06fc5eac20b4f6e1b271d9df2343d843e1e1fb03c4cbb673f2872d459ce6f01",
|
||||
"f17e505f0e2581c6acfe54d3846a622834b5e7b50cad9a2109a97ba7a80d5c04"
|
||||
],
|
||||
group_secret: "1b25a55e463cfd15cf14a5d3acc3d15053f08da49c8afcf3ab265f2ebc4f970b",
|
||||
group_key: "e2a62f39eede11269e3bd5a7d97554f5ca384f9f6d3dd9c3c0d05083c7254f57",
|
||||
|
||||
msg: "74657374",
|
||||
included: &[1, 3],
|
||||
nonces: &[
|
||||
[
|
||||
"b358743151e33d84bf00c12f71808f4103957c3e2cabab7b895c436b5e70f90c",
|
||||
"7bd112153b9ae1ab9b31f5e78f61f5c4ca9ee67b7ea6d1181799c409d14c350c"
|
||||
],
|
||||
[
|
||||
"22acad88478e0d0373a991092a322ebd1b9a2dad90451a976d0db3215426af0e",
|
||||
"9155e3d7bcf7cd468b980c7e20b2c77cbdfbe33a1dcae031fd8bc6b1403f4b04"
|
||||
]
|
||||
],
|
||||
sig_shares: &[
|
||||
"ff801b4e0839faa67f16dee4127b9f7fbcf5fd007900257b0e2bbc02cbe5e709",
|
||||
"afdf5481023c855bf3411a5c8a5fafa92357296a078c3b80dc168f294cb4f504"
|
||||
],
|
||||
sig: "deae61af10e8ee48ba492573592fba547f5debeff6bd6e2024e8673584746f5e".to_owned() +
|
||||
"ae6070cf0a757f027358f8409dda4e29e04c276b808c60fbea414b2c179add0e"
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[cfg(feature = "ed25519")]
|
||||
#[test]
|
||||
fn ed25519_vectors() {
|
||||
test_with_vectors::<_, curve::Ed25519, curve::IetfEd25519Hram>(
|
||||
&mut OsRng,
|
||||
Vectors {
|
||||
threshold: 2,
|
||||
shares: &[
|
||||
"929dcc590407aae7d388761cddb0c0db6f5627aea8e217f4a033f2ec83d93509",
|
||||
"a91e66e012e4364ac9aaa405fcafd370402d9859f7b6685c07eed76bf409e80d",
|
||||
"d3cb090a075eb154e82fdb4b3cb507f110040905468bb9c46da8bdea643a9a02"
|
||||
],
|
||||
group_secret: "7b1c33d3f5291d85de664833beb1ad469f7fb6025a0ec78b3a790c6e13a98304",
|
||||
group_key: "15d21ccd7ee42959562fc8aa63224c8851fb3ec85a3faf66040d380fb9738673",
|
||||
|
||||
msg: "74657374",
|
||||
included: &[1, 3],
|
||||
nonces: &[
|
||||
[
|
||||
"8c76af04340e83bb5fc427c117d38347fc8ef86d5397feea9aa6412d96c05b0a",
|
||||
"14a37ddbeae8d9e9687369e5eb3c6d54f03dc19d76bb54fb5425131bc37a600b"
|
||||
],
|
||||
[
|
||||
"5ca39ebab6874f5e7b5089f3521819a2aa1e2cf738bae6974ee80555de2ef70e",
|
||||
"0afe3650c4815ff37becd3c6948066e906e929ea9b8f546c74e10002dbcc150c"
|
||||
]
|
||||
],
|
||||
sig_shares: &[
|
||||
"4369474a398aa10357b60d683da91ea6a767dcf53fd541a8ed6b4d780827ea0a",
|
||||
"32fcc690d926075e45d2dfb746bab71447943cddbefe80d122c39174aa2e1004"
|
||||
],
|
||||
sig: "2b8d9c6995333c5990e3a3dd6568785539d3322f7f0376452487ea35cfda587b".to_owned() +
|
||||
"75650edb12b1a8619c88ed1f8463d6baeefb18d3fed3c279102fdfecb255fa0e"
|
||||
}
|
||||
);
|
||||
}
|
||||
55
crypto/frost/src/tests/literal/kp256.rs
Normal file
55
crypto/frost/src/tests/literal/kp256.rs
Normal file
@@ -0,0 +1,55 @@
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
#[cfg(feature = "secp256k1")]
|
||||
use crate::tests::{curve::test_curve, schnorr::test_schnorr};
|
||||
#[cfg(feature = "secp256k1")]
|
||||
use crate::curve::Secp256k1;
|
||||
|
||||
#[cfg(feature = "p256")]
|
||||
use crate::tests::vectors::{Vectors, test_with_vectors};
|
||||
#[cfg(feature = "p256")]
|
||||
use crate::curve::{P256, IetfP256Hram};
|
||||
|
||||
#[cfg(feature = "secp256k1")]
|
||||
#[test]
|
||||
fn secp256k1_non_ietf() {
|
||||
test_curve::<_, Secp256k1>(&mut OsRng);
|
||||
test_schnorr::<_, Secp256k1>(&mut OsRng);
|
||||
}
|
||||
|
||||
#[cfg(feature = "p256")]
|
||||
#[test]
|
||||
fn p256_vectors() {
|
||||
test_with_vectors::<_, P256, IetfP256Hram>(
|
||||
&mut OsRng,
|
||||
Vectors {
|
||||
threshold: 2,
|
||||
shares: &[
|
||||
"0c9c1a0fe806c184add50bbdcac913dda73e482daf95dcb9f35dbb0d8a9f7731",
|
||||
"8d8e787bef0ff6c2f494ca45f4dad198c6bee01212d6c84067159c52e1863ad5",
|
||||
"0e80d6e8f6192c003b5488ce1eec8f5429587d48cf001541e713b2d53c09d928"
|
||||
],
|
||||
group_secret: "8ba9bba2e0fd8c4767154d35a0b7562244a4aaf6f36c8fb8735fa48b301bd8de",
|
||||
group_key: "023a309ad94e9fe8a7ba45dfc58f38bf091959d3c99cfbd02b4dc00585ec45ab70",
|
||||
|
||||
msg: "74657374",
|
||||
included: &[1, 3],
|
||||
nonces: &[
|
||||
[
|
||||
"081617b24375e069b39f649d4c4ce2fba6e38b73e7c16759de0b6079a22c4c7e",
|
||||
"4de5fb77d99f03a2491a83a6a4cb91ca3c82a3f34ce94cec939174f47c9f95dd"
|
||||
],
|
||||
[
|
||||
"d186ea92593f83ea83181b184d41aa93493301ac2bc5b4b1767e94d2db943e38",
|
||||
"486e2ee25a3fbc8e6399d748b077a2755fde99fa85cc24fa647ea4ebf5811a15"
|
||||
]
|
||||
],
|
||||
sig_shares: &[
|
||||
"9e4d8865faf8c7b3193a3b35eda3d9e12118447114b1e7d5b4809ea28067f8a9",
|
||||
"b7d094eab6305ae74daeed1acd31abba9ab81f638d38b72c132cb25a5dfae1fc"
|
||||
],
|
||||
sig: "0342c14c77f9d4ef9b8bd64fb0d7bbfdb9f8216a44e5f7bbe6ac0f3ed5e1a57367".to_owned() +
|
||||
"561e1d51b129229966e92850bad5859bfee96926fad3007cd3f38639e1ffb554"
|
||||
}
|
||||
);
|
||||
}
|
||||
@@ -1,2 +1,4 @@
|
||||
mod secp256k1;
|
||||
mod schnorr;
|
||||
#[cfg(any(test, feature = "dalek"))]
|
||||
mod dalek;
|
||||
#[cfg(feature = "kp256")]
|
||||
mod kp256;
|
||||
|
||||
@@ -1,42 +0,0 @@
|
||||
use std::rc::Rc;
|
||||
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
use crate::{
|
||||
Curve, schnorr, algorithm::{Hram, Schnorr},
|
||||
tests::{key_gen, algorithm_machines, sign as sign_test, literal::secp256k1::{Secp256k1, TestHram}}
|
||||
};
|
||||
|
||||
const MESSAGE: &[u8] = b"Hello World";
|
||||
|
||||
#[test]
|
||||
fn sign() {
|
||||
sign_test(
|
||||
&mut OsRng,
|
||||
algorithm_machines(
|
||||
&mut OsRng,
|
||||
Schnorr::<Secp256k1, TestHram>::new(),
|
||||
&key_gen::<_, Secp256k1>(&mut OsRng)
|
||||
),
|
||||
MESSAGE
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sign_with_offset() {
|
||||
let mut keys = key_gen::<_, Secp256k1>(&mut OsRng);
|
||||
let group_key = keys[&1].group_key();
|
||||
|
||||
let offset = Secp256k1::hash_to_F(b"offset");
|
||||
for i in 1 ..= u16::try_from(keys.len()).unwrap() {
|
||||
keys.insert(i, Rc::new(keys[&i].offset(offset)));
|
||||
}
|
||||
let offset_key = group_key + (Secp256k1::generator_table() * offset);
|
||||
|
||||
let sig = sign_test(
|
||||
&mut OsRng,
|
||||
algorithm_machines(&mut OsRng, Schnorr::<Secp256k1, TestHram>::new(), &keys),
|
||||
MESSAGE
|
||||
);
|
||||
assert!(schnorr::verify(offset_key, TestHram::hram(&sig.R, &offset_key, MESSAGE), &sig));
|
||||
}
|
||||
@@ -1,120 +0,0 @@
|
||||
use core::convert::TryInto;
|
||||
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
use ff::PrimeField;
|
||||
use group::GroupEncoding;
|
||||
|
||||
use sha2::{Digest, Sha256, Sha512};
|
||||
|
||||
use k256::{
|
||||
elliptic_curve::{generic_array::GenericArray, bigint::{ArrayEncoding, U512}, ops::Reduce},
|
||||
Scalar,
|
||||
ProjectivePoint
|
||||
};
|
||||
|
||||
use crate::{CurveError, Curve, algorithm::Hram, tests::curve::test_curve};
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct Secp256k1;
|
||||
impl Curve for Secp256k1 {
|
||||
type F = Scalar;
|
||||
type G = ProjectivePoint;
|
||||
type T = ProjectivePoint;
|
||||
|
||||
fn id() -> String {
|
||||
"secp256k1".to_string()
|
||||
}
|
||||
|
||||
fn id_len() -> u8 {
|
||||
u8::try_from(Self::id().len()).unwrap()
|
||||
}
|
||||
|
||||
fn generator() -> Self::G {
|
||||
Self::G::GENERATOR
|
||||
}
|
||||
|
||||
fn generator_table() -> Self::T {
|
||||
Self::G::GENERATOR
|
||||
}
|
||||
|
||||
fn little_endian() -> bool {
|
||||
false
|
||||
}
|
||||
|
||||
// The IETF draft doesn't specify a secp256k1 ciphersuite
|
||||
// This test just uses the simplest ciphersuite which would still be viable to deploy
|
||||
// The comparable P-256 curve uses hash_to_field from the Hash To Curve IETF draft with a context
|
||||
// string and further DST for H1 ("rho") and H3 ("digest"). It's not currently worth it to add
|
||||
// that weight, yet if secp256k1 is ever officially acknowledged (not just a testing curve), it
|
||||
// must be properly implemented.
|
||||
fn hash_msg(msg: &[u8]) -> Vec<u8> {
|
||||
(&Sha256::digest(msg)).to_vec()
|
||||
}
|
||||
|
||||
fn hash_binding_factor(binding: &[u8]) -> Self::F {
|
||||
Self::hash_to_F(&[b"rho", binding].concat())
|
||||
}
|
||||
|
||||
// Use wide reduction for security
|
||||
fn hash_to_F(data: &[u8]) -> Self::F {
|
||||
Scalar::from_uint_reduced(U512::from_be_byte_array(Sha512::digest(data)))
|
||||
}
|
||||
|
||||
fn F_len() -> usize {
|
||||
32
|
||||
}
|
||||
|
||||
fn G_len() -> usize {
|
||||
33
|
||||
}
|
||||
|
||||
fn F_from_slice(slice: &[u8]) -> Result<Self::F, CurveError> {
|
||||
let bytes: [u8; 32] = slice.try_into()
|
||||
.map_err(|_| CurveError::InvalidLength(32, slice.len()))?;
|
||||
let scalar = Scalar::from_repr(bytes.into());
|
||||
if scalar.is_none().unwrap_u8() == 1 {
|
||||
Err(CurveError::InvalidScalar)?;
|
||||
}
|
||||
Ok(scalar.unwrap())
|
||||
}
|
||||
|
||||
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError> {
|
||||
let point = ProjectivePoint::from_bytes(GenericArray::from_slice(slice));
|
||||
if point.is_none().unwrap_u8() == 1 {
|
||||
Err(CurveError::InvalidScalar)?;
|
||||
}
|
||||
Ok(point.unwrap())
|
||||
}
|
||||
|
||||
fn F_to_bytes(f: &Self::F) -> Vec<u8> {
|
||||
(&f.to_bytes()).to_vec()
|
||||
}
|
||||
|
||||
fn G_to_bytes(g: &Self::G) -> Vec<u8> {
|
||||
(&g.to_bytes()).to_vec()
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone)]
|
||||
pub struct TestHram {}
|
||||
impl Hram<Secp256k1> for TestHram {
|
||||
#[allow(non_snake_case)]
|
||||
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
|
||||
Scalar::from_uint_reduced(
|
||||
U512::from_be_byte_array(
|
||||
Sha512::new()
|
||||
.chain_update(Secp256k1::G_to_bytes(R))
|
||||
.chain_update(Secp256k1::G_to_bytes(A))
|
||||
.chain_update(m)
|
||||
.finalize()
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn secp256k1_curve() {
|
||||
test_curve::<_, Secp256k1>(&mut OsRng);
|
||||
}
|
||||
@@ -1,23 +1,22 @@
|
||||
use std::{rc::Rc, collections::HashMap};
|
||||
use std::{sync::Arc, collections::HashMap};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::Field;
|
||||
use group::ff::Field;
|
||||
|
||||
use crate::{
|
||||
Curve,
|
||||
MultisigParams, MultisigKeys,
|
||||
FrostParams, FrostKeys,
|
||||
lagrange,
|
||||
key_gen,
|
||||
key_gen::KeyGenMachine,
|
||||
algorithm::Algorithm,
|
||||
sign::{StateMachine, AlgorithmMachine}
|
||||
sign::{PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine}
|
||||
};
|
||||
|
||||
// Internal tests
|
||||
mod schnorr;
|
||||
|
||||
// Test suites for public usage
|
||||
pub mod curve;
|
||||
pub mod schnorr;
|
||||
pub mod vectors;
|
||||
|
||||
// Literal test definitions to run during `cargo test`
|
||||
#[cfg(test)]
|
||||
@@ -37,50 +36,37 @@ pub fn clone_without<K: Clone + std::cmp::Eq + std::hash::Hash, V: Clone>(
|
||||
|
||||
pub fn key_gen<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R
|
||||
) -> HashMap<u16, Rc<MultisigKeys<C>>> {
|
||||
let mut params = HashMap::new();
|
||||
) -> HashMap<u16, Arc<FrostKeys<C>>> {
|
||||
let mut machines = HashMap::new();
|
||||
|
||||
let mut commitments = HashMap::new();
|
||||
for i in 1 ..= PARTICIPANTS {
|
||||
params.insert(
|
||||
i,
|
||||
MultisigParams::new(
|
||||
THRESHOLD,
|
||||
PARTICIPANTS,
|
||||
i
|
||||
).unwrap()
|
||||
);
|
||||
machines.insert(
|
||||
i,
|
||||
key_gen::StateMachine::<C>::new(
|
||||
params[&i],
|
||||
"FROST test key_gen".to_string()
|
||||
)
|
||||
);
|
||||
commitments.insert(
|
||||
i,
|
||||
machines.get_mut(&i).unwrap().generate_coefficients(rng).unwrap()
|
||||
let machine = KeyGenMachine::<C>::new(
|
||||
FrostParams::new(THRESHOLD, PARTICIPANTS, i).unwrap(),
|
||||
"FROST Test key_gen".to_string()
|
||||
);
|
||||
let (machine, these_commitments) = machine.generate_coefficients(rng);
|
||||
machines.insert(i, machine);
|
||||
commitments.insert(i, these_commitments);
|
||||
}
|
||||
|
||||
let mut secret_shares = HashMap::new();
|
||||
for (l, machine) in machines.iter_mut() {
|
||||
secret_shares.insert(
|
||||
*l,
|
||||
let mut machines = machines.drain().map(|(l, machine)| {
|
||||
let (machine, shares) = machine.generate_secret_shares(
|
||||
rng,
|
||||
// clone_without isn't necessary, as this machine's own data will be inserted without
|
||||
// conflict, yet using it ensures the machine's own data is actually inserted as expected
|
||||
machine.generate_secret_shares(rng, clone_without(&commitments, l)).unwrap()
|
||||
);
|
||||
}
|
||||
clone_without(&commitments, &l)
|
||||
).unwrap();
|
||||
secret_shares.insert(l, shares);
|
||||
(l, machine)
|
||||
}).collect::<HashMap<_, _>>();
|
||||
|
||||
let mut verification_shares = None;
|
||||
let mut group_key = None;
|
||||
let mut keys = HashMap::new();
|
||||
for (i, machine) in machines.iter_mut() {
|
||||
machines.drain().map(|(i, machine)| {
|
||||
let mut our_secret_shares = HashMap::new();
|
||||
for (l, shares) in &secret_shares {
|
||||
if i == l {
|
||||
if i == *l {
|
||||
continue;
|
||||
}
|
||||
our_secret_shares.insert(*l, shares[&i].clone());
|
||||
@@ -99,13 +85,11 @@ pub fn key_gen<R: RngCore + CryptoRng, C: Curve>(
|
||||
}
|
||||
assert_eq!(group_key.unwrap(), these_keys.group_key());
|
||||
|
||||
keys.insert(*i, Rc::new(these_keys));
|
||||
}
|
||||
|
||||
keys
|
||||
(i, Arc::new(these_keys))
|
||||
}).collect::<HashMap<_, _>>()
|
||||
}
|
||||
|
||||
pub fn recover<C: Curve>(keys: &HashMap<u16, MultisigKeys<C>>) -> C::F {
|
||||
pub fn recover<C: Curve>(keys: &HashMap<u16, FrostKeys<C>>) -> C::F {
|
||||
let first = keys.values().next().expect("no keys provided");
|
||||
assert!(keys.len() >= first.params().t().into(), "not enough keys provided");
|
||||
let included = keys.keys().cloned().collect::<Vec<_>>();
|
||||
@@ -114,14 +98,14 @@ pub fn recover<C: Curve>(keys: &HashMap<u16, MultisigKeys<C>>) -> C::F {
|
||||
C::F::zero(),
|
||||
|accum, (i, keys)| accum + (keys.secret_share() * lagrange::<C::F>(*i, &included))
|
||||
);
|
||||
assert_eq!(C::generator_table() * group_private, first.group_key(), "failed to recover keys");
|
||||
assert_eq!(C::GENERATOR * group_private, first.group_key(), "failed to recover keys");
|
||||
group_private
|
||||
}
|
||||
|
||||
pub fn algorithm_machines<R: RngCore, C: Curve, A: Algorithm<C>>(
|
||||
rng: &mut R,
|
||||
algorithm: A,
|
||||
keys: &HashMap<u16, Rc<MultisigKeys<C>>>,
|
||||
keys: &HashMap<u16, Arc<FrostKeys<C>>>,
|
||||
) -> HashMap<u16, AlgorithmMachine<C, A>> {
|
||||
let mut included = vec![];
|
||||
while included.len() < usize::from(keys[&1].params().t()) {
|
||||
@@ -148,27 +132,28 @@ pub fn algorithm_machines<R: RngCore, C: Curve, A: Algorithm<C>>(
|
||||
).collect()
|
||||
}
|
||||
|
||||
pub fn sign<R: RngCore + CryptoRng, M: StateMachine>(
|
||||
pub fn sign<R: RngCore + CryptoRng, M: PreprocessMachine>(
|
||||
rng: &mut R,
|
||||
mut machines: HashMap<u16, M>,
|
||||
msg: &[u8]
|
||||
) -> M::Signature {
|
||||
let mut commitments = HashMap::new();
|
||||
for (i, machine) in machines.iter_mut() {
|
||||
commitments.insert(*i, machine.preprocess(rng).unwrap());
|
||||
}
|
||||
let mut machines = machines.drain().map(|(i, machine)| {
|
||||
let (machine, preprocess) = machine.preprocess(rng);
|
||||
commitments.insert(i, preprocess);
|
||||
(i, machine)
|
||||
}).collect::<HashMap<_, _>>();
|
||||
|
||||
let mut shares = HashMap::new();
|
||||
for (i, machine) in machines.iter_mut() {
|
||||
shares.insert(
|
||||
*i,
|
||||
machine.sign(clone_without(&commitments, i), msg).unwrap()
|
||||
);
|
||||
}
|
||||
let mut machines = machines.drain().map(|(i, machine)| {
|
||||
let (machine, share) = machine.sign(clone_without(&commitments, &i), msg).unwrap();
|
||||
shares.insert(i, share);
|
||||
(i, machine)
|
||||
}).collect::<HashMap<_, _>>();
|
||||
|
||||
let mut signature = None;
|
||||
for (i, machine) in machines.iter_mut() {
|
||||
let sig = machine.complete(clone_without(&shares, i)).unwrap();
|
||||
for (i, machine) in machines.drain() {
|
||||
let sig = machine.complete(clone_without(&shares, &i)).unwrap();
|
||||
if signature.is_none() {
|
||||
signature = Some(sig.clone());
|
||||
}
|
||||
|
||||
@@ -1,16 +1,21 @@
|
||||
use std::{marker::PhantomData, sync::Arc, collections::HashMap};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::Field;
|
||||
use group::{ff::Field, GroupEncoding};
|
||||
|
||||
use crate::{Curve, schnorr, algorithm::SchnorrSignature};
|
||||
use crate::{
|
||||
Curve, FrostKeys, schnorr::{self, SchnorrSignature}, algorithm::{Hram, Schnorr},
|
||||
tests::{key_gen, algorithm_machines, sign as sign_test}
|
||||
};
|
||||
|
||||
pub(crate) fn sign<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
pub(crate) fn core_sign<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
let private_key = C::F::random(&mut *rng);
|
||||
let nonce = C::F::random(&mut *rng);
|
||||
let challenge = C::F::random(rng); // Doesn't bother to craft an HRAM
|
||||
assert!(
|
||||
schnorr::verify::<C>(
|
||||
C::generator_table() * private_key,
|
||||
C::GENERATOR * private_key,
|
||||
challenge,
|
||||
&schnorr::sign(private_key, nonce, challenge)
|
||||
)
|
||||
@@ -20,17 +25,17 @@ pub(crate) fn sign<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
// The above sign function verifies signing works
|
||||
// This verifies invalid signatures don't pass, using zero signatures, which should effectively be
|
||||
// random
|
||||
pub(crate) fn verify<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
pub(crate) fn core_verify<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
assert!(
|
||||
!schnorr::verify::<C>(
|
||||
C::generator_table() * C::F::random(&mut *rng),
|
||||
C::GENERATOR * C::F::random(&mut *rng),
|
||||
C::F::random(rng),
|
||||
&SchnorrSignature { R: C::generator_table() * C::F::zero(), s: C::F::zero() }
|
||||
&SchnorrSignature { R: C::GENERATOR * C::F::zero(), s: C::F::zero() }
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
pub(crate) fn batch_verify<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
pub(crate) fn core_batch_verify<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
// Create 5 signatures
|
||||
let mut keys = vec![];
|
||||
let mut challenges = vec![];
|
||||
@@ -43,7 +48,7 @@ pub(crate) fn batch_verify<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
|
||||
// Batch verify
|
||||
let triplets = (0 .. 5).map(
|
||||
|i| (u16::try_from(i + 1).unwrap(), C::generator_table() * keys[i], challenges[i], sigs[i])
|
||||
|i| (u16::try_from(i + 1).unwrap(), C::GENERATOR * keys[i], challenges[i], sigs[i])
|
||||
).collect::<Vec<_>>();
|
||||
schnorr::batch_verify(rng, &triplets).unwrap();
|
||||
|
||||
@@ -71,3 +76,56 @@ pub(crate) fn batch_verify<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn sign_core<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R,
|
||||
group_key: C::G,
|
||||
keys: &HashMap<u16, Arc<FrostKeys<C>>>
|
||||
) {
|
||||
const MESSAGE: &'static [u8] = b"Hello, World!";
|
||||
|
||||
let machines = algorithm_machines(rng, Schnorr::<C, TestHram<C>>::new(), keys);
|
||||
let sig = sign_test(&mut *rng, machines, MESSAGE);
|
||||
assert!(schnorr::verify(group_key, TestHram::<C>::hram(&sig.R, &group_key, MESSAGE), &sig));
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct TestHram<C: Curve> {
|
||||
_curve: PhantomData<C>
|
||||
}
|
||||
impl<C: Curve> Hram<C> for TestHram<C> {
|
||||
#[allow(non_snake_case)]
|
||||
fn hram(R: &C::G, A: &C::G, m: &[u8]) -> C::F {
|
||||
C::hash_to_F(b"challenge", &[R.to_bytes().as_ref(), A.to_bytes().as_ref(), m].concat())
|
||||
}
|
||||
}
|
||||
|
||||
fn sign<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
let keys = key_gen::<_, C>(&mut *rng);
|
||||
sign_core(rng, keys[&1].group_key(), &keys);
|
||||
}
|
||||
|
||||
fn sign_with_offset<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
let mut keys = key_gen::<_, C>(&mut *rng);
|
||||
let group_key = keys[&1].group_key();
|
||||
|
||||
let offset = C::hash_to_F(b"FROST Test sign_with_offset", b"offset");
|
||||
for i in 1 ..= u16::try_from(keys.len()).unwrap() {
|
||||
keys.insert(i, Arc::new(keys[&i].offset(offset)));
|
||||
}
|
||||
let offset_key = group_key + (C::GENERATOR * offset);
|
||||
|
||||
sign_core(rng, offset_key, &keys);
|
||||
}
|
||||
|
||||
pub fn test_schnorr<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
// Test Schnorr signatures work as expected
|
||||
// This is a bit unnecessary, as they should for any valid curve, yet this establishes sanity
|
||||
core_sign::<_, C>(rng);
|
||||
core_verify::<_, C>(rng);
|
||||
core_batch_verify::<_, C>(rng);
|
||||
|
||||
// Test Schnorr signatures under FROST
|
||||
sign::<_, C>(rng);
|
||||
sign_with_offset::<_, C>(rng);
|
||||
}
|
||||
|
||||
136
crypto/frost/src/tests/vectors.rs
Normal file
136
crypto/frost/src/tests/vectors.rs
Normal file
@@ -0,0 +1,136 @@
|
||||
use std::{sync::Arc, collections::HashMap};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use group::{ff::PrimeField, GroupEncoding};
|
||||
|
||||
use crate::{
|
||||
curve::{Curve, F_from_slice, G_from_slice}, FrostKeys,
|
||||
algorithm::{Schnorr, Hram},
|
||||
sign::{PreprocessPackage, SignMachine, SignatureMachine, AlgorithmMachine},
|
||||
tests::{curve::test_curve, schnorr::test_schnorr, recover}
|
||||
};
|
||||
|
||||
pub struct Vectors {
|
||||
pub threshold: u16,
|
||||
pub shares: &'static [&'static str],
|
||||
pub group_secret: &'static str,
|
||||
pub group_key: &'static str,
|
||||
|
||||
pub msg: &'static str,
|
||||
pub included: &'static [u16],
|
||||
pub nonces: &'static [[&'static str; 2]],
|
||||
pub sig_shares: &'static [&'static str],
|
||||
pub sig: String
|
||||
}
|
||||
|
||||
// Load these vectors into FrostKeys using a custom serialization it'll deserialize
|
||||
fn vectors_to_multisig_keys<C: Curve>(vectors: &Vectors) -> HashMap<u16, FrostKeys<C>> {
|
||||
let shares = vectors.shares.iter().map(
|
||||
|secret| F_from_slice::<C::F>(&hex::decode(secret).unwrap()).unwrap()
|
||||
).collect::<Vec<_>>();
|
||||
let verification_shares = shares.iter().map(
|
||||
|secret| C::GENERATOR * secret
|
||||
).collect::<Vec<_>>();
|
||||
|
||||
let mut keys = HashMap::new();
|
||||
for i in 1 ..= u16::try_from(shares.len()).unwrap() {
|
||||
let mut serialized = vec![];
|
||||
serialized.extend(u64::try_from(C::ID.len()).unwrap().to_be_bytes());
|
||||
serialized.extend(C::ID);
|
||||
serialized.extend(vectors.threshold.to_be_bytes());
|
||||
serialized.extend(u16::try_from(shares.len()).unwrap().to_be_bytes());
|
||||
serialized.extend(i.to_be_bytes());
|
||||
serialized.extend(shares[usize::from(i) - 1].to_repr().as_ref());
|
||||
serialized.extend(&hex::decode(vectors.group_key).unwrap());
|
||||
for share in &verification_shares {
|
||||
serialized.extend(share.to_bytes().as_ref());
|
||||
}
|
||||
|
||||
let these_keys = FrostKeys::<C>::deserialize(&serialized).unwrap();
|
||||
assert_eq!(these_keys.params().t(), vectors.threshold);
|
||||
assert_eq!(usize::from(these_keys.params().n()), shares.len());
|
||||
assert_eq!(these_keys.params().i(), i);
|
||||
assert_eq!(these_keys.secret_share(), shares[usize::from(i - 1)]);
|
||||
assert_eq!(&hex::encode(these_keys.group_key().to_bytes().as_ref()), vectors.group_key);
|
||||
keys.insert(i, these_keys);
|
||||
}
|
||||
|
||||
keys
|
||||
}
|
||||
|
||||
pub fn test_with_vectors<
|
||||
R: RngCore + CryptoRng,
|
||||
C: Curve,
|
||||
H: Hram<C>
|
||||
>(rng: &mut R, vectors: Vectors) {
|
||||
// Do basic tests before trying the vectors
|
||||
test_curve::<_, C>(&mut *rng);
|
||||
test_schnorr::<_, C>(rng);
|
||||
|
||||
// Test against the vectors
|
||||
let keys = vectors_to_multisig_keys::<C>(&vectors);
|
||||
let group_key = G_from_slice::<C::G>(&hex::decode(vectors.group_key).unwrap()).unwrap();
|
||||
assert_eq!(
|
||||
C::GENERATOR * F_from_slice::<C::F>(&hex::decode(vectors.group_secret).unwrap()).unwrap(),
|
||||
group_key
|
||||
);
|
||||
assert_eq!(
|
||||
recover(&keys),
|
||||
F_from_slice::<C::F>(&hex::decode(vectors.group_secret).unwrap()).unwrap()
|
||||
);
|
||||
|
||||
let mut machines = vec![];
|
||||
for i in vectors.included {
|
||||
machines.push((
|
||||
*i,
|
||||
AlgorithmMachine::new(
|
||||
Schnorr::<C, H>::new(),
|
||||
Arc::new(keys[i].clone()),
|
||||
vectors.included.clone()
|
||||
).unwrap()
|
||||
));
|
||||
}
|
||||
|
||||
let mut commitments = HashMap::new();
|
||||
let mut c = 0;
|
||||
let mut machines = machines.drain(..).map(|(i, machine)| {
|
||||
let nonces = [
|
||||
F_from_slice::<C::F>(&hex::decode(vectors.nonces[c][0]).unwrap()).unwrap(),
|
||||
F_from_slice::<C::F>(&hex::decode(vectors.nonces[c][1]).unwrap()).unwrap()
|
||||
];
|
||||
c += 1;
|
||||
|
||||
let mut serialized = (C::GENERATOR * nonces[0]).to_bytes().as_ref().to_vec();
|
||||
serialized.extend((C::GENERATOR * nonces[1]).to_bytes().as_ref());
|
||||
|
||||
let (machine, serialized) = machine.unsafe_override_preprocess(
|
||||
PreprocessPackage { nonces: vec![nonces], serialized: serialized.clone() }
|
||||
);
|
||||
|
||||
commitments.insert(i, serialized);
|
||||
(i, machine)
|
||||
}).collect::<Vec<_>>();
|
||||
|
||||
let mut shares = HashMap::new();
|
||||
c = 0;
|
||||
let mut machines = machines.drain(..).map(|(i, machine)| {
|
||||
let (machine, share) = machine.sign(
|
||||
commitments.clone(),
|
||||
&hex::decode(vectors.msg).unwrap()
|
||||
).unwrap();
|
||||
|
||||
assert_eq!(share, hex::decode(vectors.sig_shares[c]).unwrap());
|
||||
c += 1;
|
||||
|
||||
shares.insert(i, share);
|
||||
(i, machine)
|
||||
}).collect::<HashMap<_, _>>();
|
||||
|
||||
for (_, machine) in machines.drain() {
|
||||
let sig = machine.complete(shares.clone()).unwrap();
|
||||
let mut serialized = sig.R.to_bytes().as_ref().to_vec();
|
||||
serialized.extend(sig.s.to_repr().as_ref());
|
||||
assert_eq!(hex::encode(serialized), vectors.sig);
|
||||
}
|
||||
}
|
||||
@@ -3,13 +3,22 @@ name = "multiexp"
|
||||
version = "0.1.0"
|
||||
description = "Multiexponentation algorithms for ff/group"
|
||||
license = "MIT"
|
||||
repository = "https://github.com/serai-dex/serai"
|
||||
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
|
||||
keywords = ["multiexp", "ff", "group"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
group = "0.11"
|
||||
ff = "0.12"
|
||||
group = "0.12"
|
||||
|
||||
rand_core = { version = "0.6", optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
rand_core = "0.6"
|
||||
|
||||
k256 = { version = "0.11", features = ["bits"] }
|
||||
dalek-ff-group = { path = "../dalek-ff-group" }
|
||||
|
||||
[features]
|
||||
batch = ["rand_core"]
|
||||
|
||||
6
crypto/multiexp/README.md
Normal file
6
crypto/multiexp/README.md
Normal file
@@ -0,0 +1,6 @@
|
||||
# Multiexp
|
||||
|
||||
A multiexp implementation for ff/group implementing Straus and Pippenger. A
|
||||
batch verification API is also available via the "batch" feature, which enables
|
||||
secure multiexponentation batch verification given a series of values which
|
||||
should sum to 0, identifying which doesn't via binary search if they don't.
|
||||
84
crypto/multiexp/src/batch.rs
Normal file
84
crypto/multiexp/src/batch.rs
Normal file
@@ -0,0 +1,84 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::{Field, PrimeFieldBits};
|
||||
use group::Group;
|
||||
|
||||
use crate::{multiexp, multiexp_vartime};
|
||||
|
||||
#[cfg(feature = "batch")]
|
||||
pub struct BatchVerifier<Id: Copy, G: Group>(Vec<(Id, Vec<(G::Scalar, G)>)>);
|
||||
|
||||
#[cfg(feature = "batch")]
|
||||
impl<Id: Copy, G: Group> BatchVerifier<Id, G> where <G as Group>::Scalar: PrimeFieldBits {
|
||||
pub fn new(capacity: usize) -> BatchVerifier<Id, G> {
|
||||
BatchVerifier(Vec::with_capacity(capacity))
|
||||
}
|
||||
|
||||
pub fn queue<
|
||||
R: RngCore + CryptoRng,
|
||||
I: IntoIterator<Item = (G::Scalar, G)>
|
||||
>(&mut self, rng: &mut R, id: Id, pairs: I) {
|
||||
// Define a unique scalar factor for this set of variables so individual items can't overlap
|
||||
let u = if self.0.len() == 0 {
|
||||
G::Scalar::one()
|
||||
} else {
|
||||
let mut weight;
|
||||
// Ensure it's non-zero, as a zero scalar would cause this item to pass no matter what
|
||||
while {
|
||||
weight = G::Scalar::random(&mut *rng);
|
||||
weight.is_zero().into()
|
||||
} {}
|
||||
weight
|
||||
};
|
||||
self.0.push((id, pairs.into_iter().map(|(scalar, point)| (scalar * u, point)).collect()));
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn verify(&self) -> bool {
|
||||
multiexp(
|
||||
&self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>()
|
||||
).is_identity().into()
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn verify_vartime(&self) -> bool {
|
||||
multiexp_vartime(
|
||||
&self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>()
|
||||
).is_identity().into()
|
||||
}
|
||||
|
||||
// A constant time variant may be beneficial for robust protocols
|
||||
pub fn blame_vartime(&self) -> Option<Id> {
|
||||
let mut slice = self.0.as_slice();
|
||||
while slice.len() > 1 {
|
||||
let split = slice.len() / 2;
|
||||
if multiexp_vartime(
|
||||
&slice[.. split].iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>()
|
||||
).is_identity().into() {
|
||||
slice = &slice[split ..];
|
||||
} else {
|
||||
slice = &slice[.. split];
|
||||
}
|
||||
}
|
||||
|
||||
slice.get(0).filter(
|
||||
|(_, value)| !bool::from(multiexp_vartime(value).is_identity())
|
||||
).map(|(id, _)| *id)
|
||||
}
|
||||
|
||||
pub fn verify_with_vartime_blame(&self) -> Result<(), Id> {
|
||||
if self.verify() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(self.blame_vartime().unwrap())
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify_vartime_with_vartime_blame(&self) -> Result<(), Id> {
|
||||
if self.verify_vartime() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(self.blame_vartime().unwrap())
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,156 +1,176 @@
|
||||
use group::{ff::PrimeField, Group};
|
||||
use ff::PrimeFieldBits;
|
||||
use group::Group;
|
||||
|
||||
mod straus;
|
||||
use straus::*;
|
||||
|
||||
mod pippenger;
|
||||
use pippenger::*;
|
||||
|
||||
#[cfg(feature = "batch")]
|
||||
use group::ff::Field;
|
||||
mod batch;
|
||||
#[cfg(feature = "batch")]
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
pub use batch::BatchVerifier;
|
||||
|
||||
fn prep<
|
||||
G: Group,
|
||||
I: IntoIterator<Item = (G::Scalar, G)>
|
||||
>(pairs: I, little: bool) -> (Vec<Vec<u8>>, Vec<[G; 16]>) {
|
||||
let mut nibbles = vec![];
|
||||
let mut tables = vec![];
|
||||
for pair in pairs.into_iter() {
|
||||
let p = nibbles.len();
|
||||
nibbles.push(vec![]);
|
||||
{
|
||||
let mut repr = pair.0.to_repr();
|
||||
let bytes = repr.as_mut();
|
||||
if !little {
|
||||
bytes.reverse();
|
||||
}
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
nibbles[p].resize(bytes.len() * 2, 0);
|
||||
for i in 0 .. bytes.len() {
|
||||
nibbles[p][i * 2] = bytes[i] & 0b1111;
|
||||
nibbles[p][(i * 2) + 1] = (bytes[i] >> 4) & 0b1111;
|
||||
}
|
||||
pub(crate) fn prep_bits<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> Vec<Vec<u8>> where G::Scalar: PrimeFieldBits {
|
||||
let w_usize = usize::from(window);
|
||||
|
||||
let mut groupings = vec![];
|
||||
for pair in pairs {
|
||||
let p = groupings.len();
|
||||
let bits = pair.0.to_le_bits();
|
||||
groupings.push(vec![0; (bits.len() + (w_usize - 1)) / w_usize]);
|
||||
|
||||
for (i, bit) in bits.into_iter().enumerate() {
|
||||
let bit = bit as u8;
|
||||
debug_assert_eq!(bit | 1, 1);
|
||||
groupings[p][i / w_usize] |= bit << (i % w_usize);
|
||||
}
|
||||
}
|
||||
|
||||
tables.push([G::identity(); 16]);
|
||||
groupings
|
||||
}
|
||||
|
||||
pub(crate) fn prep_tables<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> Vec<Vec<G>> {
|
||||
let mut tables = Vec::with_capacity(pairs.len());
|
||||
for pair in pairs {
|
||||
let p = tables.len();
|
||||
tables.push(vec![G::identity(); 2_usize.pow(window.into())]);
|
||||
let mut accum = G::identity();
|
||||
for i in 1 .. 16 {
|
||||
for i in 1 .. tables[p].len() {
|
||||
accum += pair.1;
|
||||
tables[p][i] = accum;
|
||||
}
|
||||
}
|
||||
|
||||
(nibbles, tables)
|
||||
tables
|
||||
}
|
||||
|
||||
// An implementation of Straus, with a extremely minimal API that lets us add other algorithms in
|
||||
// the future. Takes in an iterator of scalars and points with a boolean for if the scalars are
|
||||
// little endian encoded in their Reprs or not
|
||||
pub fn multiexp<
|
||||
G: Group,
|
||||
I: IntoIterator<Item = (G::Scalar, G)>
|
||||
>(pairs: I, little: bool) -> G {
|
||||
let (nibbles, tables) = prep(pairs, little);
|
||||
|
||||
let mut res = G::identity();
|
||||
for b in (0 .. nibbles[0].len()).rev() {
|
||||
for _ in 0 .. 4 {
|
||||
res = res.double();
|
||||
}
|
||||
|
||||
for s in 0 .. tables.len() {
|
||||
res += tables[s][usize::from(nibbles[s][b])];
|
||||
}
|
||||
}
|
||||
res
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
enum Algorithm {
|
||||
Null,
|
||||
Single,
|
||||
Straus(u8),
|
||||
Pippenger(u8)
|
||||
}
|
||||
|
||||
pub fn multiexp_vartime<
|
||||
G: Group,
|
||||
I: IntoIterator<Item = (G::Scalar, G)>
|
||||
>(pairs: I, little: bool) -> G {
|
||||
let (nibbles, tables) = prep(pairs, little);
|
||||
/*
|
||||
Release (with runs 20, so all of these are off by 20x):
|
||||
|
||||
let mut res = G::identity();
|
||||
for b in (0 .. nibbles[0].len()).rev() {
|
||||
for _ in 0 .. 4 {
|
||||
res = res.double();
|
||||
}
|
||||
k256
|
||||
Straus 3 is more efficient at 5 with 678µs per
|
||||
Straus 4 is more efficient at 10 with 530µs per
|
||||
Straus 5 is more efficient at 35 with 467µs per
|
||||
|
||||
for s in 0 .. tables.len() {
|
||||
if nibbles[s][b] != 0 {
|
||||
res += tables[s][usize::from(nibbles[s][b])];
|
||||
}
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
Pippenger 5 is more efficient at 125 with 431µs per
|
||||
Pippenger 6 is more efficient at 275 with 349µs per
|
||||
Pippenger 7 is more efficient at 375 with 360µs per
|
||||
|
||||
#[cfg(feature = "batch")]
|
||||
pub struct BatchVerifier<Id: Copy, G: Group>(Vec<(Id, Vec<(G::Scalar, G)>)>, bool);
|
||||
dalek
|
||||
Straus 3 is more efficient at 5 with 519µs per
|
||||
Straus 4 is more efficient at 10 with 376µs per
|
||||
Straus 5 is more efficient at 170 with 330µs per
|
||||
|
||||
#[cfg(feature = "batch")]
|
||||
impl<Id: Copy, G: Group> BatchVerifier<Id, G> {
|
||||
pub fn new(capacity: usize, endian: bool) -> BatchVerifier<Id, G> {
|
||||
BatchVerifier(Vec::with_capacity(capacity), endian)
|
||||
Pippenger 5 is more efficient at 125 with 305µs per
|
||||
Pippenger 6 is more efficient at 275 with 250µs per
|
||||
Pippenger 7 is more efficient at 450 with 205µs per
|
||||
Pippenger 8 is more efficient at 800 with 213µs per
|
||||
|
||||
Debug (with runs 5, so...):
|
||||
|
||||
k256
|
||||
Straus 3 is more efficient at 5 with 2532µs per
|
||||
Straus 4 is more efficient at 10 with 1930µs per
|
||||
Straus 5 is more efficient at 80 with 1632µs per
|
||||
|
||||
Pippenger 5 is more efficient at 150 with 1441µs per
|
||||
Pippenger 6 is more efficient at 300 with 1235µs per
|
||||
Pippenger 7 is more efficient at 475 with 1182µs per
|
||||
Pippenger 8 is more efficient at 625 with 1170µs per
|
||||
|
||||
dalek:
|
||||
Straus 3 is more efficient at 5 with 971µs per
|
||||
Straus 4 is more efficient at 10 with 782µs per
|
||||
Straus 5 is more efficient at 75 with 778µs per
|
||||
Straus 6 is more efficient at 165 with 867µs per
|
||||
|
||||
Pippenger 5 is more efficient at 125 with 677µs per
|
||||
Pippenger 6 is more efficient at 250 with 655µs per
|
||||
Pippenger 7 is more efficient at 475 with 500µs per
|
||||
Pippenger 8 is more efficient at 875 with 499µs per
|
||||
*/
|
||||
fn algorithm(len: usize) -> Algorithm {
|
||||
#[cfg(not(debug_assertions))]
|
||||
if len == 0 {
|
||||
Algorithm::Null
|
||||
} else if len == 1 {
|
||||
Algorithm::Single
|
||||
} else if len < 10 {
|
||||
// Straus 2 never showed a performance benefit, even with just 2 elements
|
||||
Algorithm::Straus(3)
|
||||
} else if len < 20 {
|
||||
Algorithm::Straus(4)
|
||||
} else if len < 50 {
|
||||
Algorithm::Straus(5)
|
||||
} else if len < 100 {
|
||||
Algorithm::Pippenger(4)
|
||||
} else if len < 125 {
|
||||
Algorithm::Pippenger(5)
|
||||
} else if len < 275 {
|
||||
Algorithm::Pippenger(6)
|
||||
} else if len < 400 {
|
||||
Algorithm::Pippenger(7)
|
||||
} else {
|
||||
Algorithm::Pippenger(8)
|
||||
}
|
||||
|
||||
pub fn queue<
|
||||
R: RngCore + CryptoRng,
|
||||
I: IntoIterator<Item = (G::Scalar, G)>
|
||||
>(&mut self, rng: &mut R, id: Id, pairs: I) {
|
||||
// Define a unique scalar factor for this set of variables so individual items can't overlap
|
||||
let u = if self.0.len() == 0 {
|
||||
G::Scalar::one()
|
||||
} else {
|
||||
G::Scalar::random(rng)
|
||||
};
|
||||
self.0.push((id, pairs.into_iter().map(|(scalar, point)| (scalar * u, point)).collect()));
|
||||
}
|
||||
|
||||
pub fn verify(&self) -> bool {
|
||||
multiexp(
|
||||
self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned(),
|
||||
self.1
|
||||
).is_identity().into()
|
||||
}
|
||||
|
||||
pub fn verify_vartime(&self) -> bool {
|
||||
multiexp_vartime(
|
||||
self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned(),
|
||||
self.1
|
||||
).is_identity().into()
|
||||
}
|
||||
|
||||
// A constant time variant may be beneficial for robust protocols
|
||||
pub fn blame_vartime(&self) -> Option<Id> {
|
||||
let mut slice = self.0.as_slice();
|
||||
while slice.len() > 1 {
|
||||
let split = slice.len() / 2;
|
||||
if multiexp_vartime(
|
||||
slice[.. split].iter().flat_map(|pairs| pairs.1.iter()).cloned(),
|
||||
self.1
|
||||
).is_identity().into() {
|
||||
slice = &slice[split ..];
|
||||
} else {
|
||||
slice = &slice[.. split];
|
||||
}
|
||||
}
|
||||
|
||||
slice.get(0).filter(
|
||||
|(_, value)| !bool::from(multiexp_vartime(value.clone(), self.1).is_identity())
|
||||
).map(|(id, _)| *id)
|
||||
}
|
||||
|
||||
pub fn verify_with_vartime_blame(&self) -> Result<(), Id> {
|
||||
if self.verify() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(self.blame_vartime().unwrap())
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify_vartime_with_vartime_blame(&self) -> Result<(), Id> {
|
||||
if self.verify_vartime() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(self.blame_vartime().unwrap())
|
||||
}
|
||||
#[cfg(debug_assertions)]
|
||||
if len == 0 {
|
||||
Algorithm::Null
|
||||
} else if len == 1 {
|
||||
Algorithm::Single
|
||||
} else if len < 10 {
|
||||
Algorithm::Straus(3)
|
||||
} else if len < 80 {
|
||||
Algorithm::Straus(4)
|
||||
} else if len < 100 {
|
||||
Algorithm::Straus(5)
|
||||
} else if len < 125 {
|
||||
Algorithm::Pippenger(4)
|
||||
} else if len < 275 {
|
||||
Algorithm::Pippenger(5)
|
||||
} else if len < 475 {
|
||||
Algorithm::Pippenger(6)
|
||||
} else if len < 750 {
|
||||
Algorithm::Pippenger(7)
|
||||
} else {
|
||||
Algorithm::Pippenger(8)
|
||||
}
|
||||
}
|
||||
|
||||
// Performs a multiexp, automatically selecting the optimal algorithm based on amount of pairs
|
||||
pub fn multiexp<G: Group>(pairs: &[(G::Scalar, G)]) -> G where G::Scalar: PrimeFieldBits {
|
||||
match algorithm(pairs.len()) {
|
||||
Algorithm::Null => Group::identity(),
|
||||
Algorithm::Single => pairs[0].1 * pairs[0].0,
|
||||
Algorithm::Straus(window) => straus(pairs, window),
|
||||
Algorithm::Pippenger(window) => pippenger(pairs, window)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn multiexp_vartime<G: Group>(pairs: &[(G::Scalar, G)]) -> G where G::Scalar: PrimeFieldBits {
|
||||
match algorithm(pairs.len()) {
|
||||
Algorithm::Null => Group::identity(),
|
||||
Algorithm::Single => pairs[0].1 * pairs[0].0,
|
||||
Algorithm::Straus(window) => straus_vartime(pairs, window),
|
||||
Algorithm::Pippenger(window) => pippenger_vartime(pairs, window)
|
||||
}
|
||||
}
|
||||
|
||||
63
crypto/multiexp/src/pippenger.rs
Normal file
63
crypto/multiexp/src/pippenger.rs
Normal file
@@ -0,0 +1,63 @@
|
||||
use ff::PrimeFieldBits;
|
||||
use group::Group;
|
||||
|
||||
use crate::prep_bits;
|
||||
|
||||
pub(crate) fn pippenger<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> G where G::Scalar: PrimeFieldBits {
|
||||
let bits = prep_bits(pairs, window);
|
||||
|
||||
let mut res = G::identity();
|
||||
for n in (0 .. bits[0].len()).rev() {
|
||||
for _ in 0 .. window {
|
||||
res = res.double();
|
||||
}
|
||||
|
||||
let mut buckets = vec![G::identity(); 2_usize.pow(window.into())];
|
||||
for p in 0 .. bits.len() {
|
||||
buckets[usize::from(bits[p][n])] += pairs[p].1;
|
||||
}
|
||||
|
||||
let mut intermediate_sum = G::identity();
|
||||
for b in (1 .. buckets.len()).rev() {
|
||||
intermediate_sum += buckets[b];
|
||||
res += intermediate_sum;
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn pippenger_vartime<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> G where G::Scalar: PrimeFieldBits {
|
||||
let bits = prep_bits(pairs, window);
|
||||
|
||||
let mut res = G::identity();
|
||||
for n in (0 .. bits[0].len()).rev() {
|
||||
if n != (bits[0].len() - 1) {
|
||||
for _ in 0 .. window {
|
||||
res = res.double();
|
||||
}
|
||||
}
|
||||
|
||||
let mut buckets = vec![G::identity(); 2_usize.pow(window.into())];
|
||||
for p in 0 .. bits.len() {
|
||||
let nibble = usize::from(bits[p][n]);
|
||||
if nibble != 0 {
|
||||
buckets[nibble] += pairs[p].1;
|
||||
}
|
||||
}
|
||||
|
||||
let mut intermediate_sum = G::identity();
|
||||
for b in (1 .. buckets.len()).rev() {
|
||||
intermediate_sum += buckets[b];
|
||||
res += intermediate_sum;
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
49
crypto/multiexp/src/straus.rs
Normal file
49
crypto/multiexp/src/straus.rs
Normal file
@@ -0,0 +1,49 @@
|
||||
use ff::PrimeFieldBits;
|
||||
use group::Group;
|
||||
|
||||
use crate::{prep_bits, prep_tables};
|
||||
|
||||
pub(crate) fn straus<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> G where G::Scalar: PrimeFieldBits {
|
||||
let groupings = prep_bits(pairs, window);
|
||||
let tables = prep_tables(pairs, window);
|
||||
|
||||
let mut res = G::identity();
|
||||
for b in (0 .. groupings[0].len()).rev() {
|
||||
for _ in 0 .. window {
|
||||
res = res.double();
|
||||
}
|
||||
|
||||
for s in 0 .. tables.len() {
|
||||
res += tables[s][usize::from(groupings[s][b])];
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn straus_vartime<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> G where G::Scalar: PrimeFieldBits {
|
||||
let groupings = prep_bits(pairs, window);
|
||||
let tables = prep_tables(pairs, window);
|
||||
|
||||
let mut res = G::identity();
|
||||
for b in (0 .. groupings[0].len()).rev() {
|
||||
if b != (groupings[0].len() - 1) {
|
||||
for _ in 0 .. window {
|
||||
res = res.double();
|
||||
}
|
||||
}
|
||||
|
||||
for s in 0 .. tables.len() {
|
||||
if groupings[s][b] != 0 {
|
||||
res += tables[s][usize::from(groupings[s][b])];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
112
crypto/multiexp/src/tests/mod.rs
Normal file
112
crypto/multiexp/src/tests/mod.rs
Normal file
@@ -0,0 +1,112 @@
|
||||
use std::time::Instant;
|
||||
|
||||
use rand_core::OsRng;
|
||||
|
||||
use ff::{Field, PrimeFieldBits};
|
||||
use group::Group;
|
||||
|
||||
use k256::ProjectivePoint;
|
||||
use dalek_ff_group::EdwardsPoint;
|
||||
|
||||
use crate::{straus, pippenger, multiexp, multiexp_vartime};
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn benchmark_internal<G: Group>(straus_bool: bool) where G::Scalar: PrimeFieldBits {
|
||||
let runs: usize = 20;
|
||||
|
||||
let mut start = 0;
|
||||
let mut increment: usize = 5;
|
||||
let mut total: usize = 250;
|
||||
let mut current = 2;
|
||||
|
||||
if !straus_bool {
|
||||
start = 100;
|
||||
increment = 25;
|
||||
total = 1000;
|
||||
current = 4;
|
||||
};
|
||||
|
||||
let mut pairs = Vec::with_capacity(total);
|
||||
let mut sum = G::identity();
|
||||
|
||||
for _ in 0 .. start {
|
||||
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
}
|
||||
|
||||
for _ in 0 .. (total / increment) {
|
||||
for _ in 0 .. increment {
|
||||
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
}
|
||||
|
||||
let now = Instant::now();
|
||||
for _ in 0 .. runs {
|
||||
if straus_bool {
|
||||
assert_eq!(straus(&pairs, current), sum);
|
||||
} else {
|
||||
assert_eq!(pippenger(&pairs, current), sum);
|
||||
}
|
||||
}
|
||||
let current_per = now.elapsed().as_micros() / u128::try_from(pairs.len()).unwrap();
|
||||
|
||||
let now = Instant::now();
|
||||
for _ in 0 .. runs {
|
||||
if straus_bool {
|
||||
assert_eq!(straus(&pairs, current + 1), sum);
|
||||
} else {
|
||||
assert_eq!(pippenger(&pairs, current + 1), sum);
|
||||
}
|
||||
}
|
||||
let next_per = now.elapsed().as_micros() / u128::try_from(pairs.len()).unwrap();
|
||||
|
||||
if next_per < current_per {
|
||||
current += 1;
|
||||
println!(
|
||||
"{} {} is more efficient at {} with {}µs per",
|
||||
if straus_bool { "Straus" } else { "Pippenger" }, current, pairs.len(), next_per
|
||||
);
|
||||
if current >= 8 {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_multiexp<G: Group>() where G::Scalar: PrimeFieldBits {
|
||||
let mut pairs = Vec::with_capacity(1000);
|
||||
let mut sum = G::identity();
|
||||
for _ in 0 .. 10 {
|
||||
for _ in 0 .. 100 {
|
||||
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
}
|
||||
assert_eq!(multiexp(&pairs), sum);
|
||||
assert_eq!(multiexp_vartime(&pairs), sum);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_secp256k1() {
|
||||
test_multiexp::<ProjectivePoint>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ed25519() {
|
||||
test_multiexp::<EdwardsPoint>();
|
||||
}
|
||||
|
||||
#[ignore]
|
||||
#[test]
|
||||
fn benchmark() {
|
||||
// Activate the processor's boost clock
|
||||
for _ in 0 .. 30 {
|
||||
test_multiexp::<ProjectivePoint>();
|
||||
}
|
||||
|
||||
benchmark_internal::<ProjectivePoint>(true);
|
||||
benchmark_internal::<ProjectivePoint>(false);
|
||||
|
||||
benchmark_internal::<EdwardsPoint>(true);
|
||||
benchmark_internal::<EdwardsPoint>(false);
|
||||
}
|
||||
@@ -1,15 +1,19 @@
|
||||
[package]
|
||||
name = "transcript"
|
||||
version = "0.1.0"
|
||||
description = "A simple transcript definition"
|
||||
name = "flexible-transcript"
|
||||
version = "0.1.2"
|
||||
description = "A simple transcript trait definition, along with viable options"
|
||||
license = "MIT"
|
||||
repository = "https://github.com/serai-dex/serai"
|
||||
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
|
||||
keywords = ["transcript"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
digest = "0.10"
|
||||
|
||||
blake2 = { version = "0.10", optional = true }
|
||||
merlin = { version = "3", optional = true }
|
||||
|
||||
[features]
|
||||
recommended = ["blake2"]
|
||||
merlin = ["dep:merlin"]
|
||||
|
||||
27
crypto/transcript/README.md
Normal file
27
crypto/transcript/README.md
Normal file
@@ -0,0 +1,27 @@
|
||||
# Flexible Transcript
|
||||
|
||||
Flexible Transcript is a crate offering:
|
||||
- `Transcript`, a trait offering functions transcripts should implement.
|
||||
- `DigestTranscript`, a competent transcript format instantiated against a
|
||||
provided hash function.
|
||||
- `MerlinTranscript`, a wrapper of `merlin` into the trait (available via the
|
||||
`merlin` feature).
|
||||
- `RecommendedTranscript`, a transcript recommended for usage in applications.
|
||||
Currently, this is `DigestTranscript<Blake2b512>` (available via the
|
||||
`recommended` feature).
|
||||
|
||||
The trait was created while working on an IETF draft which defined an incredibly
|
||||
simple transcript format. Extensions of the protocol would quickly require a
|
||||
more competent format, yet implementing the one specified was mandatory to meet
|
||||
the specification. Accordingly, the library implementing the draft defined an
|
||||
`IetfTranscript`, dropping labels and not allowing successive challenges, yet
|
||||
thanks to the trait, allowed protocols building on top to provide their own
|
||||
transcript format as needed.
|
||||
|
||||
`DigestTranscript` takes in any hash function implementing `Digest`, offering a
|
||||
secure transcript format around it. All items are prefixed by a flag, denoting
|
||||
their type, and their length.
|
||||
|
||||
`MerlinTranscript` was used to justify the API, and if any issues existed with
|
||||
`DigestTranscript`, enable a fallback. It was also meant as a way to be
|
||||
compatible with existing Rust projects using `merlin`.
|
||||
@@ -1,57 +1,101 @@
|
||||
use core::{marker::PhantomData, fmt::Debug};
|
||||
#![no_std]
|
||||
|
||||
#[cfg(features = "merlin")]
|
||||
#[cfg(feature = "merlin")]
|
||||
mod merlin;
|
||||
#[cfg(features = "merlin")]
|
||||
pub use merlin::MerlinTranscript;
|
||||
#[cfg(feature = "merlin")]
|
||||
pub use crate::merlin::MerlinTranscript;
|
||||
|
||||
use digest::Digest;
|
||||
use digest::{typenum::type_operators::IsGreaterOrEqual, consts::U256, Digest, Output};
|
||||
|
||||
pub trait Transcript {
|
||||
fn domain_separate(&mut self, label: &[u8]);
|
||||
type Challenge: Clone + Send + Sync + AsRef<[u8]>;
|
||||
|
||||
/// Create a new transcript with the specified name
|
||||
fn new(name: &'static [u8]) -> Self;
|
||||
|
||||
/// Apply a domain separator to the transcript
|
||||
fn domain_separate(&mut self, label: &'static [u8]);
|
||||
|
||||
/// Append a message to the transcript
|
||||
fn append_message(&mut self, label: &'static [u8], message: &[u8]);
|
||||
fn challenge(&mut self, label: &'static [u8]) -> Vec<u8>;
|
||||
|
||||
/// Produce a challenge. This MUST update the transcript as it does so, preventing the same
|
||||
/// challenge from being generated multiple times
|
||||
fn challenge(&mut self, label: &'static [u8]) -> Self::Challenge;
|
||||
|
||||
/// Produce a RNG seed. Helper function for parties needing to generate random data from an
|
||||
/// agreed upon state. Internally calls the challenge function for the needed bytes, converting
|
||||
/// them to the seed format rand_core expects
|
||||
fn rng_seed(&mut self, label: &'static [u8]) -> [u8; 32];
|
||||
}
|
||||
|
||||
enum DigestTranscriptMember {
|
||||
Name,
|
||||
Domain,
|
||||
Label,
|
||||
Value,
|
||||
Challenge
|
||||
}
|
||||
|
||||
impl DigestTranscriptMember {
|
||||
fn as_u8(&self) -> u8 {
|
||||
match self {
|
||||
DigestTranscriptMember::Name => 0,
|
||||
DigestTranscriptMember::Domain => 1,
|
||||
DigestTranscriptMember::Label => 2,
|
||||
DigestTranscriptMember::Value => 3,
|
||||
DigestTranscriptMember::Challenge => 4
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A trait defining Digests with at least a 256-byte output size, assuming at least a 128-bit
|
||||
/// level of security accordingly
|
||||
pub trait SecureDigest: Clone + Digest {}
|
||||
impl<D: Clone + Digest> SecureDigest for D where D::OutputSize: IsGreaterOrEqual<U256> {}
|
||||
|
||||
/// A simple transcript format constructed around the specified hash algorithm
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct DigestTranscript<D: Digest>(Vec<u8>, PhantomData<D>);
|
||||
pub struct DigestTranscript<D: SecureDigest>(D);
|
||||
|
||||
impl<D: Digest> PartialEq for DigestTranscript<D> {
|
||||
fn eq(&self, other: &DigestTranscript<D>) -> bool {
|
||||
self.0 == other.0
|
||||
impl<D: SecureDigest> DigestTranscript<D> {
|
||||
fn append(&mut self, kind: DigestTranscriptMember, value: &[u8]) {
|
||||
self.0.update(&[kind.as_u8()]);
|
||||
// Assumes messages don't exceed 16 exabytes
|
||||
self.0.update(u64::try_from(value.len()).unwrap().to_le_bytes());
|
||||
self.0.update(value);
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Digest> DigestTranscript<D> {
|
||||
pub fn new(label: Vec<u8>) -> Self {
|
||||
DigestTranscript(label, PhantomData)
|
||||
}
|
||||
}
|
||||
impl<D: SecureDigest> Transcript for DigestTranscript<D> {
|
||||
type Challenge = Output<D>;
|
||||
|
||||
fn new(name: &'static [u8]) -> Self {
|
||||
let mut res = DigestTranscript(D::new());
|
||||
res.append(DigestTranscriptMember::Name, name);
|
||||
res
|
||||
}
|
||||
|
||||
impl<D: Digest> Transcript for DigestTranscript<D> {
|
||||
// It may be beneficial for each domain to be a nested transcript which is itself length prefixed
|
||||
// This would go further than Merlin though and require an accurate end_domain function which has
|
||||
// frustrations not worth bothering with when this shouldn't actually be meaningful
|
||||
fn domain_separate(&mut self, label: &[u8]) {
|
||||
self.append_message(b"domain", label);
|
||||
self.append(DigestTranscriptMember::Domain, label);
|
||||
}
|
||||
|
||||
fn append_message(&mut self, label: &'static [u8], message: &[u8]) {
|
||||
self.0.extend(label);
|
||||
// Assumes messages don't exceed 16 exabytes
|
||||
self.0.extend(u64::try_from(message.len()).unwrap().to_le_bytes());
|
||||
self.0.extend(message);
|
||||
self.append(DigestTranscriptMember::Label, label);
|
||||
self.append(DigestTranscriptMember::Value, message);
|
||||
}
|
||||
|
||||
fn challenge(&mut self, label: &'static [u8]) -> Vec<u8> {
|
||||
self.0.extend(label);
|
||||
D::new().chain_update(&self.0).finalize().to_vec()
|
||||
fn challenge(&mut self, label: &'static [u8]) -> Self::Challenge {
|
||||
self.append(DigestTranscriptMember::Challenge, label);
|
||||
self.0.clone().finalize()
|
||||
}
|
||||
|
||||
fn rng_seed(&mut self, label: &'static [u8]) -> [u8; 32] {
|
||||
let mut seed = [0; 32];
|
||||
seed.copy_from_slice(&self.challenge(label)[0 .. 32]);
|
||||
seed.copy_from_slice(&self.challenge(label)[.. 32]);
|
||||
seed
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "recommended")]
|
||||
pub type RecommendedTranscript = DigestTranscript<blake2::Blake2b512>;
|
||||
|
||||
@@ -1,16 +1,27 @@
|
||||
use core::{marker::PhantomData, fmt::{Debug, Formatter}};
|
||||
use core::fmt::{Debug, Formatter};
|
||||
|
||||
use digest::Digest;
|
||||
use crate::Transcript;
|
||||
|
||||
#[derive(Clone, PartialEq)]
|
||||
#[derive(Clone)]
|
||||
pub struct MerlinTranscript(pub merlin::Transcript);
|
||||
// Merlin doesn't implement Debug so provide a stub which won't panic
|
||||
impl Debug for MerlinTranscript {
|
||||
fn fmt(&self, _: &mut Formatter<'_>) -> Result<(), std::fmt::Error> { Ok(()) }
|
||||
fn fmt(&self, _: &mut Formatter<'_>) -> Result<(), core::fmt::Error> { Ok(()) }
|
||||
}
|
||||
|
||||
impl Transcript for MerlinTranscript {
|
||||
fn domain_separate(&mut self, label: &[u8]) {
|
||||
// Uses a challenge length of 64 bytes to support wide reduction on generated scalars
|
||||
// From a security level standpoint, this should just be 32 bytes
|
||||
// From a Merlin standpoint, this should be variable per call
|
||||
// From a practical standpoint, this is a demo file not planned to be used and anything using
|
||||
// this wrapper should be secure with this setting
|
||||
type Challenge = [u8; 64];
|
||||
|
||||
fn new(name: &'static [u8]) -> Self {
|
||||
MerlinTranscript(merlin::Transcript::new(name))
|
||||
}
|
||||
|
||||
fn domain_separate(&mut self, label: &'static [u8]) {
|
||||
self.append_message(b"dom-sep", label);
|
||||
}
|
||||
|
||||
@@ -18,21 +29,15 @@ impl Transcript for MerlinTranscript {
|
||||
self.0.append_message(label, message);
|
||||
}
|
||||
|
||||
fn challenge(&mut self, label: &'static [u8]) -> Vec<u8> {
|
||||
let mut challenge = vec![];
|
||||
// Uses a challenge length of 64 bytes to support wide reduction on generated scalars
|
||||
// From a security level standpoint, this should just be 32 bytes
|
||||
// From a Merlin standpoint, this should be variable per call
|
||||
// From a practical standpoint, this is a demo file not planned to be used and anything using
|
||||
// this wrapper is fine without any settings it uses
|
||||
challenge.resize(64, 0);
|
||||
fn challenge(&mut self, label: &'static [u8]) -> Self::Challenge {
|
||||
let mut challenge = [0; 64];
|
||||
self.0.challenge_bytes(label, &mut challenge);
|
||||
challenge
|
||||
}
|
||||
|
||||
fn rng_seed(&mut self, label: &'static [u8]) -> [u8; 32] {
|
||||
let mut seed = [0; 32];
|
||||
transcript.challenge_bytes(label, &mut seed);
|
||||
seed.copy_from_slice(&self.challenge(label)[.. 32]);
|
||||
seed
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user