mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 20:29:23 +00:00
Various feature tweaks and updates
This commit is contained in:
@@ -17,8 +17,6 @@ rustdoc-args = ["--cfg", "docsrs"]
|
||||
workspace = true
|
||||
|
||||
[dependencies]
|
||||
rustversion = "1"
|
||||
|
||||
zeroize = { version = "^1.5", default-features = false, features = ["zeroize_derive"] }
|
||||
subtle = { version = "^2.4", default-features = false }
|
||||
|
||||
@@ -27,8 +25,7 @@ rand_core = { version = "0.6", default-features = false }
|
||||
digest = { version = "0.10", default-features = false }
|
||||
sha2 = { version = "0.11.0-rc.0", default-features = false }
|
||||
|
||||
ff = { version = "0.13", default-features = false, features = ["bits"] }
|
||||
group = { version = "0.13", default-features = false }
|
||||
prime-field = { path = "../prime-field", default-features = false }
|
||||
ciphersuite = { version = "0.4.2", path = "../ciphersuite", default-features = false }
|
||||
|
||||
crypto-bigint = { version = "0.5", default-features = false, features = ["zeroize"] }
|
||||
@@ -41,6 +38,6 @@ rand_core = { version = "0.6", default-features = false, features = ["std"] }
|
||||
ff-group-tests = { path = "../ff-group-tests" }
|
||||
|
||||
[features]
|
||||
alloc = ["zeroize/alloc", "ciphersuite/alloc", "curve25519-dalek/alloc"]
|
||||
std = ["alloc", "zeroize/std", "subtle/std", "rand_core/std", "digest/std", "ciphersuite/std"]
|
||||
alloc = ["zeroize/alloc", "digest/alloc", "prime-field/alloc", "ciphersuite/alloc", "curve25519-dalek/alloc"]
|
||||
std = ["alloc", "zeroize/std", "subtle/std", "rand_core/std", "digest/std", "prime-field/std", "ciphersuite/std"]
|
||||
default = ["std"]
|
||||
|
||||
@@ -2,10 +2,9 @@ use zeroize::Zeroize;
|
||||
|
||||
use sha2::Sha512;
|
||||
|
||||
use group::Group;
|
||||
use crate::Scalar;
|
||||
use ciphersuite::{group::Group, Ciphersuite};
|
||||
|
||||
use ciphersuite::Ciphersuite;
|
||||
use crate::Scalar;
|
||||
|
||||
macro_rules! dalek_curve {
|
||||
(
|
||||
|
||||
@@ -1,374 +0,0 @@
|
||||
use core::{
|
||||
ops::{Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign},
|
||||
iter::{Sum, Product},
|
||||
};
|
||||
|
||||
use zeroize::Zeroize;
|
||||
use rand_core::RngCore;
|
||||
|
||||
use subtle::{
|
||||
Choice, CtOption, ConstantTimeEq, ConstantTimeLess, ConditionallyNegatable,
|
||||
ConditionallySelectable,
|
||||
};
|
||||
|
||||
use crypto_bigint::{
|
||||
Integer, NonZero, Encoding, U256, U512,
|
||||
modular::constant_mod::{ResidueParams, Residue},
|
||||
impl_modulus,
|
||||
};
|
||||
|
||||
use group::ff::{Field, PrimeField, FieldBits, PrimeFieldBits, FromUniformBytes};
|
||||
|
||||
use crate::{u8_from_bool, constant_time, math_op, math};
|
||||
|
||||
// 2 ** 255 - 19
|
||||
// Uses saturating_sub because checked_sub isn't available at compile time
|
||||
const MODULUS: U256 = U256::from_u8(1).shl_vartime(255).saturating_sub(&U256::from_u8(19));
|
||||
const WIDE_MODULUS: U512 = U256::ZERO.concat(&MODULUS);
|
||||
|
||||
impl_modulus!(
|
||||
FieldModulus,
|
||||
U256,
|
||||
// 2 ** 255 - 19
|
||||
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"
|
||||
);
|
||||
type ResidueType = Residue<FieldModulus, { FieldModulus::LIMBS }>;
|
||||
|
||||
/// A constant-time implementation of the Ed25519 field.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug, Zeroize)]
|
||||
#[repr(transparent)]
|
||||
pub struct FieldElement(ResidueType);
|
||||
|
||||
// Square root of -1.
|
||||
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
|
||||
// 2 ** ((MODULUS - 1) // 4) % MODULUS
|
||||
const SQRT_M1: FieldElement = FieldElement(
|
||||
ResidueType::new(&U256::from_u8(2))
|
||||
.pow(&MODULUS.saturating_sub(&U256::ONE).wrapping_div(&U256::from_u8(4))),
|
||||
);
|
||||
|
||||
// Constant useful in calculating square roots (RFC-8032 sqrt8k5's exponent used to calculate y)
|
||||
const MOD_3_8: FieldElement = FieldElement(ResidueType::new(
|
||||
&MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)),
|
||||
));
|
||||
|
||||
// Constant useful in sqrt_ratio_i (sqrt(u / v))
|
||||
const MOD_5_8: FieldElement = FieldElement(ResidueType::sub(&MOD_3_8.0, &ResidueType::ONE));
|
||||
|
||||
fn reduce(x: U512) -> ResidueType {
|
||||
ResidueType::new(&U256::from_le_slice(
|
||||
&x.rem(&NonZero::new(WIDE_MODULUS).unwrap()).to_le_bytes()[.. 32],
|
||||
))
|
||||
}
|
||||
|
||||
constant_time!(FieldElement, ResidueType);
|
||||
math!(
|
||||
FieldElement,
|
||||
FieldElement,
|
||||
|x: ResidueType, y: ResidueType| x.add(&y),
|
||||
|x: ResidueType, y: ResidueType| x.sub(&y),
|
||||
|x: ResidueType, y: ResidueType| x.mul(&y)
|
||||
);
|
||||
|
||||
macro_rules! from_wrapper {
|
||||
($uint: ident) => {
|
||||
impl From<$uint> for FieldElement {
|
||||
fn from(a: $uint) -> FieldElement {
|
||||
Self(ResidueType::new(&U256::from(a)))
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
from_wrapper!(u8);
|
||||
from_wrapper!(u16);
|
||||
from_wrapper!(u32);
|
||||
from_wrapper!(u64);
|
||||
from_wrapper!(u128);
|
||||
|
||||
impl Neg for FieldElement {
|
||||
type Output = Self;
|
||||
fn neg(self) -> Self::Output {
|
||||
Self(self.0.neg())
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for &FieldElement {
|
||||
type Output = FieldElement;
|
||||
fn neg(self) -> Self::Output {
|
||||
(*self).neg()
|
||||
}
|
||||
}
|
||||
|
||||
impl Field for FieldElement {
|
||||
const ZERO: Self = Self(ResidueType::ZERO);
|
||||
const ONE: Self = Self(ResidueType::ONE);
|
||||
|
||||
fn random(mut rng: impl RngCore) -> Self {
|
||||
let mut bytes = [0; 64];
|
||||
rng.fill_bytes(&mut bytes);
|
||||
FieldElement(reduce(U512::from_le_bytes(bytes)))
|
||||
}
|
||||
|
||||
fn square(&self) -> Self {
|
||||
FieldElement(self.0.square())
|
||||
}
|
||||
fn double(&self) -> Self {
|
||||
FieldElement(self.0.add(&self.0))
|
||||
}
|
||||
|
||||
fn invert(&self) -> CtOption<Self> {
|
||||
const NEG_2: FieldElement =
|
||||
FieldElement(ResidueType::new(&MODULUS.saturating_sub(&U256::from_u8(2))));
|
||||
CtOption::new(self.pow(NEG_2), !self.is_zero())
|
||||
}
|
||||
|
||||
// RFC-8032 sqrt8k5
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
let tv1 = self.pow(MOD_3_8);
|
||||
let tv2 = tv1 * SQRT_M1;
|
||||
let candidate = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
|
||||
CtOption::new(candidate, candidate.square().ct_eq(self))
|
||||
}
|
||||
|
||||
fn sqrt_ratio(u: &FieldElement, v: &FieldElement) -> (Choice, FieldElement) {
|
||||
let i = SQRT_M1;
|
||||
|
||||
let u = *u;
|
||||
let v = *v;
|
||||
|
||||
let v3 = v.square() * v;
|
||||
let v7 = v3.square() * v;
|
||||
let mut r = (u * v3) * (u * v7).pow(MOD_5_8);
|
||||
|
||||
let check = v * r.square();
|
||||
let correct_sign = check.ct_eq(&u);
|
||||
let flipped_sign = check.ct_eq(&(-u));
|
||||
let flipped_sign_i = check.ct_eq(&((-u) * i));
|
||||
|
||||
r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);
|
||||
|
||||
let r_is_negative = r.is_odd();
|
||||
r.conditional_negate(r_is_negative);
|
||||
|
||||
(correct_sign | flipped_sign, r)
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeField for FieldElement {
|
||||
type Repr = [u8; 32];
|
||||
|
||||
// Big endian representation of the modulus
|
||||
const MODULUS: &'static str = "7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed";
|
||||
|
||||
const NUM_BITS: u32 = 255;
|
||||
const CAPACITY: u32 = 254;
|
||||
|
||||
const TWO_INV: Self = FieldElement(ResidueType::new(&U256::from_u8(2)).invert().0);
|
||||
|
||||
// This was calculated with the method from the ff crate docs
|
||||
// SageMath GF(modulus).primitive_element()
|
||||
const MULTIPLICATIVE_GENERATOR: Self = Self(ResidueType::new(&U256::from_u8(2)));
|
||||
// This was set per the specification in the ff crate docs
|
||||
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
|
||||
const S: u32 = 2;
|
||||
|
||||
// This was calculated via the formula from the ff crate docs
|
||||
// Self::MULTIPLICATIVE_GENERATOR ** ((modulus - 1) >> Self::S)
|
||||
const ROOT_OF_UNITY: Self = FieldElement(ResidueType::new(&U256::from_be_hex(
|
||||
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
|
||||
)));
|
||||
// Self::ROOT_OF_UNITY.invert()
|
||||
const ROOT_OF_UNITY_INV: Self = FieldElement(Self::ROOT_OF_UNITY.0.invert().0);
|
||||
|
||||
// This was calculated via the formula from the ff crate docs
|
||||
// Self::MULTIPLICATIVE_GENERATOR ** (2 ** Self::S)
|
||||
const DELTA: Self = FieldElement(ResidueType::new(&U256::from_be_hex(
|
||||
"0000000000000000000000000000000000000000000000000000000000000010",
|
||||
)));
|
||||
|
||||
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
|
||||
let res = U256::from_le_bytes(bytes);
|
||||
CtOption::new(Self(ResidueType::new(&res)), res.ct_lt(&MODULUS))
|
||||
}
|
||||
fn to_repr(&self) -> [u8; 32] {
|
||||
self.0.retrieve().to_le_bytes()
|
||||
}
|
||||
|
||||
fn is_odd(&self) -> Choice {
|
||||
self.0.retrieve().is_odd()
|
||||
}
|
||||
|
||||
fn from_u128(num: u128) -> Self {
|
||||
Self::from(num)
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeFieldBits for FieldElement {
|
||||
type ReprBits = [u8; 32];
|
||||
|
||||
fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
|
||||
self.to_repr().into()
|
||||
}
|
||||
|
||||
fn char_le_bits() -> FieldBits<Self::ReprBits> {
|
||||
MODULUS.to_le_bytes().into()
|
||||
}
|
||||
}
|
||||
|
||||
impl FieldElement {
|
||||
/// Create a FieldElement from a `crypto_bigint::U256`.
|
||||
///
|
||||
/// This will reduce the `U256` by the modulus, into a member of the field.
|
||||
pub const fn from_u256(u256: &U256) -> Self {
|
||||
FieldElement(Residue::new(u256))
|
||||
}
|
||||
|
||||
/// Create a `FieldElement` from the reduction of a 512-bit number.
|
||||
///
|
||||
/// The bytes are interpreted in little-endian format.
|
||||
pub fn wide_reduce(value: [u8; 64]) -> Self {
|
||||
FieldElement(reduce(U512::from_le_bytes(value)))
|
||||
}
|
||||
|
||||
/// Perform an exponentiation.
|
||||
pub fn pow(&self, other: FieldElement) -> FieldElement {
|
||||
let mut table = [FieldElement::ONE; 16];
|
||||
table[1] = *self;
|
||||
for i in 2 .. 16 {
|
||||
table[i] = table[i - 1] * self;
|
||||
}
|
||||
|
||||
let mut res = FieldElement::ONE;
|
||||
let mut bits = 0;
|
||||
for (i, mut bit) in other.to_le_bits().iter_mut().rev().enumerate() {
|
||||
bits <<= 1;
|
||||
let mut bit = u8_from_bool(&mut bit);
|
||||
bits |= bit;
|
||||
bit.zeroize();
|
||||
|
||||
if ((i + 1) % 4) == 0 {
|
||||
if i != 3 {
|
||||
for _ in 0 .. 4 {
|
||||
res *= res;
|
||||
}
|
||||
}
|
||||
|
||||
let mut scale_by = FieldElement::ONE;
|
||||
#[allow(clippy::needless_range_loop)]
|
||||
for i in 0 .. 16 {
|
||||
#[allow(clippy::cast_possible_truncation)] // Safe since 0 .. 16
|
||||
{
|
||||
scale_by = <_>::conditional_select(&scale_by, &table[i], bits.ct_eq(&(i as u8)));
|
||||
}
|
||||
}
|
||||
res *= scale_by;
|
||||
bits = 0;
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
/// The square root of u/v, as used for Ed25519 point decoding (RFC 8032 5.1.3) and within
|
||||
/// Ristretto (5.1 Extracting an Inverse Square Root).
|
||||
///
|
||||
/// The result is only a valid square root if the Choice is true.
|
||||
/// RFC 8032 simply fails if there isn't a square root, leaving any return value undefined.
|
||||
/// Ristretto explicitly returns 0 or sqrt((SQRT_M1 * u) / v).
|
||||
pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) {
|
||||
let i = SQRT_M1;
|
||||
|
||||
let v3 = v.square() * v;
|
||||
let v7 = v3.square() * v;
|
||||
// Candidate root
|
||||
let mut r = (u * v3) * (u * v7).pow(MOD_5_8);
|
||||
|
||||
// 8032 3.1
|
||||
let check = v * r.square();
|
||||
let correct_sign = check.ct_eq(&u);
|
||||
// 8032 3.2 conditional
|
||||
let neg_u = -u;
|
||||
let flipped_sign = check.ct_eq(&neg_u);
|
||||
// Ristretto Step 5
|
||||
let flipped_sign_i = check.ct_eq(&(neg_u * i));
|
||||
|
||||
// 3.2 set
|
||||
r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);
|
||||
|
||||
// Always return the even root, per Ristretto
|
||||
// This doesn't break Ed25519 point decoding as that doesn't expect these steps to return a
|
||||
// specific root
|
||||
// Ed25519 points include a dedicated sign bit to determine which root to use, so at worst
|
||||
// this is a pointless inefficiency
|
||||
r.conditional_negate(r.is_odd());
|
||||
|
||||
(correct_sign | flipped_sign, r)
|
||||
}
|
||||
}
|
||||
|
||||
impl FromUniformBytes<64> for FieldElement {
|
||||
fn from_uniform_bytes(bytes: &[u8; 64]) -> Self {
|
||||
Self::wide_reduce(*bytes)
|
||||
}
|
||||
}
|
||||
|
||||
impl Sum<FieldElement> for FieldElement {
|
||||
fn sum<I: Iterator<Item = FieldElement>>(iter: I) -> FieldElement {
|
||||
let mut res = FieldElement::ZERO;
|
||||
for item in iter {
|
||||
res += item;
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Sum<&'a FieldElement> for FieldElement {
|
||||
fn sum<I: Iterator<Item = &'a FieldElement>>(iter: I) -> FieldElement {
|
||||
iter.copied().sum()
|
||||
}
|
||||
}
|
||||
|
||||
impl Product<FieldElement> for FieldElement {
|
||||
fn product<I: Iterator<Item = FieldElement>>(iter: I) -> FieldElement {
|
||||
let mut res = FieldElement::ONE;
|
||||
for item in iter {
|
||||
res *= item;
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Product<&'a FieldElement> for FieldElement {
|
||||
fn product<I: Iterator<Item = &'a FieldElement>>(iter: I) -> FieldElement {
|
||||
iter.copied().product()
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_wide_modulus() {
|
||||
let mut wide = [0; 64];
|
||||
wide[.. 32].copy_from_slice(&MODULUS.to_le_bytes());
|
||||
assert_eq!(wide, WIDE_MODULUS.to_le_bytes());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sqrt_m1() {
|
||||
// Test equivalence against the known constant value
|
||||
const SQRT_M1_MAGIC: U256 =
|
||||
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0");
|
||||
assert_eq!(SQRT_M1.0.retrieve(), SQRT_M1_MAGIC);
|
||||
|
||||
// Also test equivalence against the result of the formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
|
||||
// 2 ** ((MODULUS - 1) // 4) % MODULUS
|
||||
assert_eq!(
|
||||
SQRT_M1,
|
||||
FieldElement::from(2u8).pow(FieldElement(ResidueType::new(
|
||||
&(FieldElement::ZERO - FieldElement::ONE).0.retrieve().wrapping_div(&U256::from(4u8))
|
||||
)))
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field() {
|
||||
ff_group_tests::prime_field::test_prime_field_bits::<_, FieldElement>(&mut rand_core::OsRng);
|
||||
}
|
||||
@@ -29,33 +29,16 @@ use dalek::{
|
||||
};
|
||||
pub use constants::{ED25519_BASEPOINT_TABLE, RISTRETTO_BASEPOINT_TABLE};
|
||||
|
||||
use group::{
|
||||
use ::ciphersuite::group::{
|
||||
ff::{Field, PrimeField, FieldBits, PrimeFieldBits, FromUniformBytes},
|
||||
Group, GroupEncoding,
|
||||
prime::PrimeGroup,
|
||||
};
|
||||
|
||||
mod field;
|
||||
pub use field::FieldElement;
|
||||
|
||||
mod ciphersuite;
|
||||
pub use crate::ciphersuite::{Ed25519, Ristretto};
|
||||
|
||||
// Use black_box when possible
|
||||
#[rustversion::since(1.66)]
|
||||
mod black_box {
|
||||
pub(crate) fn black_box<T>(val: T) -> T {
|
||||
#[allow(clippy::incompatible_msrv)]
|
||||
core::hint::black_box(val)
|
||||
}
|
||||
}
|
||||
#[rustversion::before(1.66)]
|
||||
mod black_box {
|
||||
pub(crate) fn black_box<T>(val: T) -> T {
|
||||
val
|
||||
}
|
||||
}
|
||||
use black_box::black_box;
|
||||
use core::hint::black_box;
|
||||
|
||||
fn u8_from_bool(bit_ref: &mut bool) -> u8 {
|
||||
let bit_ref = black_box(bit_ref);
|
||||
@@ -502,3 +485,30 @@ fn test_ed25519_group() {
|
||||
fn test_ristretto_group() {
|
||||
ff_group_tests::group::test_prime_group_bits::<_, RistrettoPoint>(&mut rand_core::OsRng);
|
||||
}
|
||||
|
||||
type ThirtyTwoArray = [u8; 32];
|
||||
prime_field::odd_prime_field_with_specific_repr!(
|
||||
FieldElement,
|
||||
"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed",
|
||||
"02",
|
||||
false,
|
||||
crate::ThirtyTwoArray
|
||||
);
|
||||
|
||||
impl FieldElement {
|
||||
/// Create a FieldElement from a `crypto_bigint::U256`.
|
||||
///
|
||||
/// This will reduce the `U256` by the modulus, into a member of the field.
|
||||
#[deprecated]
|
||||
pub const fn from_u256(u256: &crypto_bigint::U256) -> Self {
|
||||
FieldElement::from(&prime_field::crypto_bigint::U256::from_words(*u256.as_words()))
|
||||
}
|
||||
|
||||
/// Create a `FieldElement` from the reduction of a 512-bit number.
|
||||
///
|
||||
/// The bytes are interpreted in little-endian format.
|
||||
#[deprecated]
|
||||
pub fn wide_reduce(value: [u8; 64]) -> Self {
|
||||
<FieldElement as ::ciphersuite::group::ff::FromUniformBytes<_>>::from_uniform_bytes(&value)
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user