mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-13 22:49:25 +00:00
Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++
This commit is contained in:
23
crypto/evrf/ec-gadgets/Cargo.toml
Normal file
23
crypto/evrf/ec-gadgets/Cargo.toml
Normal file
@@ -0,0 +1,23 @@
|
||||
[package]
|
||||
name = "generalized-bulletproofs-ec-gadgets"
|
||||
version = "0.1.0"
|
||||
description = "Gadgets for working with an embedded Elliptic Curve in a Generalized Bulletproofs circuit"
|
||||
license = "MIT"
|
||||
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/evrf/ec-gadgets"
|
||||
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
|
||||
keywords = ["bulletproofs", "circuit", "divisors"]
|
||||
edition = "2021"
|
||||
|
||||
[package.metadata.docs.rs]
|
||||
all-features = true
|
||||
rustdoc-args = ["--cfg", "docsrs"]
|
||||
|
||||
[dependencies]
|
||||
zeroize = { version = "^1.5", default-features = false, features = ["zeroize_derive"] }
|
||||
|
||||
generic-array = { version = "1", default-features = false, features = ["alloc"] }
|
||||
|
||||
ciphersuite = { path = "../../ciphersuite", version = "0.4", default-features = false, features = ["std"] }
|
||||
|
||||
generalized-bulletproofs = { path = "../generalized-bulletproofs" }
|
||||
generalized-bulletproofs-circuit-abstraction = { path = "../circuit-abstraction" }
|
||||
21
crypto/evrf/ec-gadgets/LICENSE
Normal file
21
crypto/evrf/ec-gadgets/LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2024 Luke Parker
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
3
crypto/evrf/ec-gadgets/README.md
Normal file
3
crypto/evrf/ec-gadgets/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# Generalized Bulletproofs Circuit Abstraction
|
||||
|
||||
A circuit abstraction around `generalized-bulletproofs`.
|
||||
524
crypto/evrf/ec-gadgets/src/dlog.rs
Normal file
524
crypto/evrf/ec-gadgets/src/dlog.rs
Normal file
@@ -0,0 +1,524 @@
|
||||
use core::fmt;
|
||||
|
||||
use ciphersuite::{
|
||||
group::ff::{Field, PrimeField, BatchInverter},
|
||||
Ciphersuite,
|
||||
};
|
||||
|
||||
use generalized_bulletproofs_circuit_abstraction::*;
|
||||
|
||||
use crate::*;
|
||||
|
||||
/// Parameters for a discrete logarithm proof.
|
||||
pub trait DiscreteLogParameters {
|
||||
/// The amount of bits used to represent a scalar.
|
||||
type ScalarBits: ArrayLength;
|
||||
|
||||
/// The amount of x**i coefficients in a divisor.
|
||||
///
|
||||
/// This is the amount of points in a divisor (the amount of bits in a scalar, plus one) divided
|
||||
/// by two.
|
||||
type XCoefficients: ArrayLength;
|
||||
|
||||
/// The amount of x**i coefficients in a divisor, minus one.
|
||||
type XCoefficientsMinusOne: ArrayLength;
|
||||
|
||||
/// The amount of y x**i coefficients in a divisor.
|
||||
///
|
||||
/// This is the amount of points in a divisor (the amount of bits in a scalar, plus one) divided
|
||||
/// by two, minus two.
|
||||
type YxCoefficients: ArrayLength;
|
||||
}
|
||||
|
||||
/// A tabled generator for proving/verifying discrete logarithm claims.
|
||||
#[derive(Clone)]
|
||||
pub struct GeneratorTable<F: PrimeField, Parameters: DiscreteLogParameters>(
|
||||
GenericArray<(F, F), Parameters::ScalarBits>,
|
||||
);
|
||||
|
||||
impl<F: PrimeField, Parameters: DiscreteLogParameters> fmt::Debug
|
||||
for GeneratorTable<F, Parameters>
|
||||
{
|
||||
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
fmt
|
||||
.debug_struct("GeneratorTable")
|
||||
.field("x", &self.0[0].0)
|
||||
.field("y", &self.0[0].1)
|
||||
.finish_non_exhaustive()
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField, Parameters: DiscreteLogParameters> GeneratorTable<F, Parameters> {
|
||||
/// Create a new table for this generator.
|
||||
///
|
||||
/// The generator is assumed to be well-formed and on-curve. This function may panic if it's not.
|
||||
pub fn new(curve: &CurveSpec<F>, generator_x: F, generator_y: F) -> Self {
|
||||
// mdbl-2007-bl
|
||||
fn dbl<F: PrimeField>(a: F, x1: F, y1: F) -> (F, F) {
|
||||
let xx = x1 * x1;
|
||||
let w = a + (xx + xx.double());
|
||||
let y1y1 = y1 * y1;
|
||||
let r = y1y1 + y1y1;
|
||||
let sss = (y1 * r).double().double();
|
||||
let rr = r * r;
|
||||
|
||||
let b = x1 + r;
|
||||
let b = (b * b) - xx - rr;
|
||||
|
||||
let h = (w * w) - b.double();
|
||||
let x3 = h.double() * y1;
|
||||
let y3 = (w * (b - h)) - rr.double();
|
||||
let z3 = sss;
|
||||
|
||||
// Normalize from XYZ to XY
|
||||
let z3_inv = z3.invert().unwrap();
|
||||
let x3 = x3 * z3_inv;
|
||||
let y3 = y3 * z3_inv;
|
||||
|
||||
(x3, y3)
|
||||
}
|
||||
|
||||
let mut res = Self(GenericArray::default());
|
||||
res.0[0] = (generator_x, generator_y);
|
||||
for i in 1 .. Parameters::ScalarBits::USIZE {
|
||||
let last = res.0[i - 1];
|
||||
res.0[i] = dbl(curve.a, last.0, last.1);
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
/// A representation of the divisor.
|
||||
///
|
||||
/// The coefficient for x**1 is explicitly excluded as it's expected to be normalized to 1.
|
||||
#[derive(Clone)]
|
||||
pub struct Divisor<Parameters: DiscreteLogParameters> {
|
||||
/// The coefficient for the `y` term of the divisor.
|
||||
///
|
||||
/// There is never more than one `y**i x**0` coefficient as the leading term of the modulus is
|
||||
/// `y**2`. It's assumed the coefficient is non-zero (and present) as it will be for any divisor
|
||||
/// exceeding trivial complexity.
|
||||
pub y: Variable,
|
||||
/// The coefficients for the `y**1 x**i` terms of the polynomial.
|
||||
// This subtraction enforces the divisor to have at least 4 points which is acceptable.
|
||||
// TODO: Double check these constants
|
||||
pub yx: GenericArray<Variable, Parameters::YxCoefficients>,
|
||||
/// The coefficients for the `x**i` terms of the polynomial, skipping x**1.
|
||||
///
|
||||
/// x**1 is skipped as it's expected to be normalized to 1, and therefore constant, in order to
|
||||
/// ensure the divisor is non-zero (as necessary for the proof to be complete).
|
||||
// Subtract 1 from the length due to skipping the coefficient for x**1
|
||||
pub x_from_power_of_2: GenericArray<Variable, Parameters::XCoefficientsMinusOne>,
|
||||
/// The constant term in the polynomial (alternatively, the coefficient for y**0 x**0).
|
||||
pub zero: Variable,
|
||||
}
|
||||
|
||||
/// A point, its discrete logarithm, and the divisor to prove it.
|
||||
#[derive(Clone)]
|
||||
pub struct PointWithDlog<Parameters: DiscreteLogParameters> {
|
||||
/// The point which is supposedly the result of scaling the generator by the discrete logarithm.
|
||||
pub point: (Variable, Variable),
|
||||
/// The discrete logarithm, represented as coefficients of a polynomial of 2**i.
|
||||
pub dlog: GenericArray<Variable, Parameters::ScalarBits>,
|
||||
/// The divisor interpolating the relevant doublings of generator with the inverse of the point.
|
||||
pub divisor: Divisor<Parameters>,
|
||||
}
|
||||
|
||||
/// A struct containing a point used for the evaluation of a divisor.
|
||||
///
|
||||
/// Preprocesses and caches as much of the calculation as possible to minimize work upon reuse of
|
||||
/// challenge points.
|
||||
struct ChallengePoint<F: PrimeField, Parameters: DiscreteLogParameters> {
|
||||
y: F,
|
||||
yx: GenericArray<F, Parameters::YxCoefficients>,
|
||||
x: GenericArray<F, Parameters::XCoefficients>,
|
||||
p_0_n_0: F,
|
||||
x_p_0_n_0: GenericArray<F, Parameters::YxCoefficients>,
|
||||
p_1_n: F,
|
||||
p_1_d: F,
|
||||
}
|
||||
|
||||
impl<F: PrimeField, Parameters: DiscreteLogParameters> ChallengePoint<F, Parameters> {
|
||||
fn new(
|
||||
curve: &CurveSpec<F>,
|
||||
// The slope between all of the challenge points
|
||||
slope: F,
|
||||
// The x and y coordinates
|
||||
x: F,
|
||||
y: F,
|
||||
// The inversion of twice the y coordinate
|
||||
// We accept this as an argument so that the caller can calculcate these with a batch inversion
|
||||
inv_two_y: F,
|
||||
) -> Self {
|
||||
// Powers of x, skipping x**0
|
||||
let divisor_x_len = Parameters::XCoefficients::USIZE;
|
||||
let mut x_pows = GenericArray::default();
|
||||
x_pows[0] = x;
|
||||
for i in 1 .. divisor_x_len {
|
||||
let last = x_pows[i - 1];
|
||||
x_pows[i] = last * x;
|
||||
}
|
||||
|
||||
// Powers of x multiplied by y
|
||||
let divisor_yx_len = Parameters::YxCoefficients::USIZE;
|
||||
let mut yx = GenericArray::default();
|
||||
// Skips x**0
|
||||
yx[0] = y * x;
|
||||
for i in 1 .. divisor_yx_len {
|
||||
let last = yx[i - 1];
|
||||
yx[i] = last * x;
|
||||
}
|
||||
|
||||
let x_sq = x.square();
|
||||
let three_x_sq = x_sq.double() + x_sq;
|
||||
let three_x_sq_plus_a = three_x_sq + curve.a;
|
||||
let two_y = y.double();
|
||||
|
||||
// p_0_n_0 from `DivisorChallenge`
|
||||
let p_0_n_0 = three_x_sq_plus_a * inv_two_y;
|
||||
let mut x_p_0_n_0 = GenericArray::default();
|
||||
// Since this iterates over x, which skips x**0, this also skips p_0_n_0 x**0
|
||||
for (i, x) in x_pows.iter().take(divisor_yx_len).enumerate() {
|
||||
x_p_0_n_0[i] = p_0_n_0 * x;
|
||||
}
|
||||
|
||||
// p_1_n from `DivisorChallenge`
|
||||
let p_1_n = two_y;
|
||||
// p_1_d from `DivisorChallenge`
|
||||
let p_1_d = (-slope * p_1_n) + three_x_sq_plus_a;
|
||||
|
||||
ChallengePoint { x: x_pows, y, yx, p_0_n_0, x_p_0_n_0, p_1_n, p_1_d }
|
||||
}
|
||||
}
|
||||
|
||||
// `DivisorChallenge` from the section `Discrete Log Proof`
|
||||
fn divisor_challenge_eval<C: Ciphersuite, Parameters: DiscreteLogParameters>(
|
||||
circuit: &mut Circuit<C>,
|
||||
divisor: &Divisor<Parameters>,
|
||||
challenge: &ChallengePoint<C::F, Parameters>,
|
||||
) -> Variable {
|
||||
// The evaluation of the divisor differentiated by y, further multiplied by p_0_n_0
|
||||
// Differentation drops everything without a y coefficient, and drops what remains by a power
|
||||
// of y
|
||||
// (y**1 -> y**0, yx**i -> x**i)
|
||||
// This aligns with p_0_n_1 from `DivisorChallenge`
|
||||
let p_0_n_1 = {
|
||||
let mut p_0_n_1 = LinComb::empty().term(challenge.p_0_n_0, divisor.y);
|
||||
for (j, var) in divisor.yx.iter().enumerate() {
|
||||
// This does not raise by `j + 1` as x_p_0_n_0 omits x**0
|
||||
p_0_n_1 = p_0_n_1.term(challenge.x_p_0_n_0[j], *var);
|
||||
}
|
||||
p_0_n_1
|
||||
};
|
||||
|
||||
// The evaluation of the divisor differentiated by x
|
||||
// This aligns with p_0_n_2 from `DivisorChallenge`
|
||||
let p_0_n_2 = {
|
||||
// The coefficient for x**1 is 1, so 1 becomes the new zero coefficient
|
||||
let mut p_0_n_2 = LinComb::empty().constant(C::F::ONE);
|
||||
|
||||
// Handle the new y coefficient
|
||||
p_0_n_2 = p_0_n_2.term(challenge.y, divisor.yx[0]);
|
||||
|
||||
// Handle the new yx coefficients
|
||||
for (j, yx) in divisor.yx.iter().enumerate().skip(1) {
|
||||
// For the power which was shifted down, we multiply this coefficient
|
||||
// 3 x**2 -> 2 * 3 x**1
|
||||
let original_power_of_x = C::F::from(u64::try_from(j + 1).unwrap());
|
||||
// `j - 1` so `j = 1` indexes yx[0] as yx[0] is the y x**1
|
||||
// (yx omits y x**0)
|
||||
let this_weight = original_power_of_x * challenge.yx[j - 1];
|
||||
p_0_n_2 = p_0_n_2.term(this_weight, *yx);
|
||||
}
|
||||
|
||||
// Handle the x coefficients
|
||||
// We don't skip the first one as `x_from_power_of_2` already omits x**1
|
||||
for (i, x) in divisor.x_from_power_of_2.iter().enumerate() {
|
||||
// i + 2 as the paper expects i to start from 1 and be + 1, yet we start from 0
|
||||
let original_power_of_x = C::F::from(u64::try_from(i + 2).unwrap());
|
||||
// Still x[i] as x[0] is x**1
|
||||
let this_weight = original_power_of_x * challenge.x[i];
|
||||
|
||||
p_0_n_2 = p_0_n_2.term(this_weight, *x);
|
||||
}
|
||||
|
||||
p_0_n_2
|
||||
};
|
||||
|
||||
// p_0_n from `DivisorChallenge`
|
||||
let p_0_n = p_0_n_1 + &p_0_n_2;
|
||||
|
||||
// Evaluation of the divisor
|
||||
// p_0_d from `DivisorChallenge`
|
||||
let p_0_d = {
|
||||
let mut p_0_d = LinComb::empty().term(challenge.y, divisor.y);
|
||||
|
||||
for (var, c_yx) in divisor.yx.iter().zip(&challenge.yx) {
|
||||
p_0_d = p_0_d.term(*c_yx, *var);
|
||||
}
|
||||
|
||||
for (i, var) in divisor.x_from_power_of_2.iter().enumerate() {
|
||||
// This `i+1` is preserved, despite most not being as x omits x**0, as this assumes we
|
||||
// start with `i=1`
|
||||
p_0_d = p_0_d.term(challenge.x[i + 1], *var);
|
||||
}
|
||||
|
||||
// Adding x effectively adds a `1 x` term, ensuring the divisor isn't 0
|
||||
p_0_d.term(C::F::ONE, divisor.zero).constant(challenge.x[0])
|
||||
};
|
||||
|
||||
// Calculate the joint numerator
|
||||
// p_n from `DivisorChallenge`
|
||||
let p_n = p_0_n * challenge.p_1_n;
|
||||
// Calculate the joint denominator
|
||||
// p_d from `DivisorChallenge`
|
||||
let p_d = p_0_d * challenge.p_1_d;
|
||||
|
||||
// We want `n / d = o`
|
||||
// `n / d = o` == `n = d * o`
|
||||
// These are safe unwraps as they're solely done by the prover and should always be non-zero
|
||||
let witness =
|
||||
circuit.eval(&p_d).map(|p_d| (p_d, circuit.eval(&p_n).unwrap() * p_d.invert().unwrap()));
|
||||
let (_l, o, n_claim) = circuit.mul(Some(p_d), None, witness);
|
||||
circuit.equality(p_n, &n_claim.into());
|
||||
o
|
||||
}
|
||||
|
||||
/// A challenge to evaluate divisors with.
|
||||
///
|
||||
/// This challenge must be sampled after writing the commitments to the transcript. This challenge
|
||||
/// is reusable across various divisors.
|
||||
pub struct DiscreteLogChallenge<F: PrimeField, Parameters: DiscreteLogParameters> {
|
||||
c0: ChallengePoint<F, Parameters>,
|
||||
c1: ChallengePoint<F, Parameters>,
|
||||
c2: ChallengePoint<F, Parameters>,
|
||||
slope: F,
|
||||
intercept: F,
|
||||
}
|
||||
|
||||
/// A generator which has been challenged and is ready for use in evaluating discrete logarithm
|
||||
/// claims.
|
||||
pub struct ChallengedGenerator<F: PrimeField, Parameters: DiscreteLogParameters>(
|
||||
GenericArray<F, Parameters::ScalarBits>,
|
||||
);
|
||||
|
||||
/// Gadgets for proving the discrete logarithm of points on an elliptic curve defined over the
|
||||
/// scalar field of the curve of the Bulletproof.
|
||||
pub trait EcDlogGadgets<C: Ciphersuite> {
|
||||
/// Sample a challenge for a series of discrete logarithm claims.
|
||||
///
|
||||
/// This must be called after writing the commitments to the transcript.
|
||||
///
|
||||
/// The generators are assumed to be non-empty. They are not transcripted. If your generators are
|
||||
/// dynamic, they must be properly transcripted into the context.
|
||||
///
|
||||
/// May panic/have undefined behavior if an assumption is broken.
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn discrete_log_challenge<T: Transcript, Parameters: DiscreteLogParameters>(
|
||||
&self,
|
||||
transcript: &mut T,
|
||||
curve: &CurveSpec<C::F>,
|
||||
generators: &[&GeneratorTable<C::F, Parameters>],
|
||||
) -> (DiscreteLogChallenge<C::F, Parameters>, Vec<ChallengedGenerator<C::F, Parameters>>);
|
||||
|
||||
/// Prove this point has the specified discrete logarithm over the specified generator.
|
||||
///
|
||||
/// The discrete logarithm is not validated to be in a canonical form. The only guarantee made on
|
||||
/// it is that it's a consistent representation of _a_ discrete logarithm (reuse won't enable
|
||||
/// re-interpretation as a distinct discrete logarithm).
|
||||
///
|
||||
/// This does ensure the point is on-curve.
|
||||
///
|
||||
/// This MUST only be called with `Variable`s present within commitments.
|
||||
///
|
||||
/// May panic/have undefined behavior if an assumption is broken, or if passed an invalid
|
||||
/// witness.
|
||||
fn discrete_log<Parameters: DiscreteLogParameters>(
|
||||
&mut self,
|
||||
curve: &CurveSpec<C::F>,
|
||||
point: PointWithDlog<Parameters>,
|
||||
challenge: &DiscreteLogChallenge<C::F, Parameters>,
|
||||
challenged_generator: &ChallengedGenerator<C::F, Parameters>,
|
||||
) -> OnCurve;
|
||||
}
|
||||
|
||||
impl<C: Ciphersuite> EcDlogGadgets<C> for Circuit<C> {
|
||||
// This is part of `DiscreteLog` from `Discrete Log Proof`, specifically, the challenges and
|
||||
// the calculations dependent solely on them
|
||||
fn discrete_log_challenge<T: Transcript, Parameters: DiscreteLogParameters>(
|
||||
&self,
|
||||
transcript: &mut T,
|
||||
curve: &CurveSpec<C::F>,
|
||||
generators: &[&GeneratorTable<C::F, Parameters>],
|
||||
) -> (DiscreteLogChallenge<C::F, Parameters>, Vec<ChallengedGenerator<C::F, Parameters>>) {
|
||||
// Get the challenge points
|
||||
// TODO: Implement a proper hash to curve
|
||||
let (c0_x, c0_y) = loop {
|
||||
let c0_x: C::F = transcript.challenge();
|
||||
let Some(c0_y) =
|
||||
Option::<C::F>::from(((c0_x.square() * c0_x) + (curve.a * c0_x) + curve.b).sqrt())
|
||||
else {
|
||||
continue;
|
||||
};
|
||||
// Takes the even y coordinate as to not be dependent on whatever root the above sqrt
|
||||
// happens to returns
|
||||
// TODO: Randomly select which to take
|
||||
break (c0_x, if bool::from(c0_y.is_odd()) { -c0_y } else { c0_y });
|
||||
};
|
||||
let (c1_x, c1_y) = loop {
|
||||
let c1_x: C::F = transcript.challenge();
|
||||
let Some(c1_y) =
|
||||
Option::<C::F>::from(((c1_x.square() * c1_x) + (curve.a * c1_x) + curve.b).sqrt())
|
||||
else {
|
||||
continue;
|
||||
};
|
||||
break (c1_x, if bool::from(c1_y.is_odd()) { -c1_y } else { c1_y });
|
||||
};
|
||||
|
||||
// mmadd-1998-cmo
|
||||
fn incomplete_add<F: PrimeField>(x1: F, y1: F, x2: F, y2: F) -> Option<(F, F)> {
|
||||
if x1 == x2 {
|
||||
None?
|
||||
}
|
||||
|
||||
let u = y2 - y1;
|
||||
let uu = u * u;
|
||||
let v = x2 - x1;
|
||||
let vv = v * v;
|
||||
let vvv = v * vv;
|
||||
let r = vv * x1;
|
||||
let a = uu - vvv - r.double();
|
||||
let x3 = v * a;
|
||||
let y3 = (u * (r - a)) - (vvv * y1);
|
||||
let z3 = vvv;
|
||||
|
||||
// Normalize from XYZ to XY
|
||||
let z3_inv = Option::<F>::from(z3.invert())?;
|
||||
let x3 = x3 * z3_inv;
|
||||
let y3 = y3 * z3_inv;
|
||||
|
||||
Some((x3, y3))
|
||||
}
|
||||
|
||||
let (c2_x, c2_y) = incomplete_add::<C::F>(c0_x, c0_y, c1_x, c1_y)
|
||||
.expect("randomly selected points shared an x coordinate");
|
||||
// We want C0, C1, C2 = -(C0 + C1)
|
||||
let c2_y = -c2_y;
|
||||
|
||||
// Calculate the slope and intercept
|
||||
// Safe invert as these x coordinates must be distinct due to passing the above incomplete_add
|
||||
let slope = (c1_y - c0_y) * (c1_x - c0_x).invert().unwrap();
|
||||
let intercept = c0_y - (slope * c0_x);
|
||||
|
||||
// Calculate the inversions for 2 c_y (for each c) and all of the challenged generators
|
||||
let mut inversions = vec![C::F::ZERO; 3 + (generators.len() * Parameters::ScalarBits::USIZE)];
|
||||
|
||||
// Needed for the left-hand side eval
|
||||
{
|
||||
inversions[0] = c0_y.double();
|
||||
inversions[1] = c1_y.double();
|
||||
inversions[2] = c2_y.double();
|
||||
}
|
||||
|
||||
// Perform the inversions for the generators
|
||||
for (i, generator) in generators.iter().enumerate() {
|
||||
// Needed for the right-hand side eval
|
||||
for (j, generator) in generator.0.iter().enumerate() {
|
||||
// `DiscreteLog` has weights of `(mu - (G_i.y + (slope * G_i.x)))**-1` in its last line
|
||||
inversions[3 + (i * Parameters::ScalarBits::USIZE) + j] =
|
||||
intercept - (generator.1 - (slope * generator.0));
|
||||
}
|
||||
}
|
||||
for challenge_inversion in &inversions {
|
||||
// This should be unreachable barring negligible probability
|
||||
if challenge_inversion.is_zero().into() {
|
||||
panic!("trying to invert 0");
|
||||
}
|
||||
}
|
||||
let mut scratch = vec![C::F::ZERO; inversions.len()];
|
||||
let _ = BatchInverter::invert_with_external_scratch(&mut inversions, &mut scratch);
|
||||
|
||||
let mut inversions = inversions.into_iter();
|
||||
let inv_c0_two_y = inversions.next().unwrap();
|
||||
let inv_c1_two_y = inversions.next().unwrap();
|
||||
let inv_c2_two_y = inversions.next().unwrap();
|
||||
|
||||
let c0 = ChallengePoint::new(curve, slope, c0_x, c0_y, inv_c0_two_y);
|
||||
let c1 = ChallengePoint::new(curve, slope, c1_x, c1_y, inv_c1_two_y);
|
||||
let c2 = ChallengePoint::new(curve, slope, c2_x, c2_y, inv_c2_two_y);
|
||||
|
||||
// Fill in the inverted values
|
||||
let mut challenged_generators = Vec::with_capacity(generators.len());
|
||||
for _ in 0 .. generators.len() {
|
||||
let mut challenged_generator = GenericArray::default();
|
||||
for i in 0 .. Parameters::ScalarBits::USIZE {
|
||||
challenged_generator[i] = inversions.next().unwrap();
|
||||
}
|
||||
challenged_generators.push(ChallengedGenerator(challenged_generator));
|
||||
}
|
||||
|
||||
(DiscreteLogChallenge { c0, c1, c2, slope, intercept }, challenged_generators)
|
||||
}
|
||||
|
||||
// `DiscreteLog` from `Discrete Log Proof`
|
||||
fn discrete_log<Parameters: DiscreteLogParameters>(
|
||||
&mut self,
|
||||
curve: &CurveSpec<C::F>,
|
||||
point: PointWithDlog<Parameters>,
|
||||
challenge: &DiscreteLogChallenge<C::F, Parameters>,
|
||||
challenged_generator: &ChallengedGenerator<C::F, Parameters>,
|
||||
) -> OnCurve {
|
||||
let PointWithDlog { divisor, dlog, point } = point;
|
||||
|
||||
// Ensure this is being safely called
|
||||
let arg_iter = [point.0, point.1, divisor.y, divisor.zero];
|
||||
let arg_iter = arg_iter.iter().chain(divisor.yx.iter());
|
||||
let arg_iter = arg_iter.chain(divisor.x_from_power_of_2.iter());
|
||||
let arg_iter = arg_iter.chain(dlog.iter());
|
||||
for variable in arg_iter {
|
||||
debug_assert!(
|
||||
matches!(variable, Variable::CG { .. } | Variable::CH { .. } | Variable::V(_)),
|
||||
"discrete log proofs requires all arguments belong to commitments",
|
||||
);
|
||||
}
|
||||
|
||||
// Check the point is on curve
|
||||
let point = self.on_curve(curve, point);
|
||||
|
||||
// The challenge has already been sampled so those lines aren't necessary
|
||||
|
||||
// lhs from the paper, evaluating the divisor
|
||||
let lhs_eval = LinComb::from(divisor_challenge_eval(self, &divisor, &challenge.c0)) +
|
||||
&LinComb::from(divisor_challenge_eval(self, &divisor, &challenge.c1)) +
|
||||
&LinComb::from(divisor_challenge_eval(self, &divisor, &challenge.c2));
|
||||
|
||||
// Interpolate the doublings of the generator
|
||||
let mut rhs_eval = LinComb::empty();
|
||||
// We call this `bit` yet it's not constrained to being a bit
|
||||
// It's presumed to be yet may be malleated
|
||||
for (bit, weight) in dlog.into_iter().zip(&challenged_generator.0) {
|
||||
rhs_eval = rhs_eval.term(*weight, bit);
|
||||
}
|
||||
|
||||
// Interpolate the output point
|
||||
// intercept - (y - (slope * x))
|
||||
// intercept - y + (slope * x)
|
||||
// -y + (slope * x) + intercept
|
||||
// EXCEPT the output point we're proving the discrete log for isn't the one interpolated
|
||||
// Its negative is, so -y becomes y
|
||||
// y + (slope * x) + intercept
|
||||
let output_interpolation = LinComb::empty()
|
||||
.constant(challenge.intercept)
|
||||
.term(C::F::ONE, point.y)
|
||||
.term(challenge.slope, point.x);
|
||||
let output_interpolation_eval = self.eval(&output_interpolation);
|
||||
let (_output_interpolation, inverse) =
|
||||
self.inverse(Some(output_interpolation), output_interpolation_eval);
|
||||
rhs_eval = rhs_eval.term(C::F::ONE, inverse);
|
||||
|
||||
self.equality(lhs_eval, &rhs_eval);
|
||||
|
||||
point
|
||||
}
|
||||
}
|
||||
130
crypto/evrf/ec-gadgets/src/lib.rs
Normal file
130
crypto/evrf/ec-gadgets/src/lib.rs
Normal file
@@ -0,0 +1,130 @@
|
||||
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
|
||||
#![doc = include_str!("../README.md")]
|
||||
#![deny(missing_docs)]
|
||||
#![allow(non_snake_case)]
|
||||
|
||||
use generic_array::{typenum::Unsigned, ArrayLength, GenericArray};
|
||||
|
||||
use ciphersuite::{group::ff::Field, Ciphersuite};
|
||||
|
||||
use generalized_bulletproofs_circuit_abstraction::*;
|
||||
|
||||
mod dlog;
|
||||
pub use dlog::*;
|
||||
|
||||
/// The specification of a short Weierstrass curve over the field `F`.
|
||||
///
|
||||
/// The short Weierstrass curve is defined via the formula `y**2 = x**3 + a*x + b`.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct CurveSpec<F> {
|
||||
/// The `a` constant in the curve formula.
|
||||
pub a: F,
|
||||
/// The `b` constant in the curve formula.
|
||||
pub b: F,
|
||||
}
|
||||
|
||||
/// A struct for a point on a towered curve which has been confirmed to be on-curve.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct OnCurve {
|
||||
pub(crate) x: Variable,
|
||||
pub(crate) y: Variable,
|
||||
}
|
||||
|
||||
impl OnCurve {
|
||||
/// The variable for the x-coordinate.
|
||||
pub fn x(&self) -> Variable {
|
||||
self.x
|
||||
}
|
||||
/// The variable for the y-coordinate.
|
||||
pub fn y(&self) -> Variable {
|
||||
self.y
|
||||
}
|
||||
}
|
||||
|
||||
/// Gadgets for working with points on an elliptic curve defined over the scalar field of the curve
|
||||
/// of the Bulletproof.
|
||||
pub trait EcGadgets<C: Ciphersuite> {
|
||||
/// Constrain an x and y coordinate as being on the specified curve.
|
||||
///
|
||||
/// The specified curve is defined over the scalar field of the curve this proof is performed
|
||||
/// over, offering efficient arithmetic.
|
||||
///
|
||||
/// May panic if the prover and the point is not actually on-curve.
|
||||
fn on_curve(&mut self, curve: &CurveSpec<C::F>, point: (Variable, Variable)) -> OnCurve;
|
||||
|
||||
/// Perform incomplete addition for a fixed point and an on-curve point.
|
||||
///
|
||||
/// `a` is the x and y coordinates of the fixed point, assumed to be on-curve.
|
||||
///
|
||||
/// `b` is a point prior checked to be on-curve.
|
||||
///
|
||||
/// `c` is a point prior checked to be on-curve, constrained to be the sum of `a` and `b`.
|
||||
///
|
||||
/// `a` and `b` are checked to have distinct x coordinates.
|
||||
///
|
||||
/// This function may panic if `a` is malformed or if the prover and `c` is not actually the sum
|
||||
/// of `a` and `b`.
|
||||
fn incomplete_add_fixed(&mut self, a: (C::F, C::F), b: OnCurve, c: OnCurve) -> OnCurve;
|
||||
}
|
||||
|
||||
impl<C: Ciphersuite> EcGadgets<C> for Circuit<C> {
|
||||
fn on_curve(&mut self, curve: &CurveSpec<C::F>, (x, y): (Variable, Variable)) -> OnCurve {
|
||||
let x_eval = self.eval(&LinComb::from(x));
|
||||
let (_x, _x_2, x2) =
|
||||
self.mul(Some(LinComb::from(x)), Some(LinComb::from(x)), x_eval.map(|x| (x, x)));
|
||||
let (_x, _x_2, x3) =
|
||||
self.mul(Some(LinComb::from(x2)), Some(LinComb::from(x)), x_eval.map(|x| (x * x, x)));
|
||||
let expected_y2 = LinComb::from(x3).term(curve.a, x).constant(curve.b);
|
||||
|
||||
let y_eval = self.eval(&LinComb::from(y));
|
||||
let (_y, _y_2, y2) =
|
||||
self.mul(Some(LinComb::from(y)), Some(LinComb::from(y)), y_eval.map(|y| (y, y)));
|
||||
|
||||
self.equality(y2.into(), &expected_y2);
|
||||
|
||||
OnCurve { x, y }
|
||||
}
|
||||
|
||||
fn incomplete_add_fixed(&mut self, a: (C::F, C::F), b: OnCurve, c: OnCurve) -> OnCurve {
|
||||
// Check b.x != a.0
|
||||
{
|
||||
let bx_lincomb = LinComb::from(b.x);
|
||||
let bx_eval = self.eval(&bx_lincomb);
|
||||
self.inequality(bx_lincomb, &LinComb::empty().constant(a.0), bx_eval.map(|bx| (bx, a.0)));
|
||||
}
|
||||
|
||||
let (x0, y0) = (a.0, a.1);
|
||||
let (x1, y1) = (b.x, b.y);
|
||||
let (x2, y2) = (c.x, c.y);
|
||||
|
||||
let slope_eval = self.eval(&LinComb::from(x1)).map(|x1| {
|
||||
let y1 = self.eval(&LinComb::from(b.y)).unwrap();
|
||||
|
||||
(y1 - y0) * (x1 - x0).invert().unwrap()
|
||||
});
|
||||
|
||||
// slope * (x1 - x0) = y1 - y0
|
||||
let x1_minus_x0 = LinComb::from(x1).constant(-x0);
|
||||
let x1_minus_x0_eval = self.eval(&x1_minus_x0);
|
||||
let (slope, _r, o) =
|
||||
self.mul(None, Some(x1_minus_x0), slope_eval.map(|slope| (slope, x1_minus_x0_eval.unwrap())));
|
||||
self.equality(LinComb::from(o), &LinComb::from(y1).constant(-y0));
|
||||
|
||||
// slope * (x2 - x0) = -y2 - y0
|
||||
let x2_minus_x0 = LinComb::from(x2).constant(-x0);
|
||||
let x2_minus_x0_eval = self.eval(&x2_minus_x0);
|
||||
let (_slope, _x2_minus_x0, o) = self.mul(
|
||||
Some(slope.into()),
|
||||
Some(x2_minus_x0),
|
||||
slope_eval.map(|slope| (slope, x2_minus_x0_eval.unwrap())),
|
||||
);
|
||||
self.equality(o.into(), &LinComb::empty().term(-C::F::ONE, y2).constant(-y0));
|
||||
|
||||
// slope * slope = x0 + x1 + x2
|
||||
let (_slope, _slope_2, o) =
|
||||
self.mul(Some(slope.into()), Some(slope.into()), slope_eval.map(|slope| (slope, slope)));
|
||||
self.equality(o.into(), &LinComb::from(x1).term(C::F::ONE, x2).constant(x0));
|
||||
|
||||
OnCurve { x: x2, y: y2 }
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user