Replace lazy_static with OnceLock inside monero-serai

lazy_static, if no_std environments were used, effectively required always
using spin locks. This resolves the ergonomics of that while adopting Rust std
code.

no_std does still use a spin based solution. Theoretically, we could use
atomics, yet writing our own Mutex wasn't a priority.
This commit is contained in:
Luke Parker
2023-06-28 21:16:33 -04:00
parent 8ced63eaac
commit d25c668ee4
17 changed files with 212 additions and 129 deletions

View File

@@ -1,4 +1,5 @@
use lazy_static::lazy_static;
use std_shims::sync::OnceLock;
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
@@ -17,15 +18,17 @@ use crate::{
include!(concat!(env!("OUT_DIR"), "/generators_plus.rs"));
lazy_static! {
static ref TRANSCRIPT: [u8; 32] =
EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript"))).compress().to_bytes();
static TRANSCRIPT_CELL: OnceLock<[u8; 32]> = OnceLock::new();
pub(crate) fn TRANSCRIPT() -> [u8; 32] {
*TRANSCRIPT_CELL.get_or_init(|| {
EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript"))).compress().to_bytes()
})
}
// TRANSCRIPT isn't a Scalar, so we need this alternative for the first hash
fn hash_plus<C: IntoIterator<Item = DalekPoint>>(commitments: C) -> (Scalar, Vec<EdwardsPoint>) {
let (cache, commitments) = hash_commitments(commitments);
(hash_to_scalar(&[&*TRANSCRIPT as &[u8], &cache.to_bytes()].concat()), commitments)
(hash_to_scalar(&[TRANSCRIPT().as_ref(), &cache.to_bytes()].concat()), commitments)
}
// d[j*N+i] = z**(2*(j+1)) * 2**i
@@ -34,7 +37,7 @@ fn d(z: Scalar, M: usize, MN: usize) -> (ScalarVector, ScalarVector) {
let mut d = vec![Scalar::ZERO; MN];
for j in 0 .. M {
for i in 0 .. N {
d[(j * N) + i] = zpow[j] * TWO_N[i];
d[(j * N) + i] = zpow[j] * TWO_N()[i];
}
}
(zpow, ScalarVector(d))
@@ -57,12 +60,14 @@ impl PlusStruct {
rng: &mut R,
commitments: &[Commitment],
) -> PlusStruct {
let generators = GENERATORS();
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let commitments_points = commitments.iter().map(Commitment::calculate).collect::<Vec<_>>();
let (mut cache, _) = hash_plus(commitments_points.clone());
let (mut alpha1, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
let (mut alpha1, A) = alpha_rho(&mut *rng, generators, &aL, &aR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
@@ -87,8 +92,8 @@ impl PlusStruct {
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
let mut G_proof = generators.G[.. a.len()].to_vec();
let mut H_proof = generators.H[.. a.len()].to_vec();
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
@@ -105,12 +110,12 @@ impl PlusStruct {
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, *H);
let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, H());
L_i.push((dL, G));
let L_i = prove_multiexp(&L_i);
L.push(L_i);
let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, *H);
let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, H());
R_i.push((dR, G));
let R_i = prove_multiexp(&R_i);
R.push(R_i);
@@ -139,9 +144,9 @@ impl PlusStruct {
(r, G_proof[0]),
(s, H_proof[0]),
(d, G),
((r * y * b[0]) + (s * y * a[0]), *H),
((r * y * b[0]) + (s * y * a[0]), H()),
]);
let B = prove_multiexp(&[(r * y * s, *H), (eta, G)]);
let B = prove_multiexp(&[(r * y * s, H()), (eta, G)]);
let e = hash_cache(&mut cache, &[A1.compress().to_bytes(), B.compress().to_bytes()]);
let r1 = (a[0] * e) + r;
@@ -248,7 +253,7 @@ impl PlusStruct {
let y_sum = weighted_powers(y, MN).sum();
proof.push((
Scalar(self.r1 * y.0 * self.s1) + (esq * ((yMNy * z * d_sum) + ((zsq - z) * y_sum))),
*H,
H(),
));
let w_cache = challenge_products(&w, &winv);
@@ -259,11 +264,12 @@ impl PlusStruct {
let minus_esq_z = -esq_z;
let mut minus_esq_y = minus_esq * yMN;
let generators = GENERATORS();
for i in 0 .. MN {
proof.push((e_r1_y * w_cache[i] + esq_z, GENERATORS.G[i]));
proof.push((e_r1_y * w_cache[i] + esq_z, generators.G[i]));
proof.push((
(e_s1 * w_cache[(!i) & (MN - 1)]) + minus_esq_z + (minus_esq_y * d[i]),
GENERATORS.H[i],
generators.H[i],
));
e_r1_y *= yinv;