Add a batch verifier to multiexp, along with constant time variants

Saves ~8% during FROST key gen, even with dropping a vartime for a 
constant time (as needed to be secure), as the new batch verifier is 
used where batch verification previously wasn't. The new multiexp API 
itself also offered a very slight performance boost, which may solely be 
a measurement error.

Handles most of https://github.com/serai-dex/serai/issues/10. The blame 
function isn't binary searched nor randomly sorted yet.
This commit is contained in:
Luke Parker
2022-05-27 00:52:44 -04:00
parent c398b246ff
commit c90e957e6a
10 changed files with 161 additions and 98 deletions

View File

@@ -1,43 +1,52 @@
use ff::PrimeField;
use group::{Group, GroupEncoding, ScalarMul};
use group::{ff::PrimeField, Group};
// An implementation of Straus, with a extremely minimal API that lets us add other algorithms in
// the future. Takes in a list of scalars and points with a boolean for if the scalars are little
// endian encoded or not
pub fn multiexp_vartime<F: PrimeField, G: Group + GroupEncoding + ScalarMul<F>>(
scalars: &[F],
points: &[G],
little: bool
) -> G {
#[cfg(feature = "batch")]
use group::ff::Field;
#[cfg(feature = "batch")]
use rand_core::{RngCore, CryptoRng};
fn prep<
G: Group,
I: IntoIterator<Item = (G::Scalar, G)>
>(pairs: I, little: bool) -> (Vec<Vec<u8>>, Vec<[G; 16]>) {
let mut nibbles = vec![];
let mut tables = vec![];
// dalek uses 8 in their impl, along with a carry scheme where values are [-8, 8)
// Moving to a similar system here did save a marginal amount, yet not one significant enough for
// its pain (as some fields do have scalars which can have their top bit set, a scenario dalek
// assumes is never true)
tables.resize(points.len(), [G::identity(); 16]);
for p in 0 .. points.len() {
for pair in pairs.into_iter() {
let p = nibbles.len();
nibbles.push(vec![]);
{
let mut repr = pair.0.to_repr();
let bytes = repr.as_mut();
if !little {
bytes.reverse();
}
nibbles[p].resize(bytes.len() * 2, 0);
for i in 0 .. bytes.len() {
nibbles[p][i * 2] = bytes[i] & 0b1111;
nibbles[p][(i * 2) + 1] = (bytes[i] >> 4) & 0b1111;
}
}
tables.push([G::identity(); 16]);
let mut accum = G::identity();
for i in 1 .. 16 {
accum += points[p];
accum += pair.1;
tables[p][i] = accum;
}
}
let mut nibbles = vec![];
nibbles.resize(scalars.len(), vec![]);
for s in 0 .. scalars.len() {
let mut repr = scalars[s].to_repr();
let bytes = repr.as_mut();
if !little {
bytes.reverse();
}
(nibbles, tables)
}
nibbles[s].resize(bytes.len() * 2, 0);
for i in 0 .. bytes.len() {
nibbles[s][i * 2] = bytes[i] & 0b1111;
nibbles[s][(i * 2) + 1] = (bytes[i] >> 4) & 0b1111;
}
}
// An implementation of Straus, with a extremely minimal API that lets us add other algorithms in
// the future. Takes in an iterator of scalars and points with a boolean for if the scalars are
// little endian encoded in their Reprs or not
pub fn multiexp<
G: Group,
I: IntoIterator<Item = (G::Scalar, G)>
>(pairs: I, little: bool) -> G {
let (nibbles, tables) = prep(pairs, little);
let mut res = G::identity();
for b in (0 .. nibbles[0].len()).rev() {
@@ -45,7 +54,26 @@ pub fn multiexp_vartime<F: PrimeField, G: Group + GroupEncoding + ScalarMul<F>>(
res = res.double();
}
for s in 0 .. scalars.len() {
for s in 0 .. tables.len() {
res += tables[s][nibbles[s][b] as usize];
}
}
res
}
pub fn multiexp_vartime<
G: Group,
I: IntoIterator<Item = (G::Scalar, G)>
>(pairs: I, little: bool) -> G {
let (nibbles, tables) = prep(pairs, little);
let mut res = G::identity();
for b in (0 .. nibbles[0].len()).rev() {
for _ in 0 .. 4 {
res = res.double();
}
for s in 0 .. tables.len() {
if nibbles[s][b] != 0 {
res += tables[s][nibbles[s][b] as usize];
}
@@ -53,3 +81,52 @@ pub fn multiexp_vartime<F: PrimeField, G: Group + GroupEncoding + ScalarMul<F>>(
}
res
}
#[cfg(feature = "batch")]
pub struct BatchVerifier<Id: Copy, G: Group>(Vec<(Id, Vec<(G::Scalar, G)>)>, bool);
#[cfg(feature = "batch")]
impl<Id: Copy, G: Group> BatchVerifier<Id, G> {
pub fn new(capacity: usize, endian: bool) -> BatchVerifier<Id, G> {
BatchVerifier(Vec::with_capacity(capacity), endian)
}
pub fn queue<
R: RngCore + CryptoRng,
I: IntoIterator<Item = (G::Scalar, G)>
>(&mut self, rng: &mut R, id: Id, pairs: I) {
// Define a unique scalar factor for this set of variables so individual items can't overlap
let u = if self.0.len() == 0 {
G::Scalar::one()
} else {
G::Scalar::random(rng)
};
self.0.push((id, pairs.into_iter().map(|(scalar, point)| (scalar * u, point)).collect()));
}
pub fn verify(&self) -> bool {
multiexp(
self.0.iter().flat_map(|sets| sets.1.iter()).cloned(),
self.1
).is_identity().into()
}
pub fn verify_vartime(&self) -> bool {
multiexp_vartime(
self.0.iter().flat_map(|sets| sets.1.iter()).cloned(),
self.1
).is_identity().into()
}
// Solely has a vartime variant as there shouldn't be any reason for this to not be vartime, yet
// we should explicitly label vartime software as vartime
// TODO: Binary search, or at least randomly sort
pub fn blame_vartime(&self) -> Option<Id> {
for value in &self.0 {
if !bool::from(multiexp_vartime(value.1.clone(), self.1).is_identity()) {
return Some(value.0);
}
}
None
}
}