Add a batch verifier to multiexp, along with constant time variants

Saves ~8% during FROST key gen, even with dropping a vartime for a 
constant time (as needed to be secure), as the new batch verifier is 
used where batch verification previously wasn't. The new multiexp API 
itself also offered a very slight performance boost, which may solely be 
a measurement error.

Handles most of https://github.com/serai-dex/serai/issues/10. The blame 
function isn't binary searched nor randomly sorted yet.
This commit is contained in:
Luke Parker
2022-05-27 00:52:44 -04:00
parent c398b246ff
commit c90e957e6a
10 changed files with 161 additions and 98 deletions

View File

@@ -5,6 +5,8 @@ use rand_core::{RngCore, CryptoRng};
use ff::{Field, PrimeField};
use multiexp::{multiexp_vartime, BatchVerifier};
use crate::{
Curve, MultisigParams, MultisigKeys, FrostError,
schnorr::{self, SchnorrSignature},
@@ -122,13 +124,7 @@ fn verify_r1<R: RngCore + CryptoRng, C: Curve>(
commitments.insert(l, these_commitments);
}
schnorr::batch_verify(rng, &signatures).map_err(
|l| if l == 0 {
FrostError::InternalError("batch validation is broken".to_string())
} else {
FrostError::InvalidProofOfKnowledge(l)
}
)?;
schnorr::batch_verify(rng, &signatures).map_err(|l| FrostError::InvalidProofOfKnowledge(l))?;
Ok(commitments)
}
@@ -192,7 +188,8 @@ fn generate_key_r2<R: RngCore + CryptoRng, C: Curve>(
/// issue, yet simply confirming protocol completion without issue is enough to confirm the same
/// key was generated as long as a lack of duplicated commitments was also confirmed when they were
/// broadcasted initially
fn complete_r2<C: Curve>(
fn complete_r2<R: RngCore + CryptoRng, C: Curve>(
rng: &mut R,
params: MultisigParams,
share: C::F,
commitments: HashMap<u16, Vec<C::G>>,
@@ -211,6 +208,7 @@ fn complete_r2<C: Curve>(
shares.insert(l, C::F_from_slice(&share).map_err(|_| FrostError::InvalidShare(params.i()))?);
}
let mut batch = BatchVerifier::new(shares.len(), C::little_endian());
for (l, share) in &shares {
if *l == params.i() {
continue;
@@ -218,16 +216,18 @@ fn complete_r2<C: Curve>(
let i_scalar = C::F::from(params.i.into());
let mut exp = C::F::one();
let mut exps = Vec::with_capacity(usize::from(params.t()));
for _ in 0 .. params.t() {
exps.push(exp);
let mut values = Vec::with_capacity(usize::from(params.t()) + 1);
for lt in 0 .. params.t() {
values.push((exp, commitments[&l][usize::from(lt)]));
exp *= i_scalar;
}
values.push((-*share, C::generator()));
// Doesn't use multiexp_vartime with -shares[l] due to not being able to push to commitments
if C::multiexp_vartime(&exps, &commitments[&l]) != (C::generator_table() * *share) {
Err(FrostError::InvalidCommitment(*l))?;
}
batch.queue(rng, *l, values);
}
if !batch.verify() {
Err(FrostError::InvalidCommitment(batch.blame_vartime().unwrap()))?;
}
// TODO: Clear the original share
@@ -239,19 +239,18 @@ fn complete_r2<C: Curve>(
let mut verification_shares = HashMap::new();
for l in 1 ..= params.n() {
let mut exps = vec![];
let mut cs = vec![];
let mut values = vec![];
for i in 1 ..= params.n() {
for j in 0 .. params.t() {
let mut exp = C::F::one();
for _ in 0 .. j {
exp *= C::F::from(u64::try_from(l).unwrap());
}
exps.push(exp);
cs.push(commitments[&i][usize::from(j)]);
values.push((exp, commitments[&i][usize::from(j)]));
}
}
verification_shares.insert(l, C::multiexp_vartime(&exps, &cs));
// Doesn't do a unified multiexp due to needing individual verification shares
verification_shares.insert(l, multiexp_vartime(values, C::little_endian()));
}
debug_assert_eq!(C::generator_table() * secret_share, verification_shares[&params.i()]);
@@ -362,8 +361,9 @@ impl<C: Curve> StateMachine<C> {
/// group's public key, while setting a valid secret share inside the machine. > t participants
/// must report completion without issue before this key can be considered usable, yet you should
/// wait for all participants to report as such
pub fn complete(
pub fn complete<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
shares: HashMap<u16, Vec<u8>>,
) -> Result<MultisigKeys<C>, FrostError> {
if self.state != State::GeneratedSecretShares {
@@ -371,6 +371,7 @@ impl<C: Curve> StateMachine<C> {
}
let keys = complete_r2(
rng,
self.params,
self.secret.take().unwrap(),
self.commitments.take().unwrap(),

View File

@@ -4,9 +4,7 @@ use std::collections::HashMap;
use thiserror::Error;
use ff::{Field, PrimeField};
use group::{Group, GroupOps, ScalarMul};
pub use multiexp::multiexp_vartime;
use group::{Group, GroupOps};
mod schnorr;
@@ -38,7 +36,7 @@ pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
type F: PrimeField;
/// Group element type
type G: Group + GroupOps + ScalarMul<Self::F>;
type G: Group<Scalar = Self::F> + GroupOps;
/// Precomputed table type
type T: Mul<Self::F, Output = Self::G>;
@@ -57,12 +55,8 @@ pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
/// If there isn't a precomputed table available, the generator itself should be used
fn generator_table() -> Self::T;
/// Multiexponentation function, presumably Straus or Pippenger
/// This library does forward an implementation of Straus which should increase key generation
/// performance by around 4x, also named multiexp_vartime, with a similar API. However, if a more
/// performant implementation is available, that should be used instead
// This could also be written as -> Option<C::G> with None for not implemented
fn multiexp_vartime(scalars: &[Self::F], points: &[Self::G]) -> Self::G;
/// If little endian is used for the scalar field's Repr
fn little_endian() -> bool;
/// Hash the message as needed to calculate the binding factor
/// H3 from the IETF draft

View File

@@ -3,6 +3,8 @@ use rand_core::{RngCore, CryptoRng};
use ff::Field;
use group::Group;
use multiexp::BatchVerifier;
use crate::Curve;
#[allow(non_snake_case)]
@@ -44,39 +46,25 @@ pub(crate) fn batch_verify<C: Curve, R: RngCore + CryptoRng>(
rng: &mut R,
triplets: &[(u16, C::G, C::F, SchnorrSignature<C>)]
) -> Result<(), u16> {
let mut first = true;
let mut scalars = Vec::with_capacity(triplets.len() * 3);
let mut points = Vec::with_capacity(triplets.len() * 3);
let mut values = [(C::F::one(), C::G::generator()); 3];
let mut batch = BatchVerifier::new(triplets.len() * 3, C::little_endian());
for triple in triplets {
let mut u = C::F::one();
if !first {
u = C::F::random(&mut *rng);
}
// R
values[0].1 = triple.3.R;
// cA
values[1] = (triple.2, triple.1);
// -sG
values[2].0 = -triple.3.s;
// uR
scalars.push(u);
points.push(triple.3.R);
// -usG
scalars.push(-triple.3.s * u);
points.push(C::generator());
// ucA
scalars.push(if first { first = false; triple.2 } else { triple.2 * u});
points.push(triple.1);
batch.queue(rng, triple.0, values);
}
// s = r + ca
// sG == R + cA
// R + cA - sG == 0
if C::multiexp_vartime(&scalars, &points) == C::G::identity() {
if batch.verify_vartime() {
Ok(())
} else {
for triple in triplets {
if !verify::<C>(triple.1, triple.2, &triple.3) {
Err(triple.0)?;
}
}
Err(0)
Err(batch.blame_vartime().unwrap())
}
}

View File

@@ -13,7 +13,7 @@ use k256::{
ProjectivePoint
};
use crate::{CurveError, Curve, multiexp_vartime, algorithm::Hram, tests::curve::test_curve};
use crate::{CurveError, Curve, algorithm::Hram, tests::curve::test_curve};
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Secp256k1;
@@ -38,8 +38,8 @@ impl Curve for Secp256k1 {
Self::G::GENERATOR
}
fn multiexp_vartime(scalars: &[Self::F], points: &[Self::G]) -> Self::G {
multiexp_vartime(scalars, points, false)
fn little_endian() -> bool {
false
}
// The IETF draft doesn't specify a secp256k1 ciphersuite

View File

@@ -82,7 +82,7 @@ pub fn key_gen<R: RngCore + CryptoRng, C: Curve>(
}
our_secret_shares.insert(*l, shares[&i].clone());
}
let these_keys = machine.complete(our_secret_shares).unwrap();
let these_keys = machine.complete(rng, our_secret_shares).unwrap();
// Verify the verification_shares are agreed upon
if verification_shares.is_none() {