Update the Chaum Pedersen proof to verify the new multi-nonce FROST

Provides further health and reference to 
https://github.com/serai-dex/serai/issues/14.
This commit is contained in:
Luke Parker
2022-07-12 01:56:08 -04:00
parent e3ff4f7af6
commit c3cc8d51b7
5 changed files with 41 additions and 212 deletions

View File

@@ -15,13 +15,13 @@ rand_chacha = { version = "0.3", optional = true }
sha2 = "0.10" sha2 = "0.10"
ff = "0.11" ff = "0.12"
group = "0.11" group = "0.12"
k256 = { version = "0.10", features = ["arithmetic"] } k256 = { version = "0.11", features = ["arithmetic"] }
blake2 = { version = "0.10", optional = true } blake2 = { version = "0.10", optional = true }
transcript = { path = "../../crypto/transcript", optional = true } transcript = { path = "../../crypto/transcript", package = "flexible-transcript", features = ["recommended"], optional = true }
frost = { path = "../../crypto/frost", optional = true } frost = { path = "../../crypto/frost", package = "modular-frost", features = ["secp256k1"], optional = true }
[dev-dependencies] [dev-dependencies]
rand = "0.8" rand = "0.8"

View File

@@ -1,44 +1,26 @@
use std::collections::HashMap;
use rand_core::{RngCore, CryptoRng, SeedableRng}; use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha12Rng; use rand_chacha::ChaCha12Rng;
use ff::Field; use ff::Field;
use group::GroupEncoding;
use k256::{Scalar, ProjectivePoint}; use k256::{Scalar, ProjectivePoint};
use transcript::Transcript as _; use transcript::{Transcript, RecommendedTranscript};
use frost::{CurveError, Curve, FrostError, MultisigView, algorithm::Algorithm}; use frost::{curve::Secp256k1, FrostError, FrostView, algorithm::Algorithm};
use crate::spark::{ use crate::spark::{G, GENERATORS_TRANSCRIPT, chaum::{ChaumWitness, ChaumProof}};
G, GENERATORS_TRANSCRIPT,
frost::{Transcript, Secp256k1},
chaum::{ChaumWitness, ChaumProof}
};
#[derive(Clone)] #[derive(Clone)]
pub struct ChaumMultisig { pub struct ChaumMultisig {
transcript: Transcript, transcript: RecommendedTranscript,
len: usize, len: usize,
witness: ChaumWitness, witness: ChaumWitness,
// The following is ugly as hell as it's re-implementing the nonce code FROST is meant to handle
// Using FROST's provided SchnorrSignature algorithm multiple times would work, handling nonces
// for us, except you need the commitments for the challenge which means you need the binding
// factors, which means then you're re-calculating those, and...
// The best solution would be for FROST itself to support multi-nonce protocols, if there is
// sufficient reason for it to
additional_nonces: Vec<(Scalar, Scalar)>,
nonces: HashMap<u16, Vec<(ProjectivePoint, ProjectivePoint)>>,
sum: Vec<(ProjectivePoint, ProjectivePoint)>,
challenge: Scalar, challenge: Scalar,
binding: Scalar,
proof: Option<ChaumProof> proof: Option<ChaumProof>
} }
impl ChaumMultisig { impl ChaumMultisig {
pub fn new(mut transcript: Transcript, witness: ChaumWitness) -> ChaumMultisig { pub fn new(mut transcript: RecommendedTranscript, witness: ChaumWitness) -> ChaumMultisig {
transcript.domain_separate(b"Chaum"); transcript.domain_separate(b"Chaum");
transcript.append_message(b"generators", &*GENERATORS_TRANSCRIPT); transcript.append_message(b"generators", &*GENERATORS_TRANSCRIPT);
transcript.append_message(b"statement", &witness.statement.transcript()); transcript.append_message(b"statement", &witness.statement.transcript());
@@ -53,11 +35,6 @@ impl ChaumMultisig {
len, len,
witness, witness,
additional_nonces: Vec::with_capacity(len - 1),
nonces: HashMap::new(),
sum: vec![(ProjectivePoint::IDENTITY, ProjectivePoint::IDENTITY); len - 1],
binding: Scalar::zero(),
challenge: Scalar::zero(), challenge: Scalar::zero(),
proof: None proof: None
} }
@@ -65,100 +42,57 @@ impl ChaumMultisig {
} }
impl Algorithm<Secp256k1> for ChaumMultisig { impl Algorithm<Secp256k1> for ChaumMultisig {
type Transcript = Transcript; type Transcript = RecommendedTranscript;
type Signature = ChaumProof; type Signature = ChaumProof;
fn transcript(&mut self) -> &mut Self::Transcript { fn transcript(&mut self) -> &mut Self::Transcript {
&mut self.transcript &mut self.transcript
} }
fn nonces(&self) -> Vec<Vec<ProjectivePoint>> {
vec![vec![*G]; self.len]
}
fn preprocess_addendum<R: RngCore + CryptoRng>( fn preprocess_addendum<R: RngCore + CryptoRng>(
&mut self, &mut self,
rng: &mut R, _: &mut R,
_: &MultisigView<Secp256k1>, _: &FrostView<Secp256k1>
_: &[Scalar; 2],
) -> Vec<u8> { ) -> Vec<u8> {
// While FROST will provide D_0 and E_0, we need D_i and E_i vec![]
let mut res = Vec::with_capacity((self.len - 1) * 33);
for _ in 1 .. self.len {
let d = Scalar::random(&mut *rng);
let e = Scalar::random(&mut *rng);
res.extend(&(*G * d).to_bytes());
res.extend(&(*G * e).to_bytes());
self.additional_nonces.push((d, e));
}
res
} }
fn process_addendum( fn process_addendum(
&mut self, &mut self,
_: &MultisigView<Secp256k1>, _: &FrostView<Secp256k1>,
l: u16, _: u16,
_: &[ProjectivePoint; 2], _: &[u8]
addendum: &[u8],
) -> Result<(), FrostError> { ) -> Result<(), FrostError> {
let mut nonces = Vec::with_capacity(self.len - 1);
for i in 0 .. (self.len - 1) {
let p = i * 2;
let (D, E) = (|| Ok((
Secp256k1::G_from_slice(&addendum[(p * 33) .. ((p + 1) * 33)])?,
Secp256k1::G_from_slice(&addendum[((p + 1) * 33) .. ((p + 2) * 33)])?
)))().map_err(|_: CurveError| FrostError::InvalidCommitment(l))?;
self.transcript.append_message(b"participant", &l.to_be_bytes());
self.transcript.append_message(b"commitment_D_additional", &D.to_bytes());
self.transcript.append_message(b"commitment_E_additional", &E.to_bytes());
self.sum[i].0 += D;
self.sum[i].1 += E;
nonces.push((D, E));
}
self.nonces.insert(l, nonces);
Ok(()) Ok(())
} }
fn sign_share( fn sign_share(
&mut self, &mut self,
view: &MultisigView<Secp256k1>, view: &FrostView<Secp256k1>,
sum_0: ProjectivePoint, nonce_sums: &[Vec<ProjectivePoint>],
binding: Scalar, nonces: &[Scalar],
nonce_0: Scalar, _: &[u8]
_: &[u8],
) -> Scalar { ) -> Scalar {
self.binding = binding;
let (rs, t3, mut commitments) = ChaumProof::r_t_commitments( let (rs, t3, mut commitments) = ChaumProof::r_t_commitments(
&mut ChaCha12Rng::from_seed(self.transcript.rng_seed(b"r_t")), &mut ChaCha12Rng::from_seed(self.transcript.rng_seed(b"r_t")),
&self.witness &self.witness
); );
let mut sum = ProjectivePoint::IDENTITY;
for i in 0 .. self.len { for i in 0 .. self.len {
let nonce = if i == 0 { commitments.A2[i] += nonce_sums[i][0];
sum_0
} else {
self.sum[i - 1].0 + (self.sum[i - 1].1 * binding)
};
commitments.A2[i] += nonce;
sum += nonce;
}
commitments.A1 += sum;
let mut nonces = Vec::with_capacity(self.len);
for i in 0 .. self.len {
nonces.push(
if i == 0 {
nonce_0
} else {
self.additional_nonces[i - 1].0 + (self.additional_nonces[i - 1].1 * binding)
}
);
} }
commitments.A1 += nonce_sums.iter().map(|sum| sum[0]).sum::<ProjectivePoint>();
let (challenge, proof) = ChaumProof::t_prove( let (challenge, proof) = ChaumProof::t_prove(
&self.witness, &self.witness,
&rs, &rs,
t3, t3,
commitments, commitments,
&nonces, nonces,
&view.secret_share() &view.secret_share()
); );
self.challenge = challenge; self.challenge = challenge;
@@ -170,7 +104,7 @@ impl Algorithm<Secp256k1> for ChaumMultisig {
fn verify( fn verify(
&self, &self,
_: ProjectivePoint, _: ProjectivePoint,
_: ProjectivePoint, _: &[Vec<ProjectivePoint>],
sum: Scalar sum: Scalar
) -> Option<Self::Signature> { ) -> Option<Self::Signature> {
let mut proof = self.proof.clone().unwrap(); let mut proof = self.proof.clone().unwrap();
@@ -180,23 +114,17 @@ impl Algorithm<Secp256k1> for ChaumMultisig {
fn verify_share( fn verify_share(
&self, &self,
l: u16, _: u16,
verification_share: ProjectivePoint, verification_share: ProjectivePoint,
nonce: ProjectivePoint, nonces: &[Vec<ProjectivePoint>],
share: Scalar, share: Scalar
) -> bool { ) -> bool {
let mut t2 = ProjectivePoint::IDENTITY; let mut t2 = ProjectivePoint::IDENTITY;
let mut accum = self.challenge; let mut accum = self.challenge;
for i in 0 .. self.len { for i in 0 .. self.len {
let nonce = if i == 0 { t2 += nonces[i][0] + (verification_share * accum);
nonce
} else {
self.nonces[&l][i - 1].0 + (self.nonces[&l][i - 1].1 * self.binding)
};
t2 += nonce + (verification_share * accum);
accum *= self.challenge; accum *= self.challenge;
} }
(*G * share) == t2 (*G * share) == t2
} }
} }

View File

@@ -1,100 +0,0 @@
use core::convert::TryInto;
use ff::PrimeField;
use group::GroupEncoding;
use sha2::{Digest, Sha256, Sha512};
use k256::{
elliptic_curve::{generic_array::GenericArray, bigint::{ArrayEncoding, U512}, ops::Reduce},
Scalar,
ProjectivePoint
};
use transcript::DigestTranscript;
use frost::{CurveError, Curve};
use crate::spark::G;
const CONTEXT: &[u8] = b"FROST-K256-SHA";
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub(crate) struct Secp256k1;
impl Curve for Secp256k1 {
type F = Scalar;
type G = ProjectivePoint;
type T = ProjectivePoint;
fn id() -> String {
"secp256k1".to_string()
}
fn id_len() -> u8 {
u8::try_from(Self::id().len()).unwrap()
}
fn generator() -> Self::G {
*G
}
fn generator_table() -> Self::T {
*G
}
fn little_endian() -> bool {
false
}
// The IETF draft doesn't specify a secp256k1 ciphersuite
// This test just uses the simplest ciphersuite which would still be viable to deploy
// The comparable P-256 curve uses hash_to_field from the Hash To Curve IETF draft with a context
// string and further DST for H1 ("rho") and H3 ("digest"). With lack of hash_to_field, wide
// reduction is used
fn hash_msg(msg: &[u8]) -> Vec<u8> {
(&Sha256::digest(&[CONTEXT, b"digest", msg].concat())).to_vec()
}
fn hash_binding_factor(binding: &[u8]) -> Self::F {
Self::hash_to_F(&[CONTEXT, b"rho", binding].concat())
}
fn hash_to_F(data: &[u8]) -> Self::F {
Scalar::from_uint_reduced(U512::from_be_byte_array(Sha512::digest(data)))
}
fn F_len() -> usize {
32
}
fn G_len() -> usize {
33
}
fn F_from_slice(slice: &[u8]) -> Result<Self::F, CurveError> {
let bytes: [u8; 32] = slice.try_into()
.map_err(|_| CurveError::InvalidLength(32, slice.len()))?;
let scalar = Scalar::from_repr(bytes.into());
if scalar.is_none().unwrap_u8() == 1 {
Err(CurveError::InvalidScalar)?;
}
Ok(scalar.unwrap())
}
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError> {
let point = ProjectivePoint::from_bytes(GenericArray::from_slice(slice));
if point.is_none().unwrap_u8() == 1 {
Err(CurveError::InvalidScalar)?;
}
Ok(point.unwrap())
}
fn F_to_bytes(f: &Self::F) -> Vec<u8> {
(&f.to_bytes()).to_vec()
}
fn G_to_bytes(g: &Self::G) -> Vec<u8> {
(&g.to_bytes()).to_vec()
}
}
pub type Transcript = DigestTranscript::<blake2::Blake2b512>;

View File

@@ -7,11 +7,12 @@ use k256::{ProjectivePoint, CompressedPoint};
pub mod chaum; pub mod chaum;
#[cfg(feature = "frost")]
pub(crate) mod frost;
// Extremely basic hash to curve, which should not be used, yet which offers the needed generators // Extremely basic hash to curve, which should not be used, yet which offers the needed generators
fn generator(letter: u8) -> ProjectivePoint { fn generator(letter: u8) -> ProjectivePoint {
if letter == b'G' {
return ProjectivePoint::GENERATOR;
}
let mut point = [2; 33]; let mut point = [2; 33];
let mut g = b"Generator ".to_vec(); let mut g = b"Generator ".to_vec();

View File

@@ -4,11 +4,11 @@ use ff::Field;
use k256::Scalar; use k256::Scalar;
#[cfg(feature = "multisig")] #[cfg(feature = "multisig")]
use frost::tests::{key_gen, algorithm_machines, sign}; use transcript::{Transcript, RecommendedTranscript};
#[cfg(feature = "multisig")]
use frost::{curve::Secp256k1, tests::{key_gen, algorithm_machines, sign}};
use crate::spark::{F, G, H, U, chaum::*}; use crate::spark::{F, G, H, U, chaum::*};
#[cfg(feature = "multisig")]
use crate::spark::frost::{Transcript, Secp256k1};
#[test] #[test]
fn chaum() { fn chaum() {
@@ -63,7 +63,7 @@ fn chaum_multisig() {
&mut OsRng, &mut OsRng,
algorithm_machines( algorithm_machines(
&mut OsRng, &mut OsRng,
ChaumMultisig::new(Transcript::new(b"Firo Serai Chaum Test".to_vec()), witness), ChaumMultisig::new(RecommendedTranscript::new(b"Firo Serai Chaum Test"), witness),
&keys &keys
), ),
&[] &[]