Remove Tendermint for GRANDPA

Updates to polkadot-v0.9.40, with a variety of dependency updates accordingly.
Substrate thankfully now uses k256 0.13, pathing the way for #256. We couldn't
upgrade to polkadot-v0.9.40 without this due to polkadot-v0.9.40 having
fundamental changes to syncing. While we could've updated tendermint, it's not
worth the continued development effort given its inability to work with
multiple validator sets.

Purges sc-tendermint. Keeps tendermint-machine for #163.

Closes #137, #148, #157, #171. #96 and #99 should be re-scoped/clarified. #134
and #159 also should be clarified. #169 is also no longer a priority since
we're only considering temporal deployments of tendermint. #170 also isn't
since we're looking at effectively sharded validator sets, so there should
be no singular large set needing high performance.
This commit is contained in:
Luke Parker
2023-03-26 08:43:01 -04:00
parent 534e1bb11d
commit aea6ac104f
42 changed files with 1089 additions and 2143 deletions

139
tendermint/src/block.rs Normal file
View File

@@ -0,0 +1,139 @@
use std::{
sync::Arc,
collections::{HashSet, HashMap},
};
use crate::{
time::CanonicalInstant,
ext::{RoundNumber, BlockNumber, Block, Network},
round::RoundData,
message_log::MessageLog,
Step, Data, DataFor, Message, MessageFor,
};
pub(crate) struct BlockData<N: Network> {
pub(crate) number: BlockNumber,
pub(crate) validator_id: Option<N::ValidatorId>,
pub(crate) proposal: Option<N::Block>,
pub(crate) log: MessageLog<N>,
pub(crate) slashes: HashSet<N::ValidatorId>,
// We track the end times of each round for two reasons:
// 1) Knowing the start time of the next round
// 2) Validating precommits, which include the end time of the round which produced it
// This HashMap contains the end time of the round we're currently in and every round prior
pub(crate) end_time: HashMap<RoundNumber, CanonicalInstant>,
pub(crate) round: Option<RoundData<N>>,
pub(crate) locked: Option<(RoundNumber, <N::Block as Block>::Id)>,
pub(crate) valid: Option<(RoundNumber, N::Block)>,
}
impl<N: Network> BlockData<N> {
pub(crate) fn new(
weights: Arc<N::Weights>,
number: BlockNumber,
validator_id: Option<N::ValidatorId>,
proposal: Option<N::Block>,
) -> BlockData<N> {
BlockData {
number,
validator_id,
proposal,
log: MessageLog::new(weights),
slashes: HashSet::new(),
end_time: HashMap::new(),
// The caller of BlockData::new is expected to be populated after by the caller
round: None,
locked: None,
valid: None,
}
}
pub(crate) fn round(&self) -> &RoundData<N> {
self.round.as_ref().unwrap()
}
pub(crate) fn round_mut(&mut self) -> &mut RoundData<N> {
self.round.as_mut().unwrap()
}
// Populate the end time up to the specified round
// This is generally used when moving to the next round, where this will only populate one time,
// yet is also used when jumping rounds (when 33% of the validators are on a round ahead of us)
pub(crate) fn populate_end_time(&mut self, round: RoundNumber) {
// Starts from the current round since we only start the current round once we have have all
// the prior time data
for r in (self.round().number.0 + 1) ..= round.0 {
self.end_time.insert(
RoundNumber(r),
RoundData::<N>::new(RoundNumber(r), self.end_time[&RoundNumber(r - 1)]).end_time(),
);
}
}
// Start a new round. Optionally takes in the time for when this is the first round, and the time
// isn't simply the time of the prior round (yet rather the prior block). Returns the proposal
// data, if we are the proposer.
pub(crate) fn new_round(
&mut self,
round: RoundNumber,
proposer: N::ValidatorId,
time: Option<CanonicalInstant>,
) -> Option<DataFor<N>> {
debug_assert_eq!(round.0 == 0, time.is_some());
// If this is the first round, we don't have a prior round's end time to use as the start
// We use the passed in time instead
// If this isn't the first round, ensure we have the prior round's end time by populating the
// map with all rounds till this round
// This can happen we jump from round x to round x+n, where n != 1
// The paper says to do so whenever you observe a sufficient amount of peers on a higher round
if round.0 != 0 {
self.populate_end_time(round);
}
// 11-13
self.round = Some(RoundData::<N>::new(
round,
time.unwrap_or_else(|| self.end_time[&RoundNumber(round.0 - 1)]),
));
self.end_time.insert(round, self.round().end_time());
// 14-21
if Some(proposer) == self.validator_id {
let (round, block) = self.valid.clone().unzip();
block.or_else(|| self.proposal.clone()).map(|block| Data::Proposal(round, block))
} else {
self.round_mut().set_timeout(Step::Propose);
None
}
}
// Transform Data into an actual Message, using the contextual data from this block
pub(crate) fn message(&mut self, data: DataFor<N>) -> Option<MessageFor<N>> {
debug_assert_eq!(
self.round().step,
match data.step() {
Step::Propose | Step::Prevote => Step::Propose,
Step::Precommit => Step::Prevote,
},
);
// Tendermint always sets the round's step to whatever it just broadcasted
// Consolidate all of those here to ensure they aren't missed by an oversight
// 27, 33, 41, 46, 60, 64
self.round_mut().step = data.step();
// Only return a message to if we're actually a current validator
self.validator_id.map(|validator_id| Message {
sender: validator_id,
block: self.number,
round: self.round().number,
data,
})
}
}

274
tendermint/src/ext.rs Normal file
View File

@@ -0,0 +1,274 @@
use core::{hash::Hash, fmt::Debug};
use std::{sync::Arc, collections::HashSet};
use async_trait::async_trait;
use thiserror::Error;
use parity_scale_codec::{Encode, Decode};
use crate::{SignedMessageFor, commit_msg};
/// An alias for a series of traits required for a type to be usable as a validator ID,
/// automatically implemented for all types satisfying those traits.
pub trait ValidatorId:
Send + Sync + Clone + Copy + PartialEq + Eq + Hash + Debug + Encode + Decode
{
}
impl<V: Send + Sync + Clone + Copy + PartialEq + Eq + Hash + Debug + Encode + Decode> ValidatorId
for V
{
}
/// An alias for a series of traits required for a type to be usable as a signature,
/// automatically implemented for all types satisfying those traits.
pub trait Signature: Send + Sync + Clone + PartialEq + Debug + Encode + Decode {}
impl<S: Send + Sync + Clone + PartialEq + Debug + Encode + Decode> Signature for S {}
// Type aliases which are distinct according to the type system
/// A struct containing a Block Number, wrapped to have a distinct type.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Encode, Decode)]
pub struct BlockNumber(pub u64);
/// A struct containing a round number, wrapped to have a distinct type.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Encode, Decode)]
pub struct RoundNumber(pub u32);
/// A signer for a validator.
#[async_trait]
pub trait Signer: Send + Sync {
// Type used to identify validators.
type ValidatorId: ValidatorId;
/// Signature type.
type Signature: Signature;
/// Returns the validator's current ID. Returns None if they aren't a current validator.
async fn validator_id(&self) -> Option<Self::ValidatorId>;
/// Sign a signature with the current validator's private key.
async fn sign(&self, msg: &[u8]) -> Self::Signature;
}
#[async_trait]
impl<S: Signer> Signer for Arc<S> {
type ValidatorId = S::ValidatorId;
type Signature = S::Signature;
async fn validator_id(&self) -> Option<Self::ValidatorId> {
self.as_ref().validator_id().await
}
async fn sign(&self, msg: &[u8]) -> Self::Signature {
self.as_ref().sign(msg).await
}
}
/// A signature scheme used by validators.
pub trait SignatureScheme: Send + Sync {
// Type used to identify validators.
type ValidatorId: ValidatorId;
/// Signature type.
type Signature: Signature;
/// Type representing an aggregate signature. This would presumably be a BLS signature,
/// yet even with Schnorr signatures
/// [half-aggregation is possible](https://eprint.iacr.org/2021/350).
/// It could even be a threshold signature scheme, though that's currently unexpected.
type AggregateSignature: Signature;
/// Type representing a signer of this scheme.
type Signer: Signer<ValidatorId = Self::ValidatorId, Signature = Self::Signature>;
/// Verify a signature from the validator in question.
#[must_use]
fn verify(&self, validator: Self::ValidatorId, msg: &[u8], sig: &Self::Signature) -> bool;
/// Aggregate signatures.
fn aggregate(sigs: &[Self::Signature]) -> Self::AggregateSignature;
/// Verify an aggregate signature for the list of signers.
#[must_use]
fn verify_aggregate(
&self,
signers: &[Self::ValidatorId],
msg: &[u8],
sig: &Self::AggregateSignature,
) -> bool;
}
impl<S: SignatureScheme> SignatureScheme for Arc<S> {
type ValidatorId = S::ValidatorId;
type Signature = S::Signature;
type AggregateSignature = S::AggregateSignature;
type Signer = S::Signer;
fn verify(&self, validator: Self::ValidatorId, msg: &[u8], sig: &Self::Signature) -> bool {
self.as_ref().verify(validator, msg, sig)
}
fn aggregate(sigs: &[Self::Signature]) -> Self::AggregateSignature {
S::aggregate(sigs)
}
#[must_use]
fn verify_aggregate(
&self,
signers: &[Self::ValidatorId],
msg: &[u8],
sig: &Self::AggregateSignature,
) -> bool {
self.as_ref().verify_aggregate(signers, msg, sig)
}
}
/// A commit for a specific block. The list of validators have weight exceeding the threshold for
/// a valid commit.
#[derive(Clone, PartialEq, Debug, Encode, Decode)]
pub struct Commit<S: SignatureScheme> {
/// End time of the round which created this commit, used as the start time of the next block.
pub end_time: u64,
/// Validators participating in the signature.
pub validators: Vec<S::ValidatorId>,
/// Aggregate signature.
pub signature: S::AggregateSignature,
}
/// Weights for the validators present.
pub trait Weights: Send + Sync {
type ValidatorId: ValidatorId;
/// Total weight of all validators.
fn total_weight(&self) -> u64;
/// Weight for a specific validator.
fn weight(&self, validator: Self::ValidatorId) -> u64;
/// Threshold needed for BFT consensus.
fn threshold(&self) -> u64 {
((self.total_weight() * 2) / 3) + 1
}
/// Threshold preventing BFT consensus.
fn fault_thresold(&self) -> u64 {
(self.total_weight() - self.threshold()) + 1
}
/// Weighted round robin function.
fn proposer(&self, block: BlockNumber, round: RoundNumber) -> Self::ValidatorId;
}
impl<W: Weights> Weights for Arc<W> {
type ValidatorId = W::ValidatorId;
fn total_weight(&self) -> u64 {
self.as_ref().total_weight()
}
fn weight(&self, validator: Self::ValidatorId) -> u64 {
self.as_ref().weight(validator)
}
fn proposer(&self, block: BlockNumber, round: RoundNumber) -> Self::ValidatorId {
self.as_ref().proposer(block, round)
}
}
/// Simplified error enum representing a block's validity.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Error, Encode, Decode)]
pub enum BlockError {
/// Malformed block which is wholly invalid.
#[error("invalid block")]
Fatal,
/// Valid block by syntax, with semantics which may or may not be valid yet are locally
/// considered invalid. If a block fails to validate with this, a slash will not be triggered.
#[error("invalid block under local view")]
Temporal,
}
/// Trait representing a Block.
pub trait Block: Send + Sync + Clone + PartialEq + Debug + Encode + Decode {
// Type used to identify blocks. Presumably a cryptographic hash of the block.
type Id: Send + Sync + Copy + Clone + PartialEq + AsRef<[u8]> + Debug + Encode + Decode;
/// Return the deterministic, unique ID for this block.
fn id(&self) -> Self::Id;
}
#[cfg(feature = "substrate")]
impl<B: sp_runtime::traits::Block> Block for B {
type Id = B::Hash;
fn id(&self) -> B::Hash {
self.hash()
}
}
/// Trait representing the distributed system Tendermint is providing consensus over.
#[async_trait]
pub trait Network: Send + Sync {
// Type used to identify validators.
type ValidatorId: ValidatorId;
/// Signature scheme used by validators.
type SignatureScheme: SignatureScheme<ValidatorId = Self::ValidatorId>;
/// Object representing the weights of validators.
type Weights: Weights<ValidatorId = Self::ValidatorId>;
/// Type used for ordered blocks of information.
type Block: Block;
/// Maximum block processing time in seconds. This should include both the actual processing time
/// and the time to download the block.
const BLOCK_PROCESSING_TIME: u32;
/// Network latency time in seconds.
const LATENCY_TIME: u32;
/// The block time is defined as the processing time plus three times the latency.
fn block_time() -> u32 {
Self::BLOCK_PROCESSING_TIME + (3 * Self::LATENCY_TIME)
}
/// Return a handle on the signer in use, usable for the entire lifetime of the machine.
fn signer(&self) -> <Self::SignatureScheme as SignatureScheme>::Signer;
/// Return a handle on the signing scheme in use, usable for the entire lifetime of the machine.
fn signature_scheme(&self) -> Self::SignatureScheme;
/// Return a handle on the validators' weights, usable for the entire lifetime of the machine.
fn weights(&self) -> Self::Weights;
/// Verify a commit for a given block. Intended for use when syncing or when not an active
/// validator.
#[must_use]
fn verify_commit(
&self,
id: <Self::Block as Block>::Id,
commit: &Commit<Self::SignatureScheme>,
) -> bool {
if commit.validators.iter().collect::<HashSet<_>>().len() != commit.validators.len() {
return false;
}
if !self.signature_scheme().verify_aggregate(
&commit.validators,
&commit_msg(commit.end_time, id.as_ref()),
&commit.signature,
) {
return false;
}
let weights = self.weights();
commit.validators.iter().map(|v| weights.weight(*v)).sum::<u64>() >= weights.threshold()
}
/// Broadcast a message to the other validators. If authenticated channels have already been
/// established, this will double-authenticate. Switching to unauthenticated channels in a system
/// already providing authenticated channels is not recommended as this is a minor, temporal
/// inefficiency while downgrading channels may have wider implications.
async fn broadcast(&mut self, msg: SignedMessageFor<Self>);
/// Trigger a slash for the validator in question who was definitively malicious.
/// The exact process of triggering a slash is undefined and left to the network as a whole.
async fn slash(&mut self, validator: Self::ValidatorId);
/// Validate a block.
async fn validate(&mut self, block: &Self::Block) -> Result<(), BlockError>;
/// Add a block, returning the proposal for the next one. It's possible a block, which was never
/// validated or even failed validation, may be passed here if a supermajority of validators did
/// consider it valid and created a commit for it. This deviates from the paper which will have a
/// local node refuse to decide on a block it considers invalid. This library acknowledges the
/// network did decide on it, leaving handling of it to the network, and outside of this scope.
async fn add_block(
&mut self,
block: Self::Block,
commit: Commit<Self::SignatureScheme>,
) -> Option<Self::Block>;
}

648
tendermint/src/lib.rs Normal file
View File

@@ -0,0 +1,648 @@
use core::fmt::Debug;
use std::{
sync::Arc,
time::{SystemTime, Instant, Duration},
collections::VecDeque,
};
use log::debug;
use parity_scale_codec::{Encode, Decode};
use futures::{
FutureExt, StreamExt,
future::{self, Fuse},
channel::mpsc,
};
use tokio::time::sleep;
mod time;
use time::{sys_time, CanonicalInstant};
mod round;
mod block;
use block::BlockData;
pub(crate) mod message_log;
/// Traits and types of the external network being integrated with to provide consensus over.
pub mod ext;
use ext::*;
pub(crate) fn commit_msg(end_time: u64, id: &[u8]) -> Vec<u8> {
[&end_time.to_le_bytes(), id].concat().to_vec()
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Encode, Decode)]
enum Step {
Propose,
Prevote,
Precommit,
}
#[derive(Clone, Debug, Encode, Decode)]
enum Data<B: Block, S: Signature> {
Proposal(Option<RoundNumber>, B),
Prevote(Option<B::Id>),
Precommit(Option<(B::Id, S)>),
}
impl<B: Block, S: Signature> PartialEq for Data<B, S> {
fn eq(&self, other: &Data<B, S>) -> bool {
match (self, other) {
(Data::Proposal(valid_round, block), Data::Proposal(valid_round2, block2)) => {
(valid_round == valid_round2) && (block == block2)
}
(Data::Prevote(id), Data::Prevote(id2)) => id == id2,
(Data::Precommit(None), Data::Precommit(None)) => true,
(Data::Precommit(Some((id, _))), Data::Precommit(Some((id2, _)))) => id == id2,
_ => false,
}
}
}
impl<B: Block, S: Signature> Data<B, S> {
fn step(&self) -> Step {
match self {
Data::Proposal(..) => Step::Propose,
Data::Prevote(..) => Step::Prevote,
Data::Precommit(..) => Step::Precommit,
}
}
}
#[derive(Clone, PartialEq, Debug, Encode, Decode)]
struct Message<V: ValidatorId, B: Block, S: Signature> {
sender: V,
block: BlockNumber,
round: RoundNumber,
data: Data<B, S>,
}
/// A signed Tendermint consensus message to be broadcast to the other validators.
#[derive(Clone, PartialEq, Debug, Encode, Decode)]
pub struct SignedMessage<V: ValidatorId, B: Block, S: Signature> {
msg: Message<V, B, S>,
sig: S,
}
impl<V: ValidatorId, B: Block, S: Signature> SignedMessage<V, B, S> {
/// Number of the block this message is attempting to add to the chain.
pub fn block(&self) -> BlockNumber {
self.msg.block
}
#[must_use]
pub fn verify_signature<Scheme: SignatureScheme<ValidatorId = V, Signature = S>>(
&self,
signer: &Scheme,
) -> bool {
signer.verify(self.msg.sender, &self.msg.encode(), &self.sig)
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
enum TendermintError<V: ValidatorId> {
Malicious(V),
Temporal,
}
// Type aliases to abstract over generic hell
pub(crate) type DataFor<N> =
Data<<N as Network>::Block, <<N as Network>::SignatureScheme as SignatureScheme>::Signature>;
pub(crate) type MessageFor<N> = Message<
<N as Network>::ValidatorId,
<N as Network>::Block,
<<N as Network>::SignatureScheme as SignatureScheme>::Signature,
>;
/// Type alias to the SignedMessage type for a given Network
pub type SignedMessageFor<N> = SignedMessage<
<N as Network>::ValidatorId,
<N as Network>::Block,
<<N as Network>::SignatureScheme as SignatureScheme>::Signature,
>;
/// A machine executing the Tendermint protocol.
pub struct TendermintMachine<N: Network> {
network: N,
signer: <N::SignatureScheme as SignatureScheme>::Signer,
validators: N::SignatureScheme,
weights: Arc<N::Weights>,
queue: VecDeque<MessageFor<N>>,
msg_recv: mpsc::UnboundedReceiver<SignedMessageFor<N>>,
#[allow(clippy::type_complexity)]
step_recv: mpsc::UnboundedReceiver<(BlockNumber, Commit<N::SignatureScheme>, Option<N::Block>)>,
block: BlockData<N>,
}
pub type StepSender<N> = mpsc::UnboundedSender<(
BlockNumber,
Commit<<N as Network>::SignatureScheme>,
Option<<N as Network>::Block>,
)>;
pub type MessageSender<N> = mpsc::UnboundedSender<SignedMessageFor<N>>;
/// A Tendermint machine and its channel to receive messages from the gossip layer over.
pub struct TendermintHandle<N: Network> {
/// Channel to trigger the machine to move to the next block.
/// Takes in the the previous block's commit, along with the new proposal.
pub step: StepSender<N>,
/// Channel to send messages received from the P2P layer.
pub messages: MessageSender<N>,
/// Tendermint machine to be run on an asynchronous task.
pub machine: TendermintMachine<N>,
}
impl<N: Network + 'static> TendermintMachine<N> {
// Broadcast the given piece of data
// Tendermint messages always specify their block/round, yet Tendermint only ever broadcasts for
// the current block/round. Accordingly, instead of manually fetching those at every call-site,
// this function can simply pass the data to the block which can contextualize it
fn broadcast(&mut self, data: DataFor<N>) {
if let Some(msg) = self.block.message(data) {
// Push it on to the queue. This is done so we only handle one message at a time, and so we
// can handle our own message before broadcasting it. That way, we fail before before
// becoming malicious
self.queue.push_back(msg);
}
}
// Start a new round. Returns true if we were the proposer
fn round(&mut self, round: RoundNumber, time: Option<CanonicalInstant>) -> bool {
if let Some(data) =
self.block.new_round(round, self.weights.proposer(self.block.number, round), time)
{
self.broadcast(data);
true
} else {
false
}
}
// 53-54
async fn reset(&mut self, end_round: RoundNumber, proposal: Option<N::Block>) {
// Ensure we have the end time data for the last round
self.block.populate_end_time(end_round);
// Sleep until this round ends
let round_end = self.block.end_time[&end_round];
sleep(round_end.instant().saturating_duration_since(Instant::now())).await;
// Clear our outbound message queue
self.queue = VecDeque::new();
// Create the new block
self.block = BlockData::new(
self.weights.clone(),
BlockNumber(self.block.number.0 + 1),
self.signer.validator_id().await,
proposal,
);
// Start the first round
self.round(RoundNumber(0), Some(round_end));
}
async fn reset_by_commit(
&mut self,
commit: Commit<N::SignatureScheme>,
proposal: Option<N::Block>,
) {
let mut round = self.block.round().number;
// If this commit is for a round we don't have, jump up to it
while self.block.end_time[&round].canonical() < commit.end_time {
round.0 += 1;
self.block.populate_end_time(round);
}
// If this commit is for a prior round, find it
while self.block.end_time[&round].canonical() > commit.end_time {
if round.0 == 0 {
panic!("commit isn't for this machine's next block");
}
round.0 -= 1;
}
debug_assert_eq!(self.block.end_time[&round].canonical(), commit.end_time);
self.reset(round, proposal).await;
}
async fn slash(&mut self, validator: N::ValidatorId) {
if !self.block.slashes.contains(&validator) {
debug!(target: "tendermint", "Slashing validator {:?}", validator);
self.block.slashes.insert(validator);
self.network.slash(validator).await;
}
}
/// Create a new Tendermint machine, from the specified point, with the specified block as the
/// one to propose next. This will return a channel to send messages from the gossip layer and
/// the machine itself. The machine should have `run` called from an asynchronous task.
#[allow(clippy::new_ret_no_self)]
pub async fn new(
network: N,
last_block: BlockNumber,
last_time: u64,
proposal: N::Block,
) -> TendermintHandle<N> {
let (msg_send, msg_recv) = mpsc::unbounded();
let (step_send, step_recv) = mpsc::unbounded();
TendermintHandle {
step: step_send,
messages: msg_send,
machine: {
let sys_time = sys_time(last_time);
// If the last block hasn't ended yet, sleep until it has
sleep(sys_time.duration_since(SystemTime::now()).unwrap_or(Duration::ZERO)).await;
let signer = network.signer();
let validators = network.signature_scheme();
let weights = Arc::new(network.weights());
let validator_id = signer.validator_id().await;
// 01-10
let mut machine = TendermintMachine {
network,
signer,
validators,
weights: weights.clone(),
queue: VecDeque::new(),
msg_recv,
step_recv,
block: BlockData::new(
weights,
BlockNumber(last_block.0 + 1),
validator_id,
Some(proposal),
),
};
// The end time of the last block is the start time for this one
// The Commit explicitly contains the end time, so loading the last commit will provide
// this. The only exception is for the genesis block, which doesn't have a commit
// Using the genesis time in place will cause this block to be created immediately
// after it, without the standard amount of separation (so their times will be
// equivalent or minimally offset)
// For callers wishing to avoid this, they should pass (0, GENESIS + N::block_time())
machine.round(RoundNumber(0), Some(CanonicalInstant::new(last_time)));
machine
},
}
}
pub async fn run(mut self) {
loop {
// Also create a future for if the queue has a message
// Does not pop_front as if another message has higher priority, its future will be handled
// instead in this loop, and the popped value would be dropped with the next iteration
// While no other message has a higher priority right now, this is a safer practice
let mut queue_future =
if self.queue.is_empty() { Fuse::terminated() } else { future::ready(()).fuse() };
if let Some((broadcast, msg)) = futures::select_biased! {
// Handle a new block occuring externally (an external sync loop)
// Has the highest priority as it makes all other futures here irrelevant
msg = self.step_recv.next() => {
if let Some((block_number, commit, proposal)) = msg {
// Commit is for a block we've already moved past
if block_number != self.block.number {
continue;
}
self.reset_by_commit(commit, proposal).await;
None
} else {
break;
}
},
// Handle our messages
_ = queue_future => {
Some((true, self.queue.pop_front().unwrap()))
},
// Handle any timeouts
step = self.block.round().timeout_future().fuse() => {
// Remove the timeout so it doesn't persist, always being the selected future due to bias
// While this does enable the timeout to be entered again, the timeout setting code will
// never attempt to add a timeout after its timeout has expired
self.block.round_mut().timeouts.remove(&step);
// Only run if it's still the step in question
if self.block.round().step == step {
match step {
Step::Propose => {
// Slash the validator for not proposing when they should've
debug!(target: "tendermint", "Validator didn't propose when they should have");
self.slash(
self.weights.proposer(self.block.number, self.block.round().number)
).await;
self.broadcast(Data::Prevote(None));
},
Step::Prevote => self.broadcast(Data::Precommit(None)),
Step::Precommit => {
self.round(RoundNumber(self.block.round().number.0 + 1), None);
continue;
}
}
}
None
},
// Handle any received messages
msg = self.msg_recv.next() => {
if let Some(msg) = msg {
if !msg.verify_signature(&self.validators) {
continue;
}
Some((false, msg.msg))
} else {
break;
}
}
} {
let res = self.message(msg.clone()).await;
if res.is_err() && broadcast {
panic!("honest node had invalid behavior");
}
match res {
Ok(None) => (),
Ok(Some(block)) => {
let mut validators = vec![];
let mut sigs = vec![];
// Get all precommits for this round
for (validator, msgs) in &self.block.log.log[&msg.round] {
if let Some(Data::Precommit(Some((id, sig)))) = msgs.get(&Step::Precommit) {
// If this precommit was for this block, include it
if id == &block.id() {
validators.push(*validator);
sigs.push(sig.clone());
}
}
}
let commit = Commit {
end_time: self.block.end_time[&msg.round].canonical(),
validators,
signature: N::SignatureScheme::aggregate(&sigs),
};
debug_assert!(self.network.verify_commit(block.id(), &commit));
let proposal = self.network.add_block(block, commit).await;
self.reset(msg.round, proposal).await;
}
Err(TendermintError::Malicious(validator)) => self.slash(validator).await,
Err(TendermintError::Temporal) => (),
}
if broadcast {
let sig = self.signer.sign(&msg.encode()).await;
self.network.broadcast(SignedMessage { msg, sig }).await;
}
}
}
}
// Returns Ok(true) if this was a Precommit which had its signature validated
// Returns Ok(false) if it wasn't a Precommit or the signature wasn't validated yet
// Returns Err if the signature was invalid
fn verify_precommit_signature(
&self,
sender: N::ValidatorId,
round: RoundNumber,
data: &DataFor<N>,
) -> Result<bool, TendermintError<N::ValidatorId>> {
if let Data::Precommit(Some((id, sig))) = data {
// Also verify the end_time of the commit
// Only perform this verification if we already have the end_time
// Else, there's a DoS where we receive a precommit for some round infinitely in the future
// which forces us to calculate every end time
if let Some(end_time) = self.block.end_time.get(&round) {
if !self.validators.verify(sender, &commit_msg(end_time.canonical(), id.as_ref()), sig) {
debug!(target: "tendermint", "Validator produced an invalid commit signature");
Err(TendermintError::Malicious(sender))?;
}
return Ok(true);
}
}
Ok(false)
}
async fn message(
&mut self,
msg: MessageFor<N>,
) -> Result<Option<N::Block>, TendermintError<N::ValidatorId>> {
if msg.block != self.block.number {
Err(TendermintError::Temporal)?;
}
// If this is a precommit, verify its signature
self.verify_precommit_signature(msg.sender, msg.round, &msg.data)?;
// Only let the proposer propose
if matches!(msg.data, Data::Proposal(..)) &&
(msg.sender != self.weights.proposer(msg.block, msg.round))
{
debug!(target: "tendermint", "Validator who wasn't the proposer proposed");
Err(TendermintError::Malicious(msg.sender))?;
};
if !self.block.log.log(msg.clone())? {
return Ok(None);
}
// All functions, except for the finalizer and the jump, are locked to the current round
// Run the finalizer to see if it applies
// 49-52
if matches!(msg.data, Data::Proposal(..)) || matches!(msg.data, Data::Precommit(_)) {
let proposer = self.weights.proposer(self.block.number, msg.round);
// Get the proposal
if let Some(Data::Proposal(_, block)) = self.block.log.get(msg.round, proposer, Step::Propose)
{
// Check if it has gotten a sufficient amount of precommits
// Use a junk signature since message equality disregards the signature
if self.block.log.has_consensus(
msg.round,
Data::Precommit(Some((block.id(), self.signer.sign(&[]).await))),
) {
return Ok(Some(block.clone()));
}
}
}
// Else, check if we need to jump ahead
#[allow(clippy::comparison_chain)]
if msg.round.0 < self.block.round().number.0 {
// Prior round, disregard if not finalizing
return Ok(None);
} else if msg.round.0 > self.block.round().number.0 {
// 55-56
// Jump, enabling processing by the below code
if self.block.log.round_participation(msg.round) > self.weights.fault_thresold() {
// If this round already has precommit messages, verify their signatures
let round_msgs = self.block.log.log[&msg.round].clone();
for (validator, msgs) in &round_msgs {
if let Some(data) = msgs.get(&Step::Precommit) {
if let Ok(res) = self.verify_precommit_signature(*validator, msg.round, data) {
// Ensure this actually verified the signature instead of believing it shouldn't yet
debug_assert!(res);
} else {
// Remove the message so it isn't counted towards forming a commit/included in one
// This won't remove the fact the precommitted for this block hash in the MessageLog
// TODO: Don't even log these in the first place until we jump, preventing needing
// to do this in the first place
self
.block
.log
.log
.get_mut(&msg.round)
.unwrap()
.get_mut(validator)
.unwrap()
.remove(&Step::Precommit);
self.slash(*validator).await;
}
}
}
// If we're the proposer, return now so we re-run processing with our proposal
// If we continue now, it'd just be wasted ops
if self.round(msg.round, None) {
return Ok(None);
}
} else {
// Future round which we aren't ready to jump to, so return for now
return Ok(None);
}
}
// The paper executes these checks when the step is prevote. Making sure this message warrants
// rerunning these checks is a sane optimization since message instances is a full iteration
// of the round map
if (self.block.round().step == Step::Prevote) && matches!(msg.data, Data::Prevote(_)) {
let (participation, weight) =
self.block.log.message_instances(self.block.round().number, Data::Prevote(None));
// 34-35
if participation >= self.weights.threshold() {
self.block.round_mut().set_timeout(Step::Prevote);
}
// 44-46
if weight >= self.weights.threshold() {
self.broadcast(Data::Precommit(None));
return Ok(None);
}
}
// 47-48
if matches!(msg.data, Data::Precommit(_)) &&
self.block.log.has_participation(self.block.round().number, Step::Precommit)
{
self.block.round_mut().set_timeout(Step::Precommit);
}
// All further operations require actually having the proposal in question
let proposer = self.weights.proposer(self.block.number, self.block.round().number);
let (vr, block) = if let Some(Data::Proposal(vr, block)) =
self.block.log.get(self.block.round().number, proposer, Step::Propose)
{
(vr, block)
} else {
return Ok(None);
};
// 22-33
if self.block.round().step == Step::Propose {
// Delay error handling (triggering a slash) until after we vote.
let (valid, err) = match self.network.validate(block).await {
Ok(_) => (true, Ok(None)),
Err(BlockError::Temporal) => (false, Ok(None)),
Err(BlockError::Fatal) => (false, {
debug!(target: "tendermint", "Validator proposed a fatally invalid block");
Err(TendermintError::Malicious(proposer))
}),
};
// Create a raw vote which only requires block validity as a basis for the actual vote.
let raw_vote = Some(block.id()).filter(|_| valid);
// If locked is none, it has a round of -1 according to the protocol. That satisfies
// 23 and 29. If it's some, both are satisfied if they're for the same ID. If it's some
// with different IDs, the function on 22 rejects yet the function on 28 has one other
// condition
let locked = self.block.locked.as_ref().map(|(_, id)| id == &block.id()).unwrap_or(true);
let mut vote = raw_vote.filter(|_| locked);
if let Some(vr) = vr {
// Malformed message
if vr.0 >= self.block.round().number.0 {
debug!(target: "tendermint", "Validator claimed a round from the future was valid");
Err(TendermintError::Malicious(msg.sender))?;
}
if self.block.log.has_consensus(*vr, Data::Prevote(Some(block.id()))) {
// Allow differing locked values if the proposal has a newer valid round
// This is the other condition described above
if let Some((locked_round, _)) = self.block.locked.as_ref() {
vote = vote.or_else(|| raw_vote.filter(|_| locked_round.0 <= vr.0));
}
self.broadcast(Data::Prevote(vote));
return err;
}
} else {
self.broadcast(Data::Prevote(vote));
return err;
}
return Ok(None);
}
if self
.block
.valid
.as_ref()
.map(|(round, _)| round != &self.block.round().number)
.unwrap_or(true)
{
// 36-43
// The run once condition is implemented above. Since valid will always be set by this, it
// not being set, or only being set historically, means this has yet to be run
if self.block.log.has_consensus(self.block.round().number, Data::Prevote(Some(block.id()))) {
match self.network.validate(block).await {
Ok(_) => (),
Err(BlockError::Temporal) => (),
Err(BlockError::Fatal) => {
debug!(target: "tendermint", "Validator proposed a fatally invalid block");
Err(TendermintError::Malicious(proposer))?
}
};
self.block.valid = Some((self.block.round().number, block.clone()));
if self.block.round().step == Step::Prevote {
self.block.locked = Some((self.block.round().number, block.id()));
self.broadcast(Data::Precommit(Some((
block.id(),
self
.signer
.sign(&commit_msg(
self.block.end_time[&self.block.round().number].canonical(),
block.id().as_ref(),
))
.await,
))));
}
}
}
Ok(None)
}
}

View File

@@ -0,0 +1,108 @@
use std::{sync::Arc, collections::HashMap};
use log::debug;
use crate::{ext::*, RoundNumber, Step, Data, DataFor, MessageFor, TendermintError};
type RoundLog<N> = HashMap<<N as Network>::ValidatorId, HashMap<Step, DataFor<N>>>;
pub(crate) struct MessageLog<N: Network> {
weights: Arc<N::Weights>,
precommitted: HashMap<N::ValidatorId, <N::Block as Block>::Id>,
pub(crate) log: HashMap<RoundNumber, RoundLog<N>>,
}
impl<N: Network> MessageLog<N> {
pub(crate) fn new(weights: Arc<N::Weights>) -> MessageLog<N> {
MessageLog { weights, precommitted: HashMap::new(), log: HashMap::new() }
}
// Returns true if it's a new message
pub(crate) fn log(
&mut self,
msg: MessageFor<N>,
) -> Result<bool, TendermintError<N::ValidatorId>> {
let round = self.log.entry(msg.round).or_insert_with(HashMap::new);
let msgs = round.entry(msg.sender).or_insert_with(HashMap::new);
// Handle message replays without issue. It's only multiple messages which is malicious
let step = msg.data.step();
if let Some(existing) = msgs.get(&step) {
if existing != &msg.data {
debug!(
target: "tendermint",
"Validator sent multiple messages for the same block + round + step"
);
Err(TendermintError::Malicious(msg.sender))?;
}
return Ok(false);
}
// If they already precommitted to a distinct hash, error
if let Data::Precommit(Some((hash, _))) = &msg.data {
if let Some(prev) = self.precommitted.get(&msg.sender) {
if hash != prev {
debug!(target: "tendermint", "Validator precommitted to multiple blocks");
Err(TendermintError::Malicious(msg.sender))?;
}
}
self.precommitted.insert(msg.sender, *hash);
}
msgs.insert(step, msg.data);
Ok(true)
}
// For a given round, return the participating weight for this step, and the weight agreeing with
// the data.
pub(crate) fn message_instances(&self, round: RoundNumber, data: DataFor<N>) -> (u64, u64) {
let mut participating = 0;
let mut weight = 0;
for (participant, msgs) in &self.log[&round] {
if let Some(msg) = msgs.get(&data.step()) {
let validator_weight = self.weights.weight(*participant);
participating += validator_weight;
if &data == msg {
weight += validator_weight;
}
}
}
(participating, weight)
}
// Get the participation in a given round
pub(crate) fn round_participation(&self, round: RoundNumber) -> u64 {
let mut weight = 0;
if let Some(round) = self.log.get(&round) {
for participant in round.keys() {
weight += self.weights.weight(*participant);
}
};
weight
}
// Check if a supermajority of nodes have participated on a specific step
pub(crate) fn has_participation(&self, round: RoundNumber, step: Step) -> bool {
let mut participating = 0;
for (participant, msgs) in &self.log[&round] {
if msgs.get(&step).is_some() {
participating += self.weights.weight(*participant);
}
}
participating >= self.weights.threshold()
}
// Check if consensus has been reached on a specific piece of data
pub(crate) fn has_consensus(&self, round: RoundNumber, data: DataFor<N>) -> bool {
let (_, weight) = self.message_instances(round, data);
weight >= self.weights.threshold()
}
pub(crate) fn get(
&self,
round: RoundNumber,
sender: N::ValidatorId,
step: Step,
) -> Option<&DataFor<N>> {
self.log.get(&round).and_then(|round| round.get(&sender).and_then(|msgs| msgs.get(&step)))
}
}

83
tendermint/src/round.rs Normal file
View File

@@ -0,0 +1,83 @@
use std::{
marker::PhantomData,
time::{Duration, Instant},
collections::HashMap,
};
use futures::{FutureExt, future};
use tokio::time::sleep;
use crate::{
time::CanonicalInstant,
Step,
ext::{RoundNumber, Network},
};
pub(crate) struct RoundData<N: Network> {
_network: PhantomData<N>,
pub(crate) number: RoundNumber,
pub(crate) start_time: CanonicalInstant,
pub(crate) step: Step,
pub(crate) timeouts: HashMap<Step, Instant>,
}
impl<N: Network> RoundData<N> {
pub(crate) fn new(number: RoundNumber, start_time: CanonicalInstant) -> Self {
RoundData {
_network: PhantomData,
number,
start_time,
step: Step::Propose,
timeouts: HashMap::new(),
}
}
fn timeout(&self, step: Step) -> CanonicalInstant {
let adjusted_block = N::BLOCK_PROCESSING_TIME * (self.number.0 + 1);
let adjusted_latency = N::LATENCY_TIME * (self.number.0 + 1);
let offset = Duration::from_secs(
(match step {
Step::Propose => adjusted_block + adjusted_latency,
Step::Prevote => adjusted_block + (2 * adjusted_latency),
Step::Precommit => adjusted_block + (3 * adjusted_latency),
})
.into(),
);
self.start_time + offset
}
pub(crate) fn end_time(&self) -> CanonicalInstant {
self.timeout(Step::Precommit)
}
pub(crate) fn set_timeout(&mut self, step: Step) {
let timeout = self.timeout(step).instant();
self.timeouts.entry(step).or_insert(timeout);
}
// Poll all set timeouts, returning the Step whose timeout has just expired
pub(crate) async fn timeout_future(&self) -> Step {
let timeout_future = |step| {
let timeout = self.timeouts.get(&step).copied();
(async move {
if let Some(timeout) = timeout {
sleep(timeout.saturating_duration_since(Instant::now())).await;
} else {
future::pending::<()>().await;
}
step
})
.fuse()
};
let propose_timeout = timeout_future(Step::Propose);
let prevote_timeout = timeout_future(Step::Prevote);
let precommit_timeout = timeout_future(Step::Precommit);
futures::pin_mut!(propose_timeout, prevote_timeout, precommit_timeout);
futures::select_biased! {
step = propose_timeout => step,
step = prevote_timeout => step,
step = precommit_timeout => step,
}
}
}

44
tendermint/src/time.rs Normal file
View File

@@ -0,0 +1,44 @@
use core::ops::Add;
use std::time::{UNIX_EPOCH, SystemTime, Instant, Duration};
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub(crate) struct CanonicalInstant {
/// Time since the epoch.
time: u64,
/// An Instant synchronized with the above time.
instant: Instant,
}
pub(crate) fn sys_time(time: u64) -> SystemTime {
UNIX_EPOCH + Duration::from_secs(time)
}
impl CanonicalInstant {
pub(crate) fn new(time: u64) -> CanonicalInstant {
// This is imprecise yet should be precise enough, as it'll resolve within a few ms
let instant_now = Instant::now();
let sys_now = SystemTime::now();
// If the time is in the future, this will be off by that much time
let elapsed = sys_now.duration_since(sys_time(time)).unwrap_or(Duration::ZERO);
// Except for the fact this panics here
let synced_instant = instant_now.checked_sub(elapsed).unwrap();
CanonicalInstant { time, instant: synced_instant }
}
pub(crate) fn canonical(&self) -> u64 {
self.time
}
pub(crate) fn instant(&self) -> Instant {
self.instant
}
}
impl Add<Duration> for CanonicalInstant {
type Output = CanonicalInstant;
fn add(self, duration: Duration) -> CanonicalInstant {
CanonicalInstant { time: self.time + duration.as_secs(), instant: self.instant + duration }
}
}