Smash dkg into dkg, dkg-[recovery, promote, musig, pedpop]

promote and pedpop require dleq, which don't support no-std. All three should
be moved outside the Serai repository, per #597, as none are planned for use
and worth covering under our BBP.
This commit is contained in:
Luke Parker
2025-08-18 01:24:40 -04:00
parent 3919cf55ae
commit 9f84adf8b3
35 changed files with 1910 additions and 1362 deletions

View File

@@ -0,0 +1,37 @@
[package]
name = "dkg-pedpop"
version = "0.6.0"
description = "The PedPoP distributed key generation protocol"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/dkg/pedpop"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["dkg", "multisig", "threshold", "ff", "group"]
edition = "2021"
rust-version = "1.80"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[lints]
workspace = true
[dependencies]
thiserror = { version = "2", default-features = false, features = ["std"] }
zeroize = { version = "^1.5", default-features = false, features = ["std", "zeroize_derive"] }
rand_core = { version = "0.6", default-features = false, features = ["std"] }
transcript = { package = "flexible-transcript", path = "../../transcript", version = "^0.3.2", default-features = false, features = ["std", "recommended"] }
chacha20 = { version = "0.9", default-features = false, features = ["std", "zeroize"] }
multiexp = { path = "../../multiexp", version = "0.4", default-features = false, features = ["std"] }
ciphersuite = { path = "../../ciphersuite", version = "^0.4.1", default-features = false, features = ["std"] }
schnorr = { package = "schnorr-signatures", path = "../../schnorr", version = "^0.5.1", default-features = false, features = ["std"] }
dleq = { path = "../../dleq", version = "^0.4.1", default-features = false, features = ["std", "serialize"] }
dkg = { path = "../", default-features = false, features = ["std"] }
[dev-dependencies]
rand_core = { version = "0.6", default-features = false, features = ["getrandom"] }
ciphersuite = { path = "../../ciphersuite", default-features = false, features = ["ristretto"] }

21
crypto/dkg/pedpop/LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021-2025 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,12 @@
# Distributed Key Generation - PedPoP
This implements the PedPoP distributed key generation protocol for the [`dkg`](https://docs.rs/dkg)
crate's types.
This crate was originally part of the `dkg` crate, which was
[audited by Cypher Stack in March 2023](
https://github.com/serai-dex/serai/raw/e1bb2c191b7123fd260d008e31656d090d559d21/audits/Cypher%20Stack%20crypto%20March%202023/Audit.pdf
), culminating in commit
[669d2dbffc1dafb82a09d9419ea182667115df06](
https://github.com/serai-dex/serai/tree/669d2dbffc1dafb82a09d9419ea182667115df06
). Any subsequent changes have not undergone auditing.

View File

@@ -0,0 +1,506 @@
use core::{ops::Deref, fmt};
use std::{io, collections::HashMap};
use thiserror::Error;
use zeroize::{Zeroize, Zeroizing};
use rand_core::{RngCore, CryptoRng};
use chacha20::{
cipher::{crypto_common::KeyIvInit, StreamCipher},
Key as Cc20Key, Nonce as Cc20Iv, ChaCha20,
};
use transcript::{Transcript, RecommendedTranscript};
#[cfg(test)]
use ciphersuite::group::ff::Field;
use ciphersuite::{group::GroupEncoding, Ciphersuite};
use multiexp::BatchVerifier;
use schnorr::SchnorrSignature;
use dleq::DLEqProof;
use dkg::{Participant, ThresholdParams};
mod sealed {
use super::*;
pub trait ReadWrite: Sized {
fn read<R: io::Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self>;
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()>;
fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
}
pub trait Message: Clone + PartialEq + Eq + fmt::Debug + Zeroize + ReadWrite {}
impl<M: Clone + PartialEq + Eq + fmt::Debug + Zeroize + ReadWrite> Message for M {}
pub trait Encryptable: Clone + AsRef<[u8]> + AsMut<[u8]> + Zeroize + ReadWrite {}
impl<E: Clone + AsRef<[u8]> + AsMut<[u8]> + Zeroize + ReadWrite> Encryptable for E {}
}
pub(crate) use sealed::*;
/// Wraps a message with a key to use for encryption in the future.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct EncryptionKeyMessage<C: Ciphersuite, M: Message> {
msg: M,
enc_key: C::G,
}
// Doesn't impl ReadWrite so that doesn't need to be imported
impl<C: Ciphersuite, M: Message> EncryptionKeyMessage<C, M> {
pub fn read<R: io::Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
Ok(Self { msg: M::read(reader, params)?, enc_key: C::read_G(reader)? })
}
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
self.msg.write(writer)?;
writer.write_all(self.enc_key.to_bytes().as_ref())
}
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
#[cfg(test)]
pub(crate) fn enc_key(&self) -> C::G {
self.enc_key
}
}
/// An encrypted message, with a per-message encryption key enabling revealing specific messages
/// without side effects.
#[derive(Clone, Zeroize)]
pub struct EncryptedMessage<C: Ciphersuite, E: Encryptable> {
key: C::G,
// Also include a proof-of-possession for the key.
// If this proof-of-possession wasn't here, Eve could observe Alice encrypt to Bob with key X,
// then send Bob a message also claiming to use X.
// While Eve's message would fail to meaningfully decrypt, Bob would then use this to create a
// blame argument against Eve. When they do, they'd reveal bX, revealing Alice's message to Bob.
// This is a massive side effect which could break some protocols, in the worst case.
// While Eve can still reuse their own keys, causing Bob to leak all messages by revealing for
// any single one, that's effectively Eve revealing themselves, and not considered relevant.
pop: SchnorrSignature<C>,
msg: Zeroizing<E>,
}
fn ecdh<C: Ciphersuite>(private: &Zeroizing<C::F>, public: C::G) -> Zeroizing<C::G> {
Zeroizing::new(public * private.deref())
}
// Each ecdh must be distinct. Reuse of an ecdh for multiple ciphers will cause the messages to be
// leaked.
fn cipher<C: Ciphersuite>(context: [u8; 32], ecdh: &Zeroizing<C::G>) -> ChaCha20 {
// Ideally, we'd box this transcript with ZAlloc, yet that's only possible on nightly
// TODO: https://github.com/serai-dex/serai/issues/151
let mut transcript = RecommendedTranscript::new(b"DKG Encryption v0.2");
transcript.append_message(b"context", context);
transcript.domain_separate(b"encryption_key");
let mut ecdh = ecdh.to_bytes();
transcript.append_message(b"shared_key", ecdh.as_ref());
ecdh.as_mut().zeroize();
let zeroize = |buf: &mut [u8]| buf.zeroize();
let mut key = Cc20Key::default();
let mut challenge = transcript.challenge(b"key");
key.copy_from_slice(&challenge[.. 32]);
zeroize(challenge.as_mut());
// Since the key is single-use, it doesn't matter what we use for the IV
// The issue is key + IV reuse. If we never reuse the key, we can't have the opportunity to
// reuse a nonce
// Use a static IV in acknowledgement of this
let mut iv = Cc20Iv::default();
// The \0 is to satisfy the length requirement (12), not to be null terminated
iv.copy_from_slice(b"DKG IV v0.2\0");
// ChaCha20 has the same commentary as the transcript regarding ZAlloc
// TODO: https://github.com/serai-dex/serai/issues/151
let res = ChaCha20::new(&key, &iv);
zeroize(key.as_mut());
res
}
fn encrypt<R: RngCore + CryptoRng, C: Ciphersuite, E: Encryptable>(
rng: &mut R,
context: [u8; 32],
from: Participant,
to: C::G,
mut msg: Zeroizing<E>,
) -> EncryptedMessage<C, E> {
/*
The following code could be used to replace the requirement on an RNG here.
It's just currently not an issue to require taking in an RNG here.
let last = self.last_enc_key.to_bytes();
self.last_enc_key = C::hash_to_F(b"encryption_base", last.as_ref());
let key = C::hash_to_F(b"encryption_key", last.as_ref());
last.as_mut().zeroize();
*/
// Generate a new key for this message, satisfying cipher's requirement of distinct keys per
// message, and enabling revealing this message without revealing any others
let key = Zeroizing::new(C::random_nonzero_F(rng));
cipher::<C>(context, &ecdh::<C>(&key, to)).apply_keystream(msg.as_mut().as_mut());
let pub_key = C::generator() * key.deref();
let nonce = Zeroizing::new(C::random_nonzero_F(rng));
let pub_nonce = C::generator() * nonce.deref();
EncryptedMessage {
key: pub_key,
pop: SchnorrSignature::sign(
&key,
nonce,
pop_challenge::<C>(context, pub_nonce, pub_key, from, msg.deref().as_ref()),
),
msg,
}
}
impl<C: Ciphersuite, E: Encryptable> EncryptedMessage<C, E> {
pub fn read<R: io::Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
Ok(Self {
key: C::read_G(reader)?,
pop: SchnorrSignature::<C>::read(reader)?,
msg: Zeroizing::new(E::read(reader, params)?),
})
}
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.key.to_bytes().as_ref())?;
self.pop.write(writer)?;
self.msg.write(writer)
}
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
#[cfg(test)]
pub(crate) fn invalidate_pop(&mut self) {
self.pop.s += C::F::ONE;
}
#[cfg(test)]
pub(crate) fn invalidate_msg<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
context: [u8; 32],
from: Participant,
) {
// Invalidate the message by specifying a new key/Schnorr PoP
// This will cause all initial checks to pass, yet a decrypt to gibberish
let key = Zeroizing::new(C::random_nonzero_F(rng));
let pub_key = C::generator() * key.deref();
let nonce = Zeroizing::new(C::random_nonzero_F(rng));
let pub_nonce = C::generator() * nonce.deref();
self.key = pub_key;
self.pop = SchnorrSignature::sign(
&key,
nonce,
pop_challenge::<C>(context, pub_nonce, pub_key, from, self.msg.deref().as_ref()),
);
}
// Assumes the encrypted message is a secret share.
#[cfg(test)]
pub(crate) fn invalidate_share_serialization<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
context: [u8; 32],
from: Participant,
to: C::G,
) {
use ciphersuite::group::ff::PrimeField;
let mut repr = <C::F as PrimeField>::Repr::default();
for b in repr.as_mut() {
*b = 255;
}
// Tries to guarantee the above assumption.
assert_eq!(repr.as_ref().len(), self.msg.as_ref().len());
// Checks that this isn't over a field where this is somehow valid
assert!(!bool::from(C::F::from_repr(repr).is_some()));
self.msg.as_mut().as_mut().copy_from_slice(repr.as_ref());
*self = encrypt(rng, context, from, to, self.msg.clone());
}
// Assumes the encrypted message is a secret share.
#[cfg(test)]
pub(crate) fn invalidate_share_value<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
context: [u8; 32],
from: Participant,
to: C::G,
) {
use ciphersuite::group::ff::PrimeField;
// Assumes the share isn't randomly 1
let repr = C::F::ONE.to_repr();
self.msg.as_mut().as_mut().copy_from_slice(repr.as_ref());
*self = encrypt(rng, context, from, to, self.msg.clone());
}
}
/// A proof that the provided encryption key is a legitimately derived shared key for some message.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct EncryptionKeyProof<C: Ciphersuite> {
key: Zeroizing<C::G>,
dleq: DLEqProof<C::G>,
}
impl<C: Ciphersuite> EncryptionKeyProof<C> {
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
Ok(Self { key: Zeroizing::new(C::read_G(reader)?), dleq: DLEqProof::read(reader)? })
}
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.key.to_bytes().as_ref())?;
self.dleq.write(writer)
}
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
#[cfg(test)]
pub(crate) fn invalidate_key(&mut self) {
*self.key += C::generator();
}
#[cfg(test)]
pub(crate) fn invalidate_dleq(&mut self) {
let mut buf = vec![];
self.dleq.write(&mut buf).unwrap();
// Adds one to c since this is serialized c, s
// Adding one to c will leave a validly serialized c
// Adding one to s may leave an invalidly serialized s
buf[0] = buf[0].wrapping_add(1);
self.dleq = DLEqProof::read::<&[u8]>(&mut buf.as_ref()).unwrap();
}
}
// This doesn't need to take the msg. It just doesn't hurt as an extra layer.
// This still doesn't mean the DKG offers an authenticated channel. The per-message keys have no
// root of trust other than their existence in the assumed-to-exist external authenticated channel.
fn pop_challenge<C: Ciphersuite>(
context: [u8; 32],
nonce: C::G,
key: C::G,
sender: Participant,
msg: &[u8],
) -> C::F {
let mut transcript = RecommendedTranscript::new(b"DKG Encryption Key Proof of Possession v0.2");
transcript.append_message(b"context", context);
transcript.domain_separate(b"proof_of_possession");
transcript.append_message(b"nonce", nonce.to_bytes());
transcript.append_message(b"key", key.to_bytes());
// This is sufficient to prevent the attack this is meant to stop
transcript.append_message(b"sender", sender.to_bytes());
// This, as written above, doesn't hurt
transcript.append_message(b"message", msg);
// While this is a PoK and a PoP, it's called a PoP here since the important part is its owner
// Elsewhere, where we use the term PoK, the important part is that it isn't some inverse, with
// an unknown to anyone discrete log, breaking the system
C::hash_to_F(b"DKG-encryption-proof_of_possession", &transcript.challenge(b"schnorr"))
}
fn encryption_key_transcript(context: [u8; 32]) -> RecommendedTranscript {
let mut transcript = RecommendedTranscript::new(b"DKG Encryption Key Correctness Proof v0.2");
transcript.append_message(b"context", context);
transcript
}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Error)]
pub(crate) enum DecryptionError {
#[error("accused provided an invalid signature")]
InvalidSignature,
#[error("accuser provided an invalid decryption key")]
InvalidProof,
}
// A simple box for managing decryption.
#[derive(Clone, Debug)]
pub(crate) struct Decryption<C: Ciphersuite> {
context: [u8; 32],
enc_keys: HashMap<Participant, C::G>,
}
impl<C: Ciphersuite> Decryption<C> {
pub(crate) fn new(context: [u8; 32]) -> Self {
Self { context, enc_keys: HashMap::new() }
}
pub(crate) fn register<M: Message>(
&mut self,
participant: Participant,
msg: EncryptionKeyMessage<C, M>,
) -> M {
assert!(
!self.enc_keys.contains_key(&participant),
"Re-registering encryption key for a participant"
);
self.enc_keys.insert(participant, msg.enc_key);
msg.msg
}
// Given a message, and the intended decryptor, and a proof for its key, decrypt the message.
// Returns None if the key was wrong.
pub(crate) fn decrypt_with_proof<E: Encryptable>(
&self,
from: Participant,
decryptor: Participant,
mut msg: EncryptedMessage<C, E>,
// There's no encryption key proof if the accusation is of an invalid signature
proof: Option<EncryptionKeyProof<C>>,
) -> Result<Zeroizing<E>, DecryptionError> {
if !msg.pop.verify(
msg.key,
pop_challenge::<C>(self.context, msg.pop.R, msg.key, from, msg.msg.deref().as_ref()),
) {
Err(DecryptionError::InvalidSignature)?;
}
if let Some(proof) = proof {
// Verify this is the decryption key for this message
proof
.dleq
.verify(
&mut encryption_key_transcript(self.context),
&[C::generator(), msg.key],
&[self.enc_keys[&decryptor], *proof.key],
)
.map_err(|_| DecryptionError::InvalidProof)?;
cipher::<C>(self.context, &proof.key).apply_keystream(msg.msg.as_mut().as_mut());
Ok(msg.msg)
} else {
Err(DecryptionError::InvalidProof)
}
}
}
// A simple box for managing encryption.
#[derive(Clone)]
pub(crate) struct Encryption<C: Ciphersuite> {
context: [u8; 32],
i: Participant,
enc_key: Zeroizing<C::F>,
enc_pub_key: C::G,
decryption: Decryption<C>,
}
impl<C: Ciphersuite> fmt::Debug for Encryption<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("Encryption")
.field("context", &self.context)
.field("i", &self.i)
.field("enc_pub_key", &self.enc_pub_key)
.field("decryption", &self.decryption)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> Zeroize for Encryption<C> {
fn zeroize(&mut self) {
self.enc_key.zeroize();
self.enc_pub_key.zeroize();
for (_, mut value) in self.decryption.enc_keys.drain() {
value.zeroize();
}
}
}
impl<C: Ciphersuite> Encryption<C> {
pub(crate) fn new<R: RngCore + CryptoRng>(
context: [u8; 32],
i: Participant,
rng: &mut R,
) -> Self {
let enc_key = Zeroizing::new(C::random_nonzero_F(rng));
Self {
context,
i,
enc_pub_key: C::generator() * enc_key.deref(),
enc_key,
decryption: Decryption::new(context),
}
}
pub(crate) fn registration<M: Message>(&self, msg: M) -> EncryptionKeyMessage<C, M> {
EncryptionKeyMessage { msg, enc_key: self.enc_pub_key }
}
pub(crate) fn register<M: Message>(
&mut self,
participant: Participant,
msg: EncryptionKeyMessage<C, M>,
) -> M {
self.decryption.register(participant, msg)
}
pub(crate) fn encrypt<R: RngCore + CryptoRng, E: Encryptable>(
&self,
rng: &mut R,
participant: Participant,
msg: Zeroizing<E>,
) -> EncryptedMessage<C, E> {
encrypt(rng, self.context, self.i, self.decryption.enc_keys[&participant], msg)
}
pub(crate) fn decrypt<R: RngCore + CryptoRng, I: Copy + Zeroize, E: Encryptable>(
&self,
rng: &mut R,
batch: &mut BatchVerifier<I, C::G>,
// Uses a distinct batch ID so if this batch verifier is reused, we know its the PoP aspect
// which failed, and therefore to use None for the blame
batch_id: I,
from: Participant,
mut msg: EncryptedMessage<C, E>,
) -> (Zeroizing<E>, EncryptionKeyProof<C>) {
msg.pop.batch_verify(
rng,
batch,
batch_id,
msg.key,
pop_challenge::<C>(self.context, msg.pop.R, msg.key, from, msg.msg.deref().as_ref()),
);
let key = ecdh::<C>(&self.enc_key, msg.key);
cipher::<C>(self.context, &key).apply_keystream(msg.msg.as_mut().as_mut());
(
msg.msg,
EncryptionKeyProof {
key,
dleq: DLEqProof::prove(
rng,
&mut encryption_key_transcript(self.context),
&[C::generator(), msg.key],
&self.enc_key,
),
},
)
}
pub(crate) fn into_decryption(self) -> Decryption<C> {
self.decryption
}
}

View File

@@ -0,0 +1,683 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
// This crate requires `dleq` which doesn't support no-std via std-shims
// #![cfg_attr(not(feature = "std"), no_std)]
use core::{marker::PhantomData, ops::Deref, fmt};
use std::{
io::{self, Read, Write},
collections::HashMap,
};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use rand_core::{RngCore, CryptoRng};
use transcript::{Transcript, RecommendedTranscript};
use multiexp::{multiexp_vartime, BatchVerifier};
use ciphersuite::{
group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
},
Ciphersuite,
};
use schnorr::SchnorrSignature;
pub use dkg::*;
mod encryption;
pub use encryption::*;
#[cfg(test)]
mod tests;
/// Errors possible during key generation.
#[derive(Clone, PartialEq, Eq, Debug, thiserror::Error)]
pub enum PedPoPError<C: Ciphersuite> {
/// An incorrect amount of participants was provided.
#[error("incorrect amount of participants (expected {expected}, found {found})")]
IncorrectAmountOfParticipants { expected: usize, found: usize },
/// An invalid proof of knowledge was provided.
#[error("invalid proof of knowledge (participant {0})")]
InvalidCommitments(Participant),
/// An invalid DKG share was provided.
#[error("invalid share (participant {participant}, blame {blame})")]
InvalidShare { participant: Participant, blame: Option<EncryptionKeyProof<C>> },
/// A participant was missing.
#[error("missing participant {0}")]
MissingParticipant(Participant),
/// An error propagated from the underlying `dkg` crate.
#[error("error from dkg ({0})")]
DkgError(DkgError),
}
// Validate a map of values to have the expected included participants
fn validate_map<T, C: Ciphersuite>(
map: &HashMap<Participant, T>,
included: &[Participant],
ours: Participant,
) -> Result<(), PedPoPError<C>> {
if (map.len() + 1) != included.len() {
Err(PedPoPError::IncorrectAmountOfParticipants {
expected: included.len(),
found: map.len() + 1,
})?;
}
for included in included {
if *included == ours {
if map.contains_key(included) {
Err(PedPoPError::DkgError(DkgError::DuplicatedParticipant(*included)))?;
}
continue;
}
if !map.contains_key(included) {
Err(PedPoPError::MissingParticipant(*included))?;
}
}
Ok(())
}
#[allow(non_snake_case)]
fn challenge<C: Ciphersuite>(context: [u8; 32], l: Participant, R: &[u8], Am: &[u8]) -> C::F {
let mut transcript = RecommendedTranscript::new(b"DKG PedPoP v0.2");
transcript.domain_separate(b"schnorr_proof_of_knowledge");
transcript.append_message(b"context", context);
transcript.append_message(b"participant", l.to_bytes());
transcript.append_message(b"nonce", R);
transcript.append_message(b"commitments", Am);
C::hash_to_F(b"DKG-PedPoP-proof_of_knowledge-0", &transcript.challenge(b"schnorr"))
}
/// The commitments message, intended to be broadcast to all other parties.
///
/// Every participant should only provide one set of commitments to all parties. If any
/// participant sends multiple sets of commitments, they are faulty and should be presumed
/// malicious. As this library does not handle networking, it is unable to detect if any
/// participant is so faulty. That responsibility lies with the caller.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct Commitments<C: Ciphersuite> {
commitments: Vec<C::G>,
cached_msg: Vec<u8>,
sig: SchnorrSignature<C>,
}
impl<C: Ciphersuite> ReadWrite for Commitments<C> {
fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
let mut commitments = Vec::with_capacity(params.t().into());
let mut cached_msg = vec![];
#[allow(non_snake_case)]
let mut read_G = || -> io::Result<C::G> {
let mut buf = <C::G as GroupEncoding>::Repr::default();
reader.read_exact(buf.as_mut())?;
let point = C::read_G(&mut buf.as_ref())?;
cached_msg.extend(buf.as_ref());
Ok(point)
};
for _ in 0 .. params.t() {
commitments.push(read_G()?);
}
Ok(Commitments { commitments, cached_msg, sig: SchnorrSignature::read(reader)? })
}
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&self.cached_msg)?;
self.sig.write(writer)
}
}
/// State machine to begin the key generation protocol.
#[derive(Debug, Zeroize)]
pub struct KeyGenMachine<C: Ciphersuite> {
params: ThresholdParams,
context: [u8; 32],
_curve: PhantomData<C>,
}
impl<C: Ciphersuite> KeyGenMachine<C> {
/// Create a new machine to generate a key.
///
/// The context should be unique among multisigs.
pub fn new(params: ThresholdParams, context: [u8; 32]) -> KeyGenMachine<C> {
KeyGenMachine { params, context, _curve: PhantomData }
}
/// Start generating a key according to the PedPoP DKG specification present in the FROST paper.
///
/// Returns a commitments message to be sent to all parties over an authenticated channel. If any
/// party submits multiple sets of commitments, they MUST be treated as malicious.
pub fn generate_coefficients<R: RngCore + CryptoRng>(
self,
rng: &mut R,
) -> (SecretShareMachine<C>, EncryptionKeyMessage<C, Commitments<C>>) {
let t = usize::from(self.params.t());
let mut coefficients = Vec::with_capacity(t);
let mut commitments = Vec::with_capacity(t);
let mut cached_msg = vec![];
for i in 0 .. t {
// Step 1: Generate t random values to form a polynomial with
coefficients.push(Zeroizing::new(C::random_nonzero_F(&mut *rng)));
// Step 3: Generate public commitments
commitments.push(C::generator() * coefficients[i].deref());
cached_msg.extend(commitments[i].to_bytes().as_ref());
}
// Step 2: Provide a proof of knowledge
let r = Zeroizing::new(C::random_nonzero_F(rng));
let nonce = C::generator() * r.deref();
let sig = SchnorrSignature::<C>::sign(
&coefficients[0],
// This could be deterministic as the PoK is a singleton never opened up to cooperative
// discussion
// There's no reason to spend the time and effort to make this deterministic besides a
// general obsession with canonicity and determinism though
r,
challenge::<C>(self.context, self.params.i(), nonce.to_bytes().as_ref(), &cached_msg),
);
// Additionally create an encryption mechanism to protect the secret shares
let encryption = Encryption::new(self.context, self.params.i(), rng);
// Step 4: Broadcast
let msg =
encryption.registration(Commitments { commitments: commitments.clone(), cached_msg, sig });
(
SecretShareMachine {
params: self.params,
context: self.context,
coefficients,
our_commitments: commitments,
encryption,
},
msg,
)
}
}
fn polynomial<F: PrimeField + Zeroize>(
coefficients: &[Zeroizing<F>],
l: Participant,
) -> Zeroizing<F> {
let l = F::from(u64::from(u16::from(l)));
// This should never be reached since Participant is explicitly non-zero
assert!(l != F::ZERO, "zero participant passed to polynomial");
let mut share = Zeroizing::new(F::ZERO);
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
*share += coefficient.deref();
if idx != (coefficients.len() - 1) {
*share *= l;
}
}
share
}
/// The secret share message, to be sent to the party it's intended for over an authenticated
/// channel.
///
/// If any participant sends multiple secret shares to another participant, they are faulty.
// This should presumably be written as SecretShare(Zeroizing<F::Repr>).
// It's unfortunately not possible as F::Repr doesn't have Zeroize as a bound.
// The encryption system also explicitly uses Zeroizing<M> so it can ensure anything being
// encrypted is within Zeroizing. Accordingly, internally having Zeroizing would be redundant.
#[derive(Clone, PartialEq, Eq)]
pub struct SecretShare<F: PrimeField>(F::Repr);
impl<F: PrimeField> AsRef<[u8]> for SecretShare<F> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl<F: PrimeField> AsMut<[u8]> for SecretShare<F> {
fn as_mut(&mut self) -> &mut [u8] {
self.0.as_mut()
}
}
impl<F: PrimeField> fmt::Debug for SecretShare<F> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("SecretShare").finish_non_exhaustive()
}
}
impl<F: PrimeField> Zeroize for SecretShare<F> {
fn zeroize(&mut self) {
self.0.as_mut().zeroize()
}
}
// Still manually implement ZeroizeOnDrop to ensure these don't stick around.
// We could replace Zeroizing<M> with a bound M: ZeroizeOnDrop.
// Doing so would potentially fail to highlight the expected behavior with these and remove a layer
// of depth.
impl<F: PrimeField> Drop for SecretShare<F> {
fn drop(&mut self) {
self.zeroize();
}
}
impl<F: PrimeField> ZeroizeOnDrop for SecretShare<F> {}
impl<F: PrimeField> ReadWrite for SecretShare<F> {
fn read<R: Read>(reader: &mut R, _: ThresholdParams) -> io::Result<Self> {
let mut repr = F::Repr::default();
reader.read_exact(repr.as_mut())?;
Ok(SecretShare(repr))
}
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.0.as_ref())
}
}
/// Advancement of the key generation state machine.
#[derive(Zeroize)]
pub struct SecretShareMachine<C: Ciphersuite> {
params: ThresholdParams,
context: [u8; 32],
coefficients: Vec<Zeroizing<C::F>>,
our_commitments: Vec<C::G>,
encryption: Encryption<C>,
}
impl<C: Ciphersuite> fmt::Debug for SecretShareMachine<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("SecretShareMachine")
.field("params", &self.params)
.field("context", &self.context)
.field("our_commitments", &self.our_commitments)
.field("encryption", &self.encryption)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> SecretShareMachine<C> {
/// Verify the data from the previous round (canonicity, PoKs, message authenticity)
#[allow(clippy::type_complexity)]
fn verify_r1<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
mut commitment_msgs: HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
) -> Result<HashMap<Participant, Vec<C::G>>, PedPoPError<C>> {
validate_map(
&commitment_msgs,
&self.params.all_participant_indexes().collect::<Vec<_>>(),
self.params.i(),
)?;
let mut batch = BatchVerifier::<Participant, C::G>::new(commitment_msgs.len());
let mut commitments = HashMap::new();
for l in self.params.all_participant_indexes() {
let Some(msg) = commitment_msgs.remove(&l) else { continue };
let mut msg = self.encryption.register(l, msg);
if msg.commitments.len() != self.params.t().into() {
Err(PedPoPError::InvalidCommitments(l))?;
}
// Step 5: Validate each proof of knowledge
// This is solely the prep step for the latter batch verification
msg.sig.batch_verify(
rng,
&mut batch,
l,
msg.commitments[0],
challenge::<C>(self.context, l, msg.sig.R.to_bytes().as_ref(), &msg.cached_msg),
);
commitments.insert(l, msg.commitments.drain(..).collect::<Vec<_>>());
}
batch.verify_vartime_with_vartime_blame().map_err(PedPoPError::InvalidCommitments)?;
commitments.insert(self.params.i(), self.our_commitments.drain(..).collect());
Ok(commitments)
}
/// Continue generating a key.
///
/// Takes in everyone else's commitments. Returns a HashMap of encrypted secret shares to be sent
/// over authenticated channels to their relevant counterparties.
///
/// If any participant sends multiple secret shares to another participant, they are faulty.
#[allow(clippy::type_complexity)]
pub fn generate_secret_shares<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
commitments: HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
) -> Result<
(KeyMachine<C>, HashMap<Participant, EncryptedMessage<C, SecretShare<C::F>>>),
PedPoPError<C>,
> {
let commitments = self.verify_r1(&mut *rng, commitments)?;
// Step 1: Generate secret shares for all other parties
let mut res = HashMap::new();
for l in self.params.all_participant_indexes() {
// Don't insert our own shares to the byte buffer which is meant to be sent around
// An app developer could accidentally send it. Best to keep this black boxed
if l == self.params.i() {
continue;
}
let mut share = polynomial(&self.coefficients, l);
let share_bytes = Zeroizing::new(SecretShare::<C::F>(share.to_repr()));
share.zeroize();
res.insert(l, self.encryption.encrypt(rng, l, share_bytes));
}
// Calculate our own share
let share = polynomial(&self.coefficients, self.params.i());
self.coefficients.zeroize();
Ok((
KeyMachine { params: self.params, secret: share, commitments, encryption: self.encryption },
res,
))
}
}
/// Advancement of the the secret share state machine.
///
/// This machine will 'complete' the protocol, by a local perspective. In order to be secure,
/// the parties must confirm having successfully completed the protocol (an effort out of scope to
/// this library), yet this is modeled by one more state transition (BlameMachine).
pub struct KeyMachine<C: Ciphersuite> {
params: ThresholdParams,
secret: Zeroizing<C::F>,
commitments: HashMap<Participant, Vec<C::G>>,
encryption: Encryption<C>,
}
impl<C: Ciphersuite> fmt::Debug for KeyMachine<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("KeyMachine")
.field("params", &self.params)
.field("commitments", &self.commitments)
.field("encryption", &self.encryption)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> Zeroize for KeyMachine<C> {
fn zeroize(&mut self) {
self.params.zeroize();
self.secret.zeroize();
for commitments in self.commitments.values_mut() {
commitments.zeroize();
}
self.encryption.zeroize();
}
}
// Calculate the exponent for a given participant and apply it to a series of commitments
// Initially used with the actual commitments to verify the secret share, later used with
// stripes to generate the verification shares
fn exponential<C: Ciphersuite>(i: Participant, values: &[C::G]) -> Vec<(C::F, C::G)> {
let i = C::F::from(u16::from(i).into());
let mut res = Vec::with_capacity(values.len());
(0 .. values.len()).fold(C::F::ONE, |exp, l| {
res.push((exp, values[l]));
exp * i
});
res
}
fn share_verification_statements<C: Ciphersuite>(
target: Participant,
commitments: &[C::G],
mut share: Zeroizing<C::F>,
) -> Vec<(C::F, C::G)> {
// This can be insecurely linearized from n * t to just n using the below sums for a given
// stripe. Doing so uses naive addition which is subject to malleability. The only way to
// ensure that malleability isn't present is to use this n * t algorithm, which runs
// per sender and not as an aggregate of all senders, which also enables blame
let mut values = exponential::<C>(target, commitments);
// Perform the share multiplication outside of the multiexp to minimize stack copying
// While the multiexp BatchVerifier does zeroize its flattened multiexp, and itself, it still
// converts whatever we give to an iterator and then builds a Vec internally, welcoming copies
let neg_share_pub = C::generator() * -*share;
share.zeroize();
values.push((C::F::ONE, neg_share_pub));
values
}
#[derive(Clone, Copy, Hash, Debug, Zeroize)]
enum BatchId {
Decryption(Participant),
Share(Participant),
}
impl<C: Ciphersuite> KeyMachine<C> {
/// Calculate our share given the shares sent to us.
///
/// Returns a BlameMachine usable to determine if faults in the protocol occurred.
///
/// This will error on, and return a blame proof for, the first-observed case of faulty behavior.
pub fn calculate_share<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
mut shares: HashMap<Participant, EncryptedMessage<C, SecretShare<C::F>>>,
) -> Result<BlameMachine<C>, PedPoPError<C>> {
validate_map(
&shares,
&self.params.all_participant_indexes().collect::<Vec<_>>(),
self.params.i(),
)?;
let mut batch = BatchVerifier::new(shares.len());
let mut blames = HashMap::new();
for (l, share_bytes) in shares.drain() {
let (mut share_bytes, blame) =
self.encryption.decrypt(rng, &mut batch, BatchId::Decryption(l), l, share_bytes);
let share =
Zeroizing::new(Option::<C::F>::from(C::F::from_repr(share_bytes.0)).ok_or_else(|| {
PedPoPError::InvalidShare { participant: l, blame: Some(blame.clone()) }
})?);
share_bytes.zeroize();
*self.secret += share.deref();
blames.insert(l, blame);
batch.queue(
rng,
BatchId::Share(l),
share_verification_statements::<C>(self.params.i(), &self.commitments[&l], share),
);
}
batch.verify_with_vartime_blame().map_err(|id| {
let (l, blame) = match id {
BatchId::Decryption(l) => (l, None),
BatchId::Share(l) => (l, Some(blames.remove(&l).unwrap())),
};
PedPoPError::InvalidShare { participant: l, blame }
})?;
// Stripe commitments per t and sum them in advance. Calculating verification shares relies on
// these sums so preprocessing them is a massive speedup
// If these weren't just sums, yet the tables used in multiexp, this would be further optimized
// As of right now, each multiexp will regenerate them
let mut stripes = Vec::with_capacity(usize::from(self.params.t()));
for t in 0 .. usize::from(self.params.t()) {
stripes.push(self.commitments.values().map(|commitments| commitments[t]).sum());
}
// Calculate each user's verification share
let mut verification_shares = HashMap::new();
for i in self.params.all_participant_indexes() {
verification_shares.insert(
i,
if i == self.params.i() {
C::generator() * self.secret.deref()
} else {
multiexp_vartime(&exponential::<C>(i, &stripes))
},
);
}
let KeyMachine { commitments, encryption, params, secret } = self;
Ok(BlameMachine {
commitments,
encryption: encryption.into_decryption(),
result: Some(
ThresholdKeys::new(params, Interpolation::Lagrange, secret, verification_shares)
.map_err(PedPoPError::DkgError)?,
),
})
}
}
/// A machine capable of handling blame proofs.
pub struct BlameMachine<C: Ciphersuite> {
commitments: HashMap<Participant, Vec<C::G>>,
encryption: Decryption<C>,
result: Option<ThresholdKeys<C>>,
}
impl<C: Ciphersuite> fmt::Debug for BlameMachine<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("BlameMachine")
.field("commitments", &self.commitments)
.field("encryption", &self.encryption)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> Zeroize for BlameMachine<C> {
fn zeroize(&mut self) {
for commitments in self.commitments.values_mut() {
commitments.zeroize();
}
self.result.zeroize();
}
}
impl<C: Ciphersuite> BlameMachine<C> {
/// Mark the protocol as having been successfully completed, returning the generated keys.
/// This should only be called after having confirmed, with all participants, successful
/// completion.
///
/// Confirming successful completion is not necessarily as simple as everyone reporting their
/// completion. Everyone must also receive everyone's report of completion, entering into the
/// territory of consensus protocols. This library does not handle that nor does it provide any
/// tooling to do so. This function is solely intended to force users to acknowledge they're
/// completing the protocol, not processing any blame.
pub fn complete(self) -> ThresholdKeys<C> {
self.result.unwrap()
}
fn blame_internal(
&self,
sender: Participant,
recipient: Participant,
msg: EncryptedMessage<C, SecretShare<C::F>>,
proof: Option<EncryptionKeyProof<C>>,
) -> Participant {
let share_bytes = match self.encryption.decrypt_with_proof(sender, recipient, msg, proof) {
Ok(share_bytes) => share_bytes,
// If there's an invalid signature, the sender did not send a properly formed message
Err(DecryptionError::InvalidSignature) => return sender,
// Decryption will fail if the provided ECDH key wasn't correct for the given message
Err(DecryptionError::InvalidProof) => return recipient,
};
let Some(share) = Option::<C::F>::from(C::F::from_repr(share_bytes.0)) else {
// If this isn't a valid scalar, the sender is faulty
return sender;
};
// If this isn't a valid share, the sender is faulty
if !bool::from(
multiexp_vartime(&share_verification_statements::<C>(
recipient,
&self.commitments[&sender],
Zeroizing::new(share),
))
.is_identity(),
) {
return sender;
}
// The share was canonical and valid
recipient
}
/// Given an accusation of fault, determine the faulty party (either the sender, who sent an
/// invalid secret share, or the receiver, who claimed a valid secret share was invalid). No
/// matter which, prevent completion of the machine, forcing an abort of the protocol.
///
/// The message should be a copy of the encrypted secret share from the accused sender to the
/// accusing recipient. This message must have been authenticated as actually having come from
/// the sender in question.
///
/// In order to enable detecting multiple faults, an `AdditionalBlameMachine` is returned, which
/// can be used to determine further blame. These machines will process the same blame statements
/// multiple times, always identifying blame. It is the caller's job to ensure they're unique in
/// order to prevent multiple instances of blame over a single incident.
pub fn blame(
self,
sender: Participant,
recipient: Participant,
msg: EncryptedMessage<C, SecretShare<C::F>>,
proof: Option<EncryptionKeyProof<C>>,
) -> (AdditionalBlameMachine<C>, Participant) {
let faulty = self.blame_internal(sender, recipient, msg, proof);
(AdditionalBlameMachine(self), faulty)
}
}
/// A machine capable of handling an arbitrary amount of additional blame proofs.
#[derive(Debug, Zeroize)]
pub struct AdditionalBlameMachine<C: Ciphersuite>(BlameMachine<C>);
impl<C: Ciphersuite> AdditionalBlameMachine<C> {
/// Create an AdditionalBlameMachine capable of evaluating Blame regardless of if the caller was
/// a member in the DKG protocol.
///
/// Takes in the parameters for the DKG protocol and all of the participant's commitment
/// messages.
///
/// This constructor assumes the full validity of the commitment messages. They must be fully
/// authenticated as having come from the supposed party and verified as valid. Usage of invalid
/// commitments is considered undefined behavior, and may cause everything from inaccurate blame
/// to panics.
pub fn new(
context: [u8; 32],
n: u16,
mut commitment_msgs: HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
) -> Result<Self, PedPoPError<C>> {
let mut commitments = HashMap::new();
let mut encryption = Decryption::new(context);
for i in 1 ..= n {
let i = Participant::new(i).unwrap();
let Some(msg) = commitment_msgs.remove(&i) else { Err(PedPoPError::MissingParticipant(i))? };
commitments.insert(i, encryption.register(i, msg).commitments);
}
Ok(AdditionalBlameMachine(BlameMachine { commitments, encryption, result: None }))
}
/// Given an accusation of fault, determine the faulty party (either the sender, who sent an
/// invalid secret share, or the receiver, who claimed a valid secret share was invalid).
///
/// The message should be a copy of the encrypted secret share from the accused sender to the
/// accusing recipient. This message must have been authenticated as actually having come from
/// the sender in question.
///
/// This will process the same blame statement multiple times, always identifying blame. It is
/// the caller's job to ensure they're unique in order to prevent multiple instances of blame
/// over a single incident.
pub fn blame(
&self,
sender: Participant,
recipient: Participant,
msg: EncryptedMessage<C, SecretShare<C::F>>,
proof: Option<EncryptionKeyProof<C>>,
) -> Participant {
self.0.blame_internal(sender, recipient, msg, proof)
}
}

View File

@@ -0,0 +1,345 @@
use std::collections::HashMap;
use rand_core::{RngCore, CryptoRng, OsRng};
use ciphersuite::{Ciphersuite, Ristretto};
use crate::*;
const THRESHOLD: u16 = 3;
const PARTICIPANTS: u16 = 5;
/// Clone a map without a specific value.
fn clone_without<K: Clone + core::cmp::Eq + core::hash::Hash, V: Clone>(
map: &HashMap<K, V>,
without: &K,
) -> HashMap<K, V> {
let mut res = map.clone();
res.remove(without).unwrap();
res
}
type PedPoPEncryptedMessage<C> = EncryptedMessage<C, SecretShare<<C as Ciphersuite>::F>>;
type PedPoPSecretShares<C> = HashMap<Participant, PedPoPEncryptedMessage<C>>;
const CONTEXT: [u8; 32] = *b"DKG Test Key Generation ";
// Commit, then return commitment messages, enc keys, and shares
#[allow(clippy::type_complexity)]
fn commit_enc_keys_and_shares<R: RngCore + CryptoRng, C: Ciphersuite>(
rng: &mut R,
) -> (
HashMap<Participant, KeyMachine<C>>,
HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
HashMap<Participant, C::G>,
HashMap<Participant, PedPoPSecretShares<C>>,
) {
let mut machines = HashMap::new();
let mut commitments = HashMap::new();
let mut enc_keys = HashMap::new();
for i in (1 ..= PARTICIPANTS).map(|i| Participant::new(i).unwrap()) {
let params = ThresholdParams::new(THRESHOLD, PARTICIPANTS, i).unwrap();
let machine = KeyGenMachine::<C>::new(params, CONTEXT);
let (machine, these_commitments) = machine.generate_coefficients(rng);
machines.insert(i, machine);
commitments.insert(
i,
EncryptionKeyMessage::read::<&[u8]>(&mut these_commitments.serialize().as_ref(), params)
.unwrap(),
);
enc_keys.insert(i, commitments[&i].enc_key());
}
let mut secret_shares = HashMap::new();
let machines = machines
.drain()
.map(|(l, machine)| {
let (machine, mut shares) =
machine.generate_secret_shares(rng, clone_without(&commitments, &l)).unwrap();
let shares = shares
.drain()
.map(|(l, share)| {
(
l,
EncryptedMessage::read::<&[u8]>(
&mut share.serialize().as_ref(),
// Only t/n actually matters, so hardcode i to 1 here
ThresholdParams::new(THRESHOLD, PARTICIPANTS, Participant::new(1).unwrap()).unwrap(),
)
.unwrap(),
)
})
.collect::<HashMap<_, _>>();
secret_shares.insert(l, shares);
(l, machine)
})
.collect::<HashMap<_, _>>();
(machines, commitments, enc_keys, secret_shares)
}
fn generate_secret_shares<C: Ciphersuite>(
shares: &HashMap<Participant, PedPoPSecretShares<C>>,
recipient: Participant,
) -> PedPoPSecretShares<C> {
let mut our_secret_shares = HashMap::new();
for (i, shares) in shares {
if recipient == *i {
continue;
}
our_secret_shares.insert(*i, shares[&recipient].clone());
}
our_secret_shares
}
/// Fully perform the PedPoP key generation algorithm.
fn pedpop_gen<R: RngCore + CryptoRng, C: Ciphersuite>(
rng: &mut R,
) -> HashMap<Participant, ThresholdKeys<C>> {
let (mut machines, _, _, secret_shares) = commit_enc_keys_and_shares::<_, C>(rng);
let mut verification_shares = None;
let mut group_key = None;
machines
.drain()
.map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let these_keys = machine.calculate_share(rng, our_secret_shares).unwrap().complete();
// Verify the verification_shares are agreed upon
if verification_shares.is_none() {
verification_shares = Some(
these_keys
.params()
.all_participant_indexes()
.map(|i| (i, these_keys.original_verification_share(i)))
.collect::<HashMap<_, _>>(),
);
}
assert_eq!(
verification_shares.as_ref().unwrap(),
&these_keys
.params()
.all_participant_indexes()
.map(|i| (i, these_keys.original_verification_share(i)))
.collect::<HashMap<_, _>>()
);
// Verify the group keys are agreed upon
if group_key.is_none() {
group_key = Some(these_keys.group_key());
}
assert_eq!(group_key.unwrap(), these_keys.group_key());
(i, these_keys)
})
.collect::<HashMap<_, _>>()
}
const ONE: Participant = Participant::new(1).unwrap();
const TWO: Participant = Participant::new(2).unwrap();
#[test]
fn test_pedpop() {
let _ = core::hint::black_box(pedpop_gen::<_, Ristretto>(&mut OsRng));
}
fn test_blame(
commitment_msgs: &HashMap<Participant, EncryptionKeyMessage<Ristretto, Commitments<Ristretto>>>,
machines: Vec<BlameMachine<Ristretto>>,
msg: &PedPoPEncryptedMessage<Ristretto>,
blame: &Option<EncryptionKeyProof<Ristretto>>,
) {
for machine in machines {
let (additional, blamed) = machine.blame(ONE, TWO, msg.clone(), blame.clone());
assert_eq!(blamed, ONE);
// Verify additional blame also works
assert_eq!(additional.blame(ONE, TWO, msg.clone(), blame.clone()), ONE);
// Verify machines constructed with AdditionalBlameMachine::new work
assert_eq!(
AdditionalBlameMachine::new(CONTEXT, PARTICIPANTS, commitment_msgs.clone()).unwrap().blame(
ONE,
TWO,
msg.clone(),
blame.clone()
),
ONE,
);
}
}
// TODO: Write a macro which expands to the following
#[test]
fn invalid_encryption_pop_blame() {
let (mut machines, commitment_msgs, _, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
// Mutate the PoP of the encrypted message from 1 to 2
secret_shares.get_mut(&ONE).unwrap().get_mut(&TWO).unwrap().invalidate_pop();
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == TWO {
assert_eq!(
machine.err(),
Some(PedPoPError::InvalidShare { participant: ONE, blame: None })
);
// Explicitly declare we have a blame object, which happens to be None since invalid PoP
// is self-explainable
blame = Some(None);
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
test_blame(&commitment_msgs, machines, &secret_shares[&ONE][&TWO].clone(), &blame.unwrap());
}
#[test]
fn invalid_ecdh_blame() {
let (mut machines, commitment_msgs, _, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
// Mutate the share to trigger a blame event
// Mutates from 2 to 1, as 1 is expected to end up malicious for test_blame to pass
// While here, 2 is malicious, this is so 1 creates the blame proof
// We then malleate 1's blame proof, so 1 ends up malicious
// Doesn't simply invalidate the PoP as that won't have a blame statement
// By mutating the encrypted data, we do ensure a blame statement is created
secret_shares
.get_mut(&TWO)
.unwrap()
.get_mut(&ONE)
.unwrap()
.invalidate_msg(&mut OsRng, CONTEXT, TWO);
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == ONE {
blame = Some(match machine.err() {
Some(PedPoPError::InvalidShare { participant: TWO, blame: Some(blame) }) => Some(blame),
_ => panic!(),
});
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
blame.as_mut().unwrap().as_mut().unwrap().invalidate_key();
test_blame(&commitment_msgs, machines, &secret_shares[&TWO][&ONE].clone(), &blame.unwrap());
}
// This should be largely equivalent to the prior test
#[test]
fn invalid_dleq_blame() {
let (mut machines, commitment_msgs, _, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
secret_shares
.get_mut(&TWO)
.unwrap()
.get_mut(&ONE)
.unwrap()
.invalidate_msg(&mut OsRng, CONTEXT, TWO);
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == ONE {
blame = Some(match machine.err() {
Some(PedPoPError::InvalidShare { participant: TWO, blame: Some(blame) }) => Some(blame),
_ => panic!(),
});
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
blame.as_mut().unwrap().as_mut().unwrap().invalidate_dleq();
test_blame(&commitment_msgs, machines, &secret_shares[&TWO][&ONE].clone(), &blame.unwrap());
}
#[test]
fn invalid_share_serialization_blame() {
let (mut machines, commitment_msgs, enc_keys, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
secret_shares.get_mut(&ONE).unwrap().get_mut(&TWO).unwrap().invalidate_share_serialization(
&mut OsRng,
CONTEXT,
ONE,
enc_keys[&TWO],
);
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == TWO {
blame = Some(match machine.err() {
Some(PedPoPError::InvalidShare { participant: ONE, blame: Some(blame) }) => Some(blame),
_ => panic!(),
});
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
test_blame(&commitment_msgs, machines, &secret_shares[&ONE][&TWO].clone(), &blame.unwrap());
}
#[test]
fn invalid_share_value_blame() {
let (mut machines, commitment_msgs, enc_keys, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
secret_shares.get_mut(&ONE).unwrap().get_mut(&TWO).unwrap().invalidate_share_value(
&mut OsRng,
CONTEXT,
ONE,
enc_keys[&TWO],
);
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == TWO {
blame = Some(match machine.err() {
Some(PedPoPError::InvalidShare { participant: ONE, blame: Some(blame) }) => Some(blame),
_ => panic!(),
});
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
test_blame(&commitment_msgs, machines, &secret_shares[&ONE][&TWO].clone(), &blame.unwrap());
}