Monero: fix decoy selection algo and add test for latest spendable (#384)

* Monero: fix decoy selection algo and add test for latest spendable

- DSA only selected coinbase outputs and didn't match the wallet2
implementation
- Added test to make sure DSA will select a decoy output from the
most recent unlocked block
- Made usage of "height" in DSA consistent with other usage of
"height" in Monero code (height == num blocks in chain)
- Rely on monerod RPC response for output's unlocked status

* xmr runner tests mine until outputs are unlocked

* fingerprintable canoncial select decoys

* Separate fingerprintable canonical function

Makes it simpler for callers who are unconcered with consistent
canonical output selection across multiple clients to rely on
the simpler Decoy::select and not worry about fingerprintable
canonical

* fix merge conflicts

* Put back TODO for issue #104

* Fix incorrect check on distribution len

The RingCT distribution on mainnet doesn't start until well after
genesis, so the distribution length is expected to be < height.

To be clear, this was my mistake from this series of changes
to the DSA. I noticed this mistake because the DSA would error
when running on mainnet.
This commit is contained in:
Justin Berman
2024-02-19 18:34:10 -08:00
committed by GitHub
parent 4f1f7984a6
commit 92d8b91be9
10 changed files with 444 additions and 188 deletions

View File

@@ -21,15 +21,13 @@ use crate::{
serialize::varint_len,
wallet::SpendableOutput,
rpc::{RpcError, RpcConnection, Rpc},
DEFAULT_LOCK_WINDOW, COINBASE_LOCK_WINDOW, BLOCK_TIME,
};
const LOCK_WINDOW: usize = 10;
const MATURITY: u64 = 60;
const RECENT_WINDOW: usize = 15;
const BLOCK_TIME: usize = 120;
const BLOCKS_PER_YEAR: usize = 365 * 24 * 60 * 60 / BLOCK_TIME;
#[allow(clippy::cast_precision_loss)]
const TIP_APPLICATION: f64 = (LOCK_WINDOW * BLOCK_TIME) as f64;
const TIP_APPLICATION: f64 = (DEFAULT_LOCK_WINDOW * BLOCK_TIME) as f64;
// TODO: Resolve safety of this in case a reorg occurs/the network changes
// TODO: Update this when scanning a block, as possible
@@ -52,8 +50,10 @@ async fn select_n<'a, R: RngCore + CryptoRng, RPC: RpcConnection>(
real: &[u64],
used: &mut HashSet<u64>,
count: usize,
fingerprintable_canonical: bool,
) -> Result<Vec<(u64, [EdwardsPoint; 2])>, RpcError> {
if height >= rpc.get_height().await? {
// TODO: consider removing this extra RPC and expect the caller to handle it
if fingerprintable_canonical && height > rpc.get_height().await? {
// TODO: Don't use InternalError for the caller's failure
Err(RpcError::InternalError("decoys being requested from too young blocks"))?;
}
@@ -64,6 +64,8 @@ async fn select_n<'a, R: RngCore + CryptoRng, RPC: RpcConnection>(
// Retries on failure. Retries are obvious as decoys, yet should be minimal
while confirmed.len() != count {
let remaining = count - confirmed.len();
// TODO: over-request candidates in case some are locked to avoid needing
// round trips to the daemon (and revealing obvious decoys to the daemon)
let mut candidates = Vec::with_capacity(remaining);
while candidates.len() != remaining {
#[cfg(test)]
@@ -117,7 +119,14 @@ async fn select_n<'a, R: RngCore + CryptoRng, RPC: RpcConnection>(
}
}
for (i, output) in rpc.get_unlocked_outputs(&candidates, height).await?.iter_mut().enumerate() {
// TODO: make sure that the real output is included in the response, and
// that mask and key are equal to expected
for (i, output) in rpc
.get_unlocked_outputs(&candidates, height, fingerprintable_canonical)
.await?
.iter_mut()
.enumerate()
{
// Don't include the real spend as a decoy, despite requesting it
if real_indexes.contains(&i) {
continue;
@@ -141,6 +150,154 @@ fn offset(ring: &[u64]) -> Vec<u64> {
res
}
async fn select_decoys<R: RngCore + CryptoRng, RPC: RpcConnection>(
rng: &mut R,
rpc: &Rpc<RPC>,
ring_len: usize,
height: usize,
inputs: &[SpendableOutput],
fingerprintable_canonical: bool,
) -> Result<Vec<Decoys>, RpcError> {
#[cfg(feature = "cache-distribution")]
#[cfg(not(feature = "std"))]
let mut distribution = DISTRIBUTION().lock();
#[cfg(feature = "cache-distribution")]
#[cfg(feature = "std")]
let mut distribution = DISTRIBUTION().lock().await;
#[cfg(not(feature = "cache-distribution"))]
let mut distribution = vec![];
let decoy_count = ring_len - 1;
// Convert the inputs in question to the raw output data
let mut real = Vec::with_capacity(inputs.len());
let mut outputs = Vec::with_capacity(inputs.len());
for input in inputs {
real.push(input.global_index);
outputs.push((real[real.len() - 1], [input.key(), input.commitment().calculate()]));
}
if distribution.len() < height {
// TODO: verify distribution elems are strictly increasing
let extension =
rpc.get_output_distribution(distribution.len(), height.saturating_sub(1)).await?;
distribution.extend(extension);
}
// If asked to use an older height than previously asked, truncate to ensure accuracy
// Should never happen, yet risks desyncing if it did
distribution.truncate(height);
if distribution.len() < DEFAULT_LOCK_WINDOW {
Err(RpcError::InternalError("not enough decoy candidates"))?;
}
#[allow(clippy::cast_precision_loss)]
let per_second = {
let blocks = distribution.len().min(BLOCKS_PER_YEAR);
let initial = distribution[distribution.len().saturating_sub(blocks + 1)];
let outputs = distribution[distribution.len() - 1].saturating_sub(initial);
(outputs as f64) / ((blocks * BLOCK_TIME) as f64)
};
let mut used = HashSet::<u64>::new();
for o in &outputs {
used.insert(o.0);
}
// TODO: Create a TX with less than the target amount, as allowed by the protocol
let high = distribution[distribution.len() - DEFAULT_LOCK_WINDOW];
if high.saturating_sub(COINBASE_LOCK_WINDOW as u64) <
u64::try_from(inputs.len() * ring_len).unwrap()
{
Err(RpcError::InternalError("not enough coinbase candidates"))?;
}
// Select all decoys for this transaction, assuming we generate a sane transaction
// We should almost never naturally generate an insane transaction, hence why this doesn't
// bother with an overage
let mut decoys = select_n(
rng,
rpc,
&distribution,
height,
high,
per_second,
&real,
&mut used,
inputs.len() * decoy_count,
fingerprintable_canonical,
)
.await?;
real.zeroize();
let mut res = Vec::with_capacity(inputs.len());
for o in outputs {
// Grab the decoys for this specific output
let mut ring = decoys.drain((decoys.len() - decoy_count) ..).collect::<Vec<_>>();
ring.push(o);
ring.sort_by(|a, b| a.0.cmp(&b.0));
// Sanity checks are only run when 1000 outputs are available in Monero
// We run this check whenever the highest output index, which we acknowledge, is > 500
// This means we assume (for presumably test blockchains) the height being used has not had
// 500 outputs since while itself not being a sufficiently mature blockchain
// Considering Monero's p2p layer doesn't actually check transaction sanity, it should be
// fine for us to not have perfectly matching rules, especially since this code will infinite
// loop if it can't determine sanity, which is possible with sufficient inputs on
// sufficiently small chains
if high > 500 {
// Make sure the TX passes the sanity check that the median output is within the last 40%
let target_median = high * 3 / 5;
while ring[ring_len / 2].0 < target_median {
// If it's not, update the bottom half with new values to ensure the median only moves up
for removed in ring.drain(0 .. (ring_len / 2)).collect::<Vec<_>>() {
// If we removed the real spend, add it back
if removed.0 == o.0 {
ring.push(o);
} else {
// We could not remove this, saving CPU time and removing low values as
// possibilities, yet it'd increase the amount of decoys required to create this
// transaction and some removed outputs may be the best option (as we drop the first
// half, not just the bottom n)
used.remove(&removed.0);
}
}
// Select new outputs until we have a full sized ring again
ring.extend(
select_n(
rng,
rpc,
&distribution,
height,
high,
per_second,
&[],
&mut used,
ring_len - ring.len(),
fingerprintable_canonical,
)
.await?,
);
ring.sort_by(|a, b| a.0.cmp(&b.0));
}
// The other sanity check rule is about duplicates, yet we already enforce unique ring
// members
}
res.push(Decoys {
// Binary searches for the real spend since we don't know where it sorted to
i: u8::try_from(ring.partition_point(|x| x.0 < o.0)).unwrap(),
offsets: offset(&ring.iter().map(|output| output.0).collect::<Vec<_>>()),
ring: ring.iter().map(|output| output.1).collect(),
});
}
Ok(res)
}
/// Decoy data, containing the actual member as well (at index `i`).
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct Decoys {
@@ -159,7 +316,16 @@ impl Decoys {
self.offsets.len()
}
/// Select decoys using the same distribution as Monero.
pub fn indexes(&self) -> Vec<u64> {
let mut res = vec![self.offsets[0]; self.len()];
for m in 1 .. res.len() {
res[m] = res[m - 1] + self.offsets[m];
}
res
}
/// Select decoys using the same distribution as Monero. Relies on the monerod RPC
/// response for an output's unlocked status, minimizing trips to the daemon.
pub async fn select<R: RngCore + CryptoRng, RPC: RpcConnection>(
rng: &mut R,
rpc: &Rpc<RPC>,
@@ -167,132 +333,24 @@ impl Decoys {
height: usize,
inputs: &[SpendableOutput],
) -> Result<Vec<Decoys>, RpcError> {
#[cfg(feature = "cache-distribution")]
#[cfg(not(feature = "std"))]
let mut distribution = DISTRIBUTION().lock();
#[cfg(feature = "cache-distribution")]
#[cfg(feature = "std")]
let mut distribution = DISTRIBUTION().lock().await;
select_decoys(rng, rpc, ring_len, height, inputs, false).await
}
#[cfg(not(feature = "cache-distribution"))]
let mut distribution = vec![];
let decoy_count = ring_len - 1;
// Convert the inputs in question to the raw output data
let mut real = Vec::with_capacity(inputs.len());
let mut outputs = Vec::with_capacity(inputs.len());
for input in inputs {
real.push(input.global_index);
outputs.push((real[real.len() - 1], [input.key(), input.commitment().calculate()]));
}
if distribution.len() <= height {
let extension = rpc.get_output_distribution(distribution.len(), height).await?;
distribution.extend(extension);
}
// If asked to use an older height than previously asked, truncate to ensure accuracy
// Should never happen, yet risks desyncing if it did
distribution.truncate(height + 1); // height is inclusive, and 0 is a valid height
let high = distribution[distribution.len() - 1];
#[allow(clippy::cast_precision_loss)]
let per_second = {
let blocks = distribution.len().min(BLOCKS_PER_YEAR);
let outputs = high - distribution[distribution.len().saturating_sub(blocks + 1)];
(outputs as f64) / ((blocks * BLOCK_TIME) as f64)
};
let mut used = HashSet::<u64>::new();
for o in &outputs {
used.insert(o.0);
}
// TODO: Create a TX with less than the target amount, as allowed by the protocol
if (high - MATURITY) < u64::try_from(inputs.len() * ring_len).unwrap() {
Err(RpcError::InternalError("not enough decoy candidates"))?;
}
// Select all decoys for this transaction, assuming we generate a sane transaction
// We should almost never naturally generate an insane transaction, hence why this doesn't
// bother with an overage
let mut decoys = select_n(
rng,
rpc,
&distribution,
height,
high,
per_second,
&real,
&mut used,
inputs.len() * decoy_count,
)
.await?;
real.zeroize();
let mut res = Vec::with_capacity(inputs.len());
for o in outputs {
// Grab the decoys for this specific output
let mut ring = decoys.drain((decoys.len() - decoy_count) ..).collect::<Vec<_>>();
ring.push(o);
ring.sort_by(|a, b| a.0.cmp(&b.0));
// Sanity checks are only run when 1000 outputs are available in Monero
// We run this check whenever the highest output index, which we acknowledge, is > 500
// This means we assume (for presumably test blockchains) the height being used has not had
// 500 outputs since while itself not being a sufficiently mature blockchain
// Considering Monero's p2p layer doesn't actually check transaction sanity, it should be
// fine for us to not have perfectly matching rules, especially since this code will infinite
// loop if it can't determine sanity, which is possible with sufficient inputs on
// sufficiently small chains
if high > 500 {
// Make sure the TX passes the sanity check that the median output is within the last 40%
let target_median = high * 3 / 5;
while ring[ring_len / 2].0 < target_median {
// If it's not, update the bottom half with new values to ensure the median only moves up
for removed in ring.drain(0 .. (ring_len / 2)).collect::<Vec<_>>() {
// If we removed the real spend, add it back
if removed.0 == o.0 {
ring.push(o);
} else {
// We could not remove this, saving CPU time and removing low values as
// possibilities, yet it'd increase the amount of decoys required to create this
// transaction and some removed outputs may be the best option (as we drop the first
// half, not just the bottom n)
used.remove(&removed.0);
}
}
// Select new outputs until we have a full sized ring again
ring.extend(
select_n(
rng,
rpc,
&distribution,
height,
high,
per_second,
&[],
&mut used,
ring_len - ring.len(),
)
.await?,
);
ring.sort_by(|a, b| a.0.cmp(&b.0));
}
// The other sanity check rule is about duplicates, yet we already enforce unique ring
// members
}
res.push(Decoys {
// Binary searches for the real spend since we don't know where it sorted to
i: u8::try_from(ring.partition_point(|x| x.0 < o.0)).unwrap(),
offsets: offset(&ring.iter().map(|output| output.0).collect::<Vec<_>>()),
ring: ring.iter().map(|output| output.1).collect(),
});
}
Ok(res)
/// If no reorg has occurred and an honest RPC, any caller who passes the same height to this
/// function will use the same distribution to select decoys. It is fingerprintable
/// because a caller using this will not be able to select decoys that are timelocked
/// with a timestamp. Any transaction which includes timestamp timelocked decoys in its
/// rings could not be constructed using this function.
///
/// TODO: upstream change to monerod get_outs RPC to accept a height param for checking
/// output's unlocked status and remove all usage of fingerprintable_canonical
pub async fn fingerprintable_canonical_select<R: RngCore + CryptoRng, RPC: RpcConnection>(
rng: &mut R,
rpc: &Rpc<RPC>,
ring_len: usize,
height: usize,
inputs: &[SpendableOutput],
) -> Result<Vec<Decoys>, RpcError> {
select_decoys(rng, rpc, ring_len, height, inputs, true).await
}
}