Replace Ciphersuite::hash_to_F

The prior-present `Ciphersuite::hash_to_F` was a sin. Implementations took a
DST, yet were not require to securely handle it. It was also biased towards the
requirements of `modular-frost` as `ciphersuite` was originally written all
those years ago, when `modular-frost` had needs exceeding what `ff`, `group`
satisfied.

Now, the hash is bound to produce an output which can be converted to a scalar
with `ff::FromUniformBytes`. A new `hash_to_F`, which accepts a single argument
of the value to hash (removing the potential to insecurely handle the DST by
removing the DST entirely). Due to `digest` yielding a `GenericArray`, yet
`FromUniformBytes` taking a `const usize`, the `ciphersuite` crate now defines
a `FromUniformBytes` trait taking an array (then implemented for all satisfiers
of `ff::FromUniformBytes`). In order to get the array type from the
`GenericArray`, the output of the hash, `digest` is updated to the `0.11`
release candidate which moves to `flexible-array` which solves that problem.

The existing, specific `hash_to_F` functions have been moved to `modular-frost`
as necessary.

`flexible-array` itself is patched to a fork due to
https://github.com/RustCrypto/hybrid-array/issues/131.
This commit is contained in:
Luke Parker
2025-08-29 05:04:03 -04:00
parent a4811c9a41
commit 90bc364f9f
37 changed files with 355 additions and 416 deletions

View File

@@ -19,13 +19,13 @@ use primitives::OutputType;
use crate::hash_bytes;
const KEY_DST: &[u8] = b"Serai Bitcoin Processor Key Offset";
// TODO: Bitcoin HD derivation, instead of these bespoke labels?
static BRANCH_BASE_OFFSET: LazyLock<<Secp256k1 as Ciphersuite>::F> =
LazyLock::new(|| Secp256k1::hash_to_F(KEY_DST, b"branch"));
LazyLock::new(|| Secp256k1::hash_to_F(b"branch"));
static CHANGE_BASE_OFFSET: LazyLock<<Secp256k1 as Ciphersuite>::F> =
LazyLock::new(|| Secp256k1::hash_to_F(KEY_DST, b"change"));
LazyLock::new(|| Secp256k1::hash_to_F(b"change"));
static FORWARD_BASE_OFFSET: LazyLock<<Secp256k1 as Ciphersuite>::F> =
LazyLock::new(|| Secp256k1::hash_to_F(KEY_DST, b"forward"));
LazyLock::new(|| Secp256k1::hash_to_F(b"forward"));
// Unfortunately, we have per-key offsets as it's the root key plus the base offset may not be
// even. While we could tweak the key until all derivations are even, that'd require significantly