mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-09 04:39:24 +00:00
Replace Ciphersuite::hash_to_F
The prior-present `Ciphersuite::hash_to_F` was a sin. Implementations took a DST, yet were not require to securely handle it. It was also biased towards the requirements of `modular-frost` as `ciphersuite` was originally written all those years ago, when `modular-frost` had needs exceeding what `ff`, `group` satisfied. Now, the hash is bound to produce an output which can be converted to a scalar with `ff::FromUniformBytes`. A new `hash_to_F`, which accepts a single argument of the value to hash (removing the potential to insecurely handle the DST by removing the DST entirely). Due to `digest` yielding a `GenericArray`, yet `FromUniformBytes` taking a `const usize`, the `ciphersuite` crate now defines a `FromUniformBytes` trait taking an array (then implemented for all satisfiers of `ff::FromUniformBytes`). In order to get the array type from the `GenericArray`, the output of the hash, `digest` is updated to the `0.11` release candidate which moves to `flexible-array` which solves that problem. The existing, specific `hash_to_F` functions have been moved to `modular-frost` as necessary. `flexible-array` itself is patched to a fork due to https://github.com/RustCrypto/hybrid-array/issues/131.
This commit is contained in:
@@ -3,15 +3,9 @@
|
||||
|
||||
use zeroize::Zeroize;
|
||||
|
||||
use sha2::Sha256;
|
||||
use sha2::Sha512;
|
||||
|
||||
use elliptic_curve::{
|
||||
generic_array::GenericArray,
|
||||
bigint::{NonZero, CheckedAdd, Encoding, U384},
|
||||
hash2curve::{Expander, ExpandMsg, ExpandMsgXmd},
|
||||
};
|
||||
|
||||
use ciphersuite::{group::ff::PrimeField, Ciphersuite};
|
||||
use ciphersuite::Ciphersuite;
|
||||
|
||||
pub use k256;
|
||||
pub use p256;
|
||||
@@ -27,148 +21,31 @@ macro_rules! kp_curve {
|
||||
impl Ciphersuite for $Ciphersuite {
|
||||
type F = $lib::Scalar;
|
||||
type G = $lib::ProjectivePoint;
|
||||
type H = Sha256;
|
||||
type H = Sha512;
|
||||
|
||||
const ID: &'static [u8] = $ID;
|
||||
|
||||
fn generator() -> Self::G {
|
||||
$lib::ProjectivePoint::GENERATOR
|
||||
}
|
||||
|
||||
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
|
||||
// While one of these two libraries does support directly hashing to the Scalar field, the
|
||||
// other doesn't. While that's probably an oversight, this is a universally working method
|
||||
|
||||
// This method is from
|
||||
// https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html
|
||||
// Specifically, Section 5
|
||||
|
||||
// While that draft, overall, is intended for hashing to curves, that necessitates
|
||||
// detailing how to hash to a finite field. The draft comments that its mechanism for
|
||||
// doing so, which it uses to derive field elements, is also applicable to the scalar field
|
||||
|
||||
// The hash_to_field function is intended to provide unbiased values
|
||||
// In order to do so, a wide reduction from an extra k bits is applied, minimizing bias to
|
||||
// 2^-k
|
||||
// k is intended to be the bits of security of the suite, which is 128 for secp256k1 and
|
||||
// P-256
|
||||
const K: usize = 128;
|
||||
|
||||
// L is the amount of bytes of material which should be used in the wide reduction
|
||||
// The 256 is for the bit-length of the primes, rounded up to the nearest byte threshold
|
||||
// This is a simplification of the formula from the end of section 5
|
||||
const L: usize = (256 + K) / 8; // 48
|
||||
|
||||
// In order to perform this reduction, we need to use 48-byte numbers
|
||||
// First, convert the modulus to a 48-byte number
|
||||
// This is done by getting -1 as bytes, parsing it into a U384, and then adding back one
|
||||
let mut modulus = [0; L];
|
||||
// The byte repr of scalars will be 32 big-endian bytes
|
||||
// Set the lower 32 bytes of our 48-byte array accordingly
|
||||
modulus[16 ..].copy_from_slice(&(Self::F::ZERO - Self::F::ONE).to_bytes());
|
||||
// Use a checked_add + unwrap since this addition cannot fail (being a 32-byte value with
|
||||
// 48-bytes of space)
|
||||
// While a non-panicking saturating_add/wrapping_add could be used, they'd likely be less
|
||||
// performant
|
||||
let modulus = U384::from_be_slice(&modulus).checked_add(&U384::ONE).unwrap();
|
||||
|
||||
// The defined P-256 and secp256k1 ciphersuites both use expand_message_xmd
|
||||
let mut wide = U384::from_be_bytes({
|
||||
let mut bytes = [0; 48];
|
||||
ExpandMsgXmd::<Sha256>::expand_message(&[msg], &[dst], 48)
|
||||
.unwrap()
|
||||
.fill_bytes(&mut bytes);
|
||||
bytes
|
||||
})
|
||||
.rem(&NonZero::new(modulus).unwrap())
|
||||
.to_be_bytes();
|
||||
|
||||
// Now that this has been reduced back to a 32-byte value, grab the lower 32-bytes
|
||||
let mut array = *GenericArray::from_slice(&wide[16 ..]);
|
||||
let res = $lib::Scalar::from_repr(array).unwrap();
|
||||
|
||||
// Zeroize the temp values we can due to the possibility hash_to_F is being used for nonces
|
||||
wide.zeroize();
|
||||
array.zeroize();
|
||||
res
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
fn test_oversize_dst<C: Ciphersuite>() {
|
||||
use sha2::Digest;
|
||||
|
||||
// The draft specifies DSTs >255 bytes should be hashed into a 32-byte DST
|
||||
let oversize_dst = [0x00; 256];
|
||||
let actual_dst = Sha256::digest([b"H2C-OVERSIZE-DST-".as_ref(), &oversize_dst].concat());
|
||||
// Test the hash_to_F function handles this
|
||||
// If it didn't, these would return different values
|
||||
assert_eq!(C::hash_to_F(&oversize_dst, &[]), C::hash_to_F(&actual_dst, &[]));
|
||||
}
|
||||
|
||||
/// Ciphersuite for Secp256k1.
|
||||
///
|
||||
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
|
||||
pub struct Secp256k1;
|
||||
kp_curve!("secp256k1", k256, Secp256k1, b"secp256k1");
|
||||
#[test]
|
||||
fn test_secp256k1() {
|
||||
ff_group_tests::group::test_prime_group_bits::<_, k256::ProjectivePoint>(&mut rand_core::OsRng);
|
||||
|
||||
// Ideally, a test vector from hash_to_field (not FROST) would be here
|
||||
// Unfortunately, the IETF draft only provides vectors for field elements, not scalars
|
||||
// Vectors have been requested in
|
||||
// https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/issues/343
|
||||
|
||||
assert_eq!(
|
||||
Secp256k1::hash_to_F(
|
||||
b"FROST-secp256k1-SHA256-v11nonce",
|
||||
&hex::decode(
|
||||
"\
|
||||
80cbea5e405d169999d8c4b30b755fedb26ab07ec8198cda4873ed8ce5e16773\
|
||||
08f89ffe80ac94dcb920c26f3f46140bfc7f95b493f8310f5fc1ea2b01f4254c"
|
||||
)
|
||||
.unwrap()
|
||||
)
|
||||
.to_repr()
|
||||
.iter()
|
||||
.copied()
|
||||
.collect::<Vec<_>>(),
|
||||
hex::decode("acc83278035223c1ba464e2d11bfacfc872b2b23e1041cf5f6130da21e4d8068").unwrap()
|
||||
);
|
||||
|
||||
test_oversize_dst::<Secp256k1>();
|
||||
}
|
||||
|
||||
/// Ciphersuite for P-256.
|
||||
///
|
||||
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
|
||||
pub struct P256;
|
||||
kp_curve!("p256", p256, P256, b"P-256");
|
||||
#[test]
|
||||
fn test_p256() {
|
||||
ff_group_tests::group::test_prime_group_bits::<_, p256::ProjectivePoint>(&mut rand_core::OsRng);
|
||||
|
||||
assert_eq!(
|
||||
P256::hash_to_F(
|
||||
b"FROST-P256-SHA256-v11nonce",
|
||||
&hex::decode(
|
||||
"\
|
||||
f4e8cf80aec3f888d997900ac7e3e349944b5a6b47649fc32186d2f1238103c6\
|
||||
0c9c1a0fe806c184add50bbdcac913dda73e482daf95dcb9f35dbb0d8a9f7731"
|
||||
)
|
||||
.unwrap()
|
||||
)
|
||||
.to_repr()
|
||||
.iter()
|
||||
.copied()
|
||||
.collect::<Vec<_>>(),
|
||||
hex::decode("f871dfcf6bcd199342651adc361b92c941cb6a0d8c8c1a3b91d79e2c1bf3722d").unwrap()
|
||||
);
|
||||
|
||||
test_oversize_dst::<P256>();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user