mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 12:19:24 +00:00
Replace Ciphersuite::hash_to_F
The prior-present `Ciphersuite::hash_to_F` was a sin. Implementations took a DST, yet were not require to securely handle it. It was also biased towards the requirements of `modular-frost` as `ciphersuite` was originally written all those years ago, when `modular-frost` had needs exceeding what `ff`, `group` satisfied. Now, the hash is bound to produce an output which can be converted to a scalar with `ff::FromUniformBytes`. A new `hash_to_F`, which accepts a single argument of the value to hash (removing the potential to insecurely handle the DST by removing the DST entirely). Due to `digest` yielding a `GenericArray`, yet `FromUniformBytes` taking a `const usize`, the `ciphersuite` crate now defines a `FromUniformBytes` trait taking an array (then implemented for all satisfiers of `ff::FromUniformBytes`). In order to get the array type from the `GenericArray`, the output of the hash, `digest` is updated to the `0.11` release candidate which moves to `flexible-array` which solves that problem. The existing, specific `hash_to_F` functions have been moved to `modular-frost` as necessary. `flexible-array` itself is patched to a fork due to https://github.com/RustCrypto/hybrid-array/issues/131.
This commit is contained in:
@@ -7,7 +7,7 @@ repository = "https://github.com/serai-dex/serai/tree/develop/crypto/ciphersuite
|
||||
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
|
||||
keywords = ["ciphersuite", "ff", "group"]
|
||||
edition = "2021"
|
||||
rust-version = "1.73"
|
||||
rust-version = "1.85"
|
||||
|
||||
[package.metadata.docs.rs]
|
||||
all-features = true
|
||||
@@ -24,7 +24,7 @@ rand_core = { version = "0.6", default-features = false }
|
||||
zeroize = { version = "^1.5", default-features = false, features = ["derive"] }
|
||||
subtle = { version = "^2.4", default-features = false }
|
||||
|
||||
digest = { version = "0.10", default-features = false, features = ["core-api"] }
|
||||
digest = { version = "0.11.0-rc.0", default-features = false, features = ["block-api"] }
|
||||
transcript = { package = "flexible-transcript", path = "../transcript", version = "^0.3.2", default-features = false }
|
||||
|
||||
ff = { version = "0.13", default-features = false, features = ["bits"] }
|
||||
@@ -38,7 +38,7 @@ rand_core = { version = "0.6", default-features = false, features = ["std"] }
|
||||
ff-group-tests = { version = "0.13", path = "../ff-group-tests" }
|
||||
|
||||
[features]
|
||||
alloc = ["std-shims"]
|
||||
alloc = ["std-shims", "ff/alloc"]
|
||||
std = [
|
||||
"alloc",
|
||||
|
||||
@@ -49,7 +49,6 @@ std = [
|
||||
"zeroize/std",
|
||||
"subtle/std",
|
||||
|
||||
"digest/std",
|
||||
"transcript/std",
|
||||
|
||||
"ff/std",
|
||||
|
||||
@@ -17,10 +17,6 @@ Secp256k1 and P-256 are offered via [k256](https://crates.io/crates/k256) and
|
||||
[p256](https://crates.io/crates/p256), two libraries maintained by
|
||||
[RustCrypto](https://github.com/RustCrypto).
|
||||
|
||||
Their `hash_to_F` is the
|
||||
[IETF's hash to curve](https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html),
|
||||
yet applied to their scalar field.
|
||||
|
||||
Please see the [`ciphersuite-kp256`](https://docs.rs/ciphersuite-kp256) crate for more info.
|
||||
|
||||
### Ed25519/Ristretto
|
||||
@@ -29,12 +25,6 @@ Ed25519/Ristretto are offered via
|
||||
[dalek-ff-group](https://crates.io/crates/dalek-ff-group), an ff/group wrapper
|
||||
around [curve25519-dalek](https://crates.io/crates/curve25519-dalek).
|
||||
|
||||
Their `hash_to_F` is the wide reduction of SHA2-512, as used in
|
||||
[RFC-8032](https://www.rfc-editor.org/rfc/rfc8032). This is also compliant with
|
||||
the draft
|
||||
[RFC-RISTRETTO](https://www.ietf.org/archive/id/draft-irtf-cfrg-ristretto255-decaf448-05.html).
|
||||
The domain-separation tag is naively prefixed to the message.
|
||||
|
||||
Please see the [`dalek-ff-group`](https://docs.rs/dalek-ff-group) crate for more info.
|
||||
|
||||
### Ed448
|
||||
@@ -43,8 +33,4 @@ Ed448 is offered via [minimal-ed448](https://crates.io/crates/minimal-ed448), an
|
||||
explicitly not recommended, unaudited, incomplete Ed448 implementation, limited
|
||||
to its prime-order subgroup.
|
||||
|
||||
Its `hash_to_F` is the wide reduction of SHAKE256, with a 114-byte output, as
|
||||
used in [RFC-8032](https://www.rfc-editor.org/rfc/rfc8032). The
|
||||
domain-separation tag is naively prefixed to the message.
|
||||
|
||||
Please see the [`minimal-ed448`](https://docs.rs/minimal-ed448) crate for more info.
|
||||
|
||||
@@ -21,9 +21,8 @@ rand_core = { version = "0.6", default-features = false }
|
||||
|
||||
zeroize = { version = "^1.5", default-features = false, features = ["derive"] }
|
||||
|
||||
sha2 = { version = "0.10", default-features = false }
|
||||
sha2 = { version = "0.11.0-rc.0", default-features = false }
|
||||
|
||||
elliptic-curve = { version = "0.13", default-features = false, features = ["hash2curve"] }
|
||||
p256 = { version = "^0.13.1", default-features = false, features = ["arithmetic", "bits", "hash2curve"] }
|
||||
k256 = { version = "^0.13.1", default-features = false, features = ["arithmetic", "bits", "hash2curve"] }
|
||||
|
||||
@@ -43,9 +42,6 @@ std = [
|
||||
|
||||
"zeroize/std",
|
||||
|
||||
"sha2/std",
|
||||
|
||||
"elliptic-curve/std",
|
||||
"p256/std",
|
||||
"k256/std",
|
||||
|
||||
|
||||
@@ -3,15 +3,9 @@
|
||||
|
||||
use zeroize::Zeroize;
|
||||
|
||||
use sha2::Sha256;
|
||||
use sha2::Sha512;
|
||||
|
||||
use elliptic_curve::{
|
||||
generic_array::GenericArray,
|
||||
bigint::{NonZero, CheckedAdd, Encoding, U384},
|
||||
hash2curve::{Expander, ExpandMsg, ExpandMsgXmd},
|
||||
};
|
||||
|
||||
use ciphersuite::{group::ff::PrimeField, Ciphersuite};
|
||||
use ciphersuite::Ciphersuite;
|
||||
|
||||
pub use k256;
|
||||
pub use p256;
|
||||
@@ -27,148 +21,31 @@ macro_rules! kp_curve {
|
||||
impl Ciphersuite for $Ciphersuite {
|
||||
type F = $lib::Scalar;
|
||||
type G = $lib::ProjectivePoint;
|
||||
type H = Sha256;
|
||||
type H = Sha512;
|
||||
|
||||
const ID: &'static [u8] = $ID;
|
||||
|
||||
fn generator() -> Self::G {
|
||||
$lib::ProjectivePoint::GENERATOR
|
||||
}
|
||||
|
||||
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
|
||||
// While one of these two libraries does support directly hashing to the Scalar field, the
|
||||
// other doesn't. While that's probably an oversight, this is a universally working method
|
||||
|
||||
// This method is from
|
||||
// https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html
|
||||
// Specifically, Section 5
|
||||
|
||||
// While that draft, overall, is intended for hashing to curves, that necessitates
|
||||
// detailing how to hash to a finite field. The draft comments that its mechanism for
|
||||
// doing so, which it uses to derive field elements, is also applicable to the scalar field
|
||||
|
||||
// The hash_to_field function is intended to provide unbiased values
|
||||
// In order to do so, a wide reduction from an extra k bits is applied, minimizing bias to
|
||||
// 2^-k
|
||||
// k is intended to be the bits of security of the suite, which is 128 for secp256k1 and
|
||||
// P-256
|
||||
const K: usize = 128;
|
||||
|
||||
// L is the amount of bytes of material which should be used in the wide reduction
|
||||
// The 256 is for the bit-length of the primes, rounded up to the nearest byte threshold
|
||||
// This is a simplification of the formula from the end of section 5
|
||||
const L: usize = (256 + K) / 8; // 48
|
||||
|
||||
// In order to perform this reduction, we need to use 48-byte numbers
|
||||
// First, convert the modulus to a 48-byte number
|
||||
// This is done by getting -1 as bytes, parsing it into a U384, and then adding back one
|
||||
let mut modulus = [0; L];
|
||||
// The byte repr of scalars will be 32 big-endian bytes
|
||||
// Set the lower 32 bytes of our 48-byte array accordingly
|
||||
modulus[16 ..].copy_from_slice(&(Self::F::ZERO - Self::F::ONE).to_bytes());
|
||||
// Use a checked_add + unwrap since this addition cannot fail (being a 32-byte value with
|
||||
// 48-bytes of space)
|
||||
// While a non-panicking saturating_add/wrapping_add could be used, they'd likely be less
|
||||
// performant
|
||||
let modulus = U384::from_be_slice(&modulus).checked_add(&U384::ONE).unwrap();
|
||||
|
||||
// The defined P-256 and secp256k1 ciphersuites both use expand_message_xmd
|
||||
let mut wide = U384::from_be_bytes({
|
||||
let mut bytes = [0; 48];
|
||||
ExpandMsgXmd::<Sha256>::expand_message(&[msg], &[dst], 48)
|
||||
.unwrap()
|
||||
.fill_bytes(&mut bytes);
|
||||
bytes
|
||||
})
|
||||
.rem(&NonZero::new(modulus).unwrap())
|
||||
.to_be_bytes();
|
||||
|
||||
// Now that this has been reduced back to a 32-byte value, grab the lower 32-bytes
|
||||
let mut array = *GenericArray::from_slice(&wide[16 ..]);
|
||||
let res = $lib::Scalar::from_repr(array).unwrap();
|
||||
|
||||
// Zeroize the temp values we can due to the possibility hash_to_F is being used for nonces
|
||||
wide.zeroize();
|
||||
array.zeroize();
|
||||
res
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
fn test_oversize_dst<C: Ciphersuite>() {
|
||||
use sha2::Digest;
|
||||
|
||||
// The draft specifies DSTs >255 bytes should be hashed into a 32-byte DST
|
||||
let oversize_dst = [0x00; 256];
|
||||
let actual_dst = Sha256::digest([b"H2C-OVERSIZE-DST-".as_ref(), &oversize_dst].concat());
|
||||
// Test the hash_to_F function handles this
|
||||
// If it didn't, these would return different values
|
||||
assert_eq!(C::hash_to_F(&oversize_dst, &[]), C::hash_to_F(&actual_dst, &[]));
|
||||
}
|
||||
|
||||
/// Ciphersuite for Secp256k1.
|
||||
///
|
||||
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
|
||||
pub struct Secp256k1;
|
||||
kp_curve!("secp256k1", k256, Secp256k1, b"secp256k1");
|
||||
#[test]
|
||||
fn test_secp256k1() {
|
||||
ff_group_tests::group::test_prime_group_bits::<_, k256::ProjectivePoint>(&mut rand_core::OsRng);
|
||||
|
||||
// Ideally, a test vector from hash_to_field (not FROST) would be here
|
||||
// Unfortunately, the IETF draft only provides vectors for field elements, not scalars
|
||||
// Vectors have been requested in
|
||||
// https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/issues/343
|
||||
|
||||
assert_eq!(
|
||||
Secp256k1::hash_to_F(
|
||||
b"FROST-secp256k1-SHA256-v11nonce",
|
||||
&hex::decode(
|
||||
"\
|
||||
80cbea5e405d169999d8c4b30b755fedb26ab07ec8198cda4873ed8ce5e16773\
|
||||
08f89ffe80ac94dcb920c26f3f46140bfc7f95b493f8310f5fc1ea2b01f4254c"
|
||||
)
|
||||
.unwrap()
|
||||
)
|
||||
.to_repr()
|
||||
.iter()
|
||||
.copied()
|
||||
.collect::<Vec<_>>(),
|
||||
hex::decode("acc83278035223c1ba464e2d11bfacfc872b2b23e1041cf5f6130da21e4d8068").unwrap()
|
||||
);
|
||||
|
||||
test_oversize_dst::<Secp256k1>();
|
||||
}
|
||||
|
||||
/// Ciphersuite for P-256.
|
||||
///
|
||||
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
|
||||
pub struct P256;
|
||||
kp_curve!("p256", p256, P256, b"P-256");
|
||||
#[test]
|
||||
fn test_p256() {
|
||||
ff_group_tests::group::test_prime_group_bits::<_, p256::ProjectivePoint>(&mut rand_core::OsRng);
|
||||
|
||||
assert_eq!(
|
||||
P256::hash_to_F(
|
||||
b"FROST-P256-SHA256-v11nonce",
|
||||
&hex::decode(
|
||||
"\
|
||||
f4e8cf80aec3f888d997900ac7e3e349944b5a6b47649fc32186d2f1238103c6\
|
||||
0c9c1a0fe806c184add50bbdcac913dda73e482daf95dcb9f35dbb0d8a9f7731"
|
||||
)
|
||||
.unwrap()
|
||||
)
|
||||
.to_repr()
|
||||
.iter()
|
||||
.copied()
|
||||
.collect::<Vec<_>>(),
|
||||
hex::decode("f871dfcf6bcd199342651adc361b92c941cb6a0d8c8c1a3b91d79e2c1bf3722d").unwrap()
|
||||
);
|
||||
|
||||
test_oversize_dst::<P256>();
|
||||
}
|
||||
|
||||
@@ -14,7 +14,8 @@ use rand_core::{RngCore, CryptoRng};
|
||||
use zeroize::Zeroize;
|
||||
use subtle::ConstantTimeEq;
|
||||
|
||||
use digest::{core_api::BlockSizeUser, Digest, HashMarker};
|
||||
pub use digest;
|
||||
use digest::{array::ArraySize, block_api::BlockSizeUser, OutputSizeUser, Digest, HashMarker};
|
||||
use transcript::SecureDigest;
|
||||
|
||||
pub use group;
|
||||
@@ -26,13 +27,25 @@ use group::{
|
||||
#[cfg(feature = "alloc")]
|
||||
use group::GroupEncoding;
|
||||
|
||||
pub trait FromUniformBytes<T> {
|
||||
fn from_uniform_bytes(bytes: &T) -> Self;
|
||||
}
|
||||
impl<const N: usize, F: group::ff::FromUniformBytes<N>> FromUniformBytes<[u8; N]> for F {
|
||||
fn from_uniform_bytes(bytes: &[u8; N]) -> Self {
|
||||
F::from_uniform_bytes(bytes)
|
||||
}
|
||||
}
|
||||
|
||||
/// Unified trait defining a ciphersuite around an elliptic curve.
|
||||
pub trait Ciphersuite:
|
||||
'static + Send + Sync + Clone + Copy + PartialEq + Eq + Debug + Zeroize
|
||||
{
|
||||
/// Scalar field element type.
|
||||
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
|
||||
type F: PrimeField + PrimeFieldBits + Zeroize;
|
||||
type F: PrimeField
|
||||
+ PrimeFieldBits
|
||||
+ Zeroize
|
||||
+ FromUniformBytes<<<Self::H as OutputSizeUser>::OutputSize as ArraySize>::ArrayType<u8>>;
|
||||
/// Group element type.
|
||||
type G: Group<Scalar = Self::F> + GroupOps + PrimeGroup + Zeroize + ConstantTimeEq;
|
||||
/// Hash algorithm used with this curve.
|
||||
@@ -46,16 +59,10 @@ pub trait Ciphersuite:
|
||||
// While group does provide this in its API, privacy coins may want to use a custom basepoint
|
||||
fn generator() -> Self::G;
|
||||
|
||||
/// Hash the provided domain-separation tag and message to a scalar. Ciphersuites MAY naively
|
||||
/// prefix the tag to the message, enabling transpotion between the two. Accordingly, this
|
||||
/// function should NOT be used in any scheme where one tag is a valid substring of another
|
||||
/// UNLESS the specific Ciphersuite is verified to handle the DST securely.
|
||||
///
|
||||
/// Verifying specific ciphersuites have secure tag handling is not recommended, due to it
|
||||
/// breaking the intended modularity of ciphersuites. Instead, component-specific tags with
|
||||
/// further purpose tags are recommended ("Schnorr-nonce", "Schnorr-chal").
|
||||
#[allow(non_snake_case)]
|
||||
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F;
|
||||
fn hash_to_F(data: &[u8]) -> Self::F {
|
||||
Self::F::from_uniform_bytes(&Self::H::digest(data).into())
|
||||
}
|
||||
|
||||
/// Generate a random non-zero scalar.
|
||||
#[allow(non_snake_case)]
|
||||
|
||||
Reference in New Issue
Block a user