Merge branch 'develop' into next

This resolves the conflicts and gets the workspace `Cargo.toml`s to not be
invalid. It doesn't actually get clippy to pass again yet.

Does move `crypto/dkg/src/evrf` into a new `crypto/dkg/evrf` crate (which does
not yet compile).
This commit is contained in:
Luke Parker
2025-08-23 15:04:39 -04:00
319 changed files with 4016 additions and 26990 deletions

View File

@@ -1,27 +0,0 @@
[package]
name = "generalized-bulletproofs-circuit-abstraction"
version = "0.1.0"
description = "An abstraction for arithmetic circuits over Generalized Bulletproofs"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/fcmps/circuit-abstraction"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["bulletproofs", "circuit"]
edition = "2021"
rust-version = "1.69"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
std-shims = { path = "../../../common/std-shims", version = "^0.1.1", default-features = false }
zeroize = { version = "^1.5", default-features = false, features = ["zeroize_derive"] }
ciphersuite = { path = "../../ciphersuite", version = "0.4", default-features = false }
generalized-bulletproofs = { path = "../generalized-bulletproofs", default-features = false }
[features]
std = ["std-shims/std", "zeroize/std", "ciphersuite/std", "generalized-bulletproofs/std"]
default = ["std"]

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2024 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,3 +0,0 @@
# Generalized Bulletproofs Circuit Abstraction
A circuit abstraction around `generalized-bulletproofs`.

View File

@@ -1,39 +0,0 @@
use ciphersuite::{group::ff::Field, Ciphersuite};
use crate::*;
impl<C: Ciphersuite> Circuit<C> {
/// Constrain two linear combinations to be equal.
pub fn equality(&mut self, a: LinComb<C::F>, b: &LinComb<C::F>) {
self.constrain_equal_to_zero(a - b);
}
/// Calculate (and constrain) the inverse of a value.
///
/// A linear combination may optionally be passed as a constraint for the value being inverted.
/// A reference to the inverted value and its inverse is returned.
///
/// May panic if any linear combinations reference non-existent terms, the witness isn't provided
/// when proving/is provided when verifying, or if the witness is 0 (and accordingly doesn't have
/// an inverse).
pub fn inverse(
&mut self,
lincomb: Option<LinComb<C::F>>,
witness: Option<C::F>,
) -> (Variable, Variable) {
let (l, r, o) = self.mul(lincomb, None, witness.map(|f| (f, f.invert().unwrap())));
// The output of a value multiplied by its inverse is 1
// Constrain `1 o - 1 = 0`
self.constrain_equal_to_zero(LinComb::from(o).constant(-C::F::ONE));
(l, r)
}
/// Constrain two linear combinations as inequal.
///
/// May panic if any linear combinations reference non-existent terms.
pub fn inequality(&mut self, a: LinComb<C::F>, b: &LinComb<C::F>, witness: Option<(C::F, C::F)>) {
let l_constraint = a - b;
// The existence of a multiplicative inverse means a-b != 0, which means a != b
self.inverse(Some(l_constraint), witness.map(|(a, b)| a - b));
}
}

View File

@@ -1,197 +0,0 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
#![deny(missing_docs)]
#![allow(non_snake_case)]
use std_shims::{vec, vec::Vec};
use zeroize::{Zeroize, ZeroizeOnDrop};
use ciphersuite::{group::ff::Field, Ciphersuite};
use generalized_bulletproofs::{
ScalarVector, PedersenCommitment, PedersenVectorCommitment, ProofGenerators,
transcript::{Transcript as ProverTranscript, VerifierTranscript, Commitments},
arithmetic_circuit_proof::{AcError, ArithmeticCircuitStatement, ArithmeticCircuitWitness},
};
pub use generalized_bulletproofs::arithmetic_circuit_proof::{Variable, LinComb};
mod gadgets;
/// A trait for the transcript, whether proving for verifying, as necessary for sampling
/// challenges.
pub trait Transcript {
/// Sample a challenge from the transacript.
///
/// It is the caller's responsibility to have properly transcripted all variables prior to
/// sampling this challenge.
fn challenge<C: Ciphersuite>(&mut self) -> C::F;
/// Sample a challenge as a byte array.
///
/// It is the caller's responsibility to have properly transcripted all variables prior to
/// sampling this challenge.
fn challenge_bytes(&mut self) -> [u8; 64];
}
impl Transcript for ProverTranscript {
fn challenge<C: Ciphersuite>(&mut self) -> C::F {
self.challenge::<C>()
}
fn challenge_bytes(&mut self) -> [u8; 64] {
self.challenge_bytes()
}
}
impl Transcript for VerifierTranscript<'_> {
fn challenge<C: Ciphersuite>(&mut self) -> C::F {
self.challenge::<C>()
}
fn challenge_bytes(&mut self) -> [u8; 64] {
self.challenge_bytes()
}
}
/// The witness for the satisfaction of this circuit.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
struct ProverData<C: Ciphersuite> {
aL: Vec<C::F>,
aR: Vec<C::F>,
C: Vec<PedersenVectorCommitment<C>>,
V: Vec<PedersenCommitment<C>>,
}
/// A struct representing a circuit.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Circuit<C: Ciphersuite> {
muls: usize,
// A series of linear combinations which must evaluate to 0.
constraints: Vec<LinComb<C::F>>,
prover: Option<ProverData<C>>,
}
impl<C: Ciphersuite> Circuit<C> {
/// Returns the amount of multiplications used by this circuit.
pub fn muls(&self) -> usize {
self.muls
}
/// Create an instance to prove satisfaction of a circuit with.
#[allow(clippy::type_complexity)]
pub fn prove(
vector_commitments: Vec<PedersenVectorCommitment<C>>,
commitments: Vec<PedersenCommitment<C>>,
) -> Self {
Self {
muls: 0,
constraints: vec![],
prover: Some(ProverData { aL: vec![], aR: vec![], C: vector_commitments, V: commitments }),
}
}
/// Create an instance to verify a proof with.
pub fn verify() -> Self {
Self { muls: 0, constraints: vec![], prover: None }
}
/// Evaluate a linear combination.
///
/// Yields WL aL + WR aR + WO aO + WCG CG + WV V + c.
///
/// May panic if the linear combination references non-existent terms.
///
/// Returns None if not a prover.
pub fn eval(&self, lincomb: &LinComb<C::F>) -> Option<C::F> {
self.prover.as_ref().map(|prover| {
let mut res = lincomb.c();
for (index, weight) in lincomb.WL() {
res += prover.aL[*index] * weight;
}
for (index, weight) in lincomb.WR() {
res += prover.aR[*index] * weight;
}
for (index, weight) in lincomb.WO() {
res += prover.aL[*index] * prover.aR[*index] * weight;
}
for (WCG, C) in lincomb.WCG().iter().zip(&prover.C) {
for (j, weight) in WCG {
res += C.g_values[*j] * weight;
}
}
for (index, weight) in lincomb.WV() {
res += prover.V[*index].value * weight;
}
res
})
}
/// Multiply two values, optionally constrained, returning the constrainable left/right/out
/// terms.
///
/// May panic if any linear combinations reference non-existent terms or if the witness isn't
/// provided when proving/is provided when verifying.
pub fn mul(
&mut self,
a: Option<LinComb<C::F>>,
b: Option<LinComb<C::F>>,
witness: Option<(C::F, C::F)>,
) -> (Variable, Variable, Variable) {
let l = Variable::aL(self.muls);
let r = Variable::aR(self.muls);
let o = Variable::aO(self.muls);
self.muls += 1;
debug_assert_eq!(self.prover.is_some(), witness.is_some());
if let Some(witness) = witness {
let prover = self.prover.as_mut().unwrap();
prover.aL.push(witness.0);
prover.aR.push(witness.1);
}
if let Some(a) = a {
self.constrain_equal_to_zero(a.term(-C::F::ONE, l));
}
if let Some(b) = b {
self.constrain_equal_to_zero(b.term(-C::F::ONE, r));
}
(l, r, o)
}
/// Constrain a linear combination to be equal to 0.
///
/// May panic if the linear combination references non-existent terms.
pub fn constrain_equal_to_zero(&mut self, lincomb: LinComb<C::F>) {
self.constraints.push(lincomb);
}
/// Obtain the statement for this circuit.
///
/// If configured as the prover, the witness to use is also returned.
#[allow(clippy::type_complexity)]
pub fn statement(
self,
generators: ProofGenerators<'_, C>,
commitments: Commitments<C>,
) -> Result<(ArithmeticCircuitStatement<'_, C>, Option<ArithmeticCircuitWitness<C>>), AcError> {
let statement = ArithmeticCircuitStatement::new(generators, self.constraints, commitments)?;
let witness = self
.prover
.map(|mut prover| {
// We can't deconstruct the witness as it implements Drop (per ZeroizeOnDrop)
// Accordingly, we take the values within it and move forward with those
let mut aL = vec![];
core::mem::swap(&mut prover.aL, &mut aL);
let mut aR = vec![];
core::mem::swap(&mut prover.aR, &mut aR);
let mut C = vec![];
core::mem::swap(&mut prover.C, &mut C);
let mut V = vec![];
core::mem::swap(&mut prover.V, &mut V);
ArithmeticCircuitWitness::new(ScalarVector::from(aL), ScalarVector::from(aR), C, V)
})
.transpose()?;
Ok((statement, witness))
}
}

View File

@@ -1,41 +0,0 @@
[package]
name = "ec-divisors"
version = "0.1.0"
description = "A library for calculating elliptic curve divisors"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/divisors"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["ciphersuite", "ff", "group"]
edition = "2021"
rust-version = "1.69"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
std-shims = { path = "../../../common/std-shims", version = "^0.1.1", default-features = false }
rand_core = { version = "0.6", default-features = false }
zeroize = { version = "^1.5", default-features = false, features = ["zeroize_derive"] }
subtle = { version = "2", default-features = false }
ff = { version = "0.13", default-features = false, features = ["bits"] }
group = { version = "0.13", default-features = false }
hex = { version = "0.4", default-features = false, optional = true }
dalek-ff-group = { path = "../../dalek-ff-group", default-features = false, optional = true }
pasta_curves = { version = "0.5", git = "https://github.com/kayabaNerve/pasta_curves.git", rev = "a46b5be95cacbff54d06aad8d3bbcba42e05d616", default-features = false, features = ["bits", "alloc"], optional = true }
[dev-dependencies]
rand_core = { version = "0.6", features = ["getrandom"] }
hex = "0.4"
dalek-ff-group = { path = "../../dalek-ff-group", features = ["std"] }
pasta_curves = { version = "0.5", git = "https://github.com/kayabaNerve/pasta_curves.git", rev = "a46b5be95cacbff54d06aad8d3bbcba42e05d616", default-features = false, features = ["bits", "alloc"] }
[features]
std = ["std-shims/std", "zeroize/std", "subtle/std", "ff/std", "dalek-ff-group?/std"]
ed25519 = ["hex/alloc", "dalek-ff-group"]
pasta = ["pasta_curves"]
default = ["std"]

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2023-2024 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,4 +0,0 @@
# Elliptic Curve Divisors
An implementation of a representation for and construction of elliptic curve
divisors, intended for Eagen's [EC IP work](https://eprint.iacr.org/2022/596).

View File

@@ -1,581 +0,0 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
#![deny(missing_docs)]
#![allow(non_snake_case)]
use std_shims::{vec, vec::Vec};
use subtle::{Choice, ConstantTimeEq, ConstantTimeGreater, ConditionallySelectable};
use zeroize::{Zeroize, ZeroizeOnDrop};
use group::{
ff::{Field, PrimeField, PrimeFieldBits},
Group,
};
mod poly;
pub use poly::Poly;
#[cfg(test)]
mod tests;
/// A curve usable with this library.
pub trait DivisorCurve: Group + ConstantTimeEq + ConditionallySelectable + Zeroize {
/// An element of the field this curve is defined over.
type FieldElement: Zeroize + PrimeField + ConditionallySelectable;
/// The A in the curve equation y^2 = x^3 + A x + B.
fn a() -> Self::FieldElement;
/// The B in the curve equation y^2 = x^3 + A x + B.
fn b() -> Self::FieldElement;
/// y^2 - x^3 - A x - B
///
/// Section 2 of the security proofs define this modulus.
///
/// This MUST NOT be overriden.
// TODO: Move to an extension trait
fn divisor_modulus() -> Poly<Self::FieldElement> {
Poly {
// 0 y**1, 1 y*2
y_coefficients: vec![Self::FieldElement::ZERO, Self::FieldElement::ONE],
yx_coefficients: vec![],
x_coefficients: vec![
// - A x
-Self::a(),
// 0 x^2
Self::FieldElement::ZERO,
// - x^3
-Self::FieldElement::ONE,
],
// - B
zero_coefficient: -Self::b(),
}
}
/// Convert a point to its x and y coordinates.
///
/// Returns None if passed the point at infinity.
///
/// This function may run in time variable to if the point is the identity.
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)>;
}
/// Calculate the slope and intercept between two points.
///
/// This function panics when `a @ infinity`, `b @ infinity`, `a == b`, or when `a == -b`.
pub(crate) fn slope_intercept<C: DivisorCurve>(a: C, b: C) -> (C::FieldElement, C::FieldElement) {
let (ax, ay) = C::to_xy(a).unwrap();
debug_assert_eq!(C::divisor_modulus().eval(ax, ay), C::FieldElement::ZERO);
let (bx, by) = C::to_xy(b).unwrap();
debug_assert_eq!(C::divisor_modulus().eval(bx, by), C::FieldElement::ZERO);
let slope = (by - ay) *
Option::<C::FieldElement>::from((bx - ax).invert())
.expect("trying to get slope/intercept of points sharing an x coordinate");
let intercept = by - (slope * bx);
debug_assert!(bool::from((ay - (slope * ax) - intercept).is_zero()));
debug_assert!(bool::from((by - (slope * bx) - intercept).is_zero()));
(slope, intercept)
}
// The line interpolating two points.
fn line<C: DivisorCurve>(a: C, b: C) -> Poly<C::FieldElement> {
#[derive(Clone, Copy)]
struct LinesRes<F: ConditionallySelectable> {
y_coefficient: F,
x_coefficient: F,
zero_coefficient: F,
}
impl<F: ConditionallySelectable> ConditionallySelectable for LinesRes<F> {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Self {
y_coefficient: <_>::conditional_select(&a.y_coefficient, &b.y_coefficient, choice),
x_coefficient: <_>::conditional_select(&a.x_coefficient, &b.x_coefficient, choice),
zero_coefficient: <_>::conditional_select(&a.zero_coefficient, &b.zero_coefficient, choice),
}
}
}
let a_is_identity = a.is_identity();
let b_is_identity = b.is_identity();
// If they're both the point at infinity, we simply set the line to one
let both_are_identity = a_is_identity & b_is_identity;
let if_both_are_identity = LinesRes {
y_coefficient: C::FieldElement::ZERO,
x_coefficient: C::FieldElement::ZERO,
zero_coefficient: C::FieldElement::ONE,
};
// If either point is the point at infinity, or these are additive inverses, the line is
// `1 * x - x`. The first `x` is a term in the polynomial, the `x` is the `x` coordinate of these
// points (of which there is one, as the second point is either at infinity or has a matching `x`
// coordinate).
let one_is_identity = a_is_identity | b_is_identity;
let additive_inverses = a.ct_eq(&-b);
let one_is_identity_or_additive_inverses = one_is_identity | additive_inverses;
let if_one_is_identity_or_additive_inverses = {
// If both are identity, set `a` to the generator so we can safely evaluate the following
// (which we won't select at the end of this function)
let a = <_>::conditional_select(&a, &C::generator(), both_are_identity);
// If `a` is identity, this selects `b`. If `a` isn't identity, this selects `a`
let non_identity = <_>::conditional_select(&a, &b, a.is_identity());
let (x, _) = C::to_xy(non_identity).unwrap();
LinesRes {
y_coefficient: C::FieldElement::ZERO,
x_coefficient: C::FieldElement::ONE,
zero_coefficient: -x,
}
};
// The following calculation assumes neither point is the point at infinity
// If either are, we use a prior result
// To ensure we can calculcate a result here, set any points at infinity to the generator
let a = <_>::conditional_select(&a, &C::generator(), a_is_identity);
let b = <_>::conditional_select(&b, &C::generator(), b_is_identity);
// It also assumes a, b aren't additive inverses which is also covered by a prior result
let b = <_>::conditional_select(&b, &a.double(), additive_inverses);
// If the points are equal, we use the line interpolating the sum of these points with the point
// at infinity
let b = <_>::conditional_select(&b, &-a.double(), a.ct_eq(&b));
let (slope, intercept) = slope_intercept::<C>(a, b);
// Section 4 of the proofs explicitly state the line `L = y - lambda * x - mu`
// y - (slope * x) - intercept
let mut res = LinesRes {
y_coefficient: C::FieldElement::ONE,
x_coefficient: -slope,
zero_coefficient: -intercept,
};
res = <_>::conditional_select(
&res,
&if_one_is_identity_or_additive_inverses,
one_is_identity_or_additive_inverses,
);
res = <_>::conditional_select(&res, &if_both_are_identity, both_are_identity);
Poly {
y_coefficients: vec![res.y_coefficient],
yx_coefficients: vec![],
x_coefficients: vec![res.x_coefficient],
zero_coefficient: res.zero_coefficient,
}
}
/// Create a divisor interpolating the following points.
///
/// Returns None if:
/// - No points were passed in
/// - The points don't sum to the point at infinity
/// - A passed in point was the point at infinity
///
/// If the arguments were valid, this function executes in an amount of time constant to the amount
/// of points.
#[allow(clippy::new_ret_no_self)]
pub fn new_divisor<C: DivisorCurve>(points: &[C]) -> Option<Poly<C::FieldElement>> {
// No points were passed in, this is the point at infinity, or the single point isn't infinity
// and accordingly doesn't sum to infinity. All three cause us to return None
// Checks a bit other than the first bit is set, meaning this is >= 2
let mut invalid_args = (points.len() & (!1)).ct_eq(&0);
// The points don't sum to the point at infinity
invalid_args |= !points.iter().sum::<C>().is_identity();
// A point was the point at identity
for point in points {
invalid_args |= point.is_identity();
}
if bool::from(invalid_args) {
None?;
}
let points_len = points.len();
// Create the initial set of divisors
let mut divs = vec![];
let mut iter = points.iter().copied();
while let Some(a) = iter.next() {
let b = iter.next();
// Draw the line between those points
// These unwraps are branching on the length of the iterator, not violating the constant-time
// priorites desired
divs.push((2, a + b.unwrap_or(C::identity()), line::<C>(a, b.unwrap_or(-a))));
}
let modulus = C::divisor_modulus();
// Our Poly algorithm is leaky and will create an excessive amount of y x**j and x**j
// coefficients which are zero, yet as our implementation is constant time, still come with
// an immense performance cost. This code truncates the coefficients we know are zero.
let trim = |divisor: &mut Poly<_>, points_len: usize| {
// We should only be trimming divisors reduced by the modulus
debug_assert!(divisor.yx_coefficients.len() <= 1);
if divisor.yx_coefficients.len() == 1 {
let truncate_to = ((points_len + 1) / 2).saturating_sub(2);
#[cfg(debug_assertions)]
for p in truncate_to .. divisor.yx_coefficients[0].len() {
debug_assert_eq!(divisor.yx_coefficients[0][p], <C::FieldElement as Field>::ZERO);
}
divisor.yx_coefficients[0].truncate(truncate_to);
}
{
let truncate_to = points_len / 2;
#[cfg(debug_assertions)]
for p in truncate_to .. divisor.x_coefficients.len() {
debug_assert_eq!(divisor.x_coefficients[p], <C::FieldElement as Field>::ZERO);
}
divisor.x_coefficients.truncate(truncate_to);
}
};
// Pair them off until only one remains
while divs.len() > 1 {
let mut next_divs = vec![];
// If there's an odd amount of divisors, carry the odd one out to the next iteration
if (divs.len() % 2) == 1 {
next_divs.push(divs.pop().unwrap());
}
while let Some((a_points, a, a_div)) = divs.pop() {
let (b_points, b, b_div) = divs.pop().unwrap();
let points = a_points + b_points;
// Merge the two divisors
let numerator = a_div.mul_mod(&b_div, &modulus).mul_mod(&line::<C>(a, b), &modulus);
let denominator = line::<C>(a, -a).mul_mod(&line::<C>(b, -b), &modulus);
let (mut q, r) = numerator.div_rem(&denominator);
debug_assert_eq!(r, Poly::zero());
trim(&mut q, 1 + points);
next_divs.push((points, a + b, q));
}
divs = next_divs;
}
// Return the unified divisor
let mut divisor = divs.remove(0).2;
trim(&mut divisor, points_len);
Some(divisor)
}
/// The decomposition of a scalar.
///
/// The decomposition ($d$) of a scalar ($s$) has the following two properties:
///
/// - $\sum^{\mathsf{NUM_BITS} - 1}_{i=0} d_i * 2^i = s$
/// - $\sum^{\mathsf{NUM_BITS} - 1}_{i=0} d_i = \mathsf{NUM_BITS}$
#[derive(Clone, Zeroize, ZeroizeOnDrop)]
pub struct ScalarDecomposition<F: Zeroize + PrimeFieldBits> {
scalar: F,
decomposition: Vec<u64>,
}
impl<F: Zeroize + PrimeFieldBits> ScalarDecomposition<F> {
/// Decompose a non-zero scalar.
///
/// Returns `None` if the scalar is zero.
///
/// This function is constant time if the scalar is non-zero.
pub fn new(scalar: F) -> Option<Self> {
if bool::from(scalar.is_zero()) {
None?;
}
/*
We need the sum of the coefficients to equal F::NUM_BITS. The scalar's bits will be less than
F::NUM_BITS. Accordingly, we need to increment the sum of the coefficients without
incrementing the scalar represented. We do this by finding the highest non-0 coefficient,
decrementing it, and increasing the immediately less significant coefficient by 2. This
increases the sum of the coefficients by 1 (-1+2=1).
*/
let num_bits = u64::from(F::NUM_BITS);
// Obtain the bits of the scalar
let num_bits_usize = usize::try_from(num_bits).unwrap();
let mut decomposition = vec![0; num_bits_usize];
for (i, bit) in scalar.to_le_bits().into_iter().take(num_bits_usize).enumerate() {
let bit = u64::from(u8::from(bit));
decomposition[i] = bit;
}
// The following algorithm only works if the value of the scalar exceeds num_bits
// If it isn't, we increase it by the modulus such that it does exceed num_bits
{
let mut less_than_num_bits = Choice::from(0);
for i in 0 .. num_bits {
less_than_num_bits |= scalar.ct_eq(&F::from(i));
}
let mut decomposition_of_modulus = vec![0; num_bits_usize];
// Decompose negative one
for (i, bit) in (-F::ONE).to_le_bits().into_iter().take(num_bits_usize).enumerate() {
let bit = u64::from(u8::from(bit));
decomposition_of_modulus[i] = bit;
}
// Increment it by one
decomposition_of_modulus[0] += 1;
// Add the decomposition onto the decomposition of the modulus
for i in 0 .. num_bits_usize {
let new_decomposition = <_>::conditional_select(
&decomposition[i],
&(decomposition[i] + decomposition_of_modulus[i]),
less_than_num_bits,
);
decomposition[i] = new_decomposition;
}
}
// Calculcate the sum of the coefficients
let mut sum_of_coefficients: u64 = 0;
for decomposition in &decomposition {
sum_of_coefficients += *decomposition;
}
/*
Now, because we added a log2(k)-bit number to a k-bit number, we may have our sum of
coefficients be *too high*. We attempt to reduce the sum of the coefficients accordingly.
This algorithm is guaranteed to complete as expected. Take the sequence `222`. `222` becomes
`032` becomes `013`. Even if the next coefficient in the sequence is `2`, the third
coefficient will be reduced once and the next coefficient (`2`, increased to `3`) will only
be eligible for reduction once. This demonstrates, even for a worst case of log2(k) `2`s
followed by `1`s (as possible if the modulus is a Mersenne prime), the log2(k) `2`s can be
reduced as necessary so long as there is a single coefficient after (requiring the entire
sequence be at least of length log2(k) + 1). For a 2-bit number, log2(k) + 1 == 2, so this
holds for any odd prime field.
To fully type out the demonstration for the Mersenne prime 3, with scalar to encode 1 (the
highest value less than the number of bits):
10 - Little-endian bits of 1
21 - Little-endian bits of 1, plus the modulus
02 - After one reduction, where the sum of the coefficients does in fact equal 2 (the target)
*/
{
let mut log2_num_bits = 0;
while (1 << log2_num_bits) < num_bits {
log2_num_bits += 1;
}
for _ in 0 .. log2_num_bits {
// If the sum of coefficients is the amount of bits, we're done
let mut done = sum_of_coefficients.ct_eq(&num_bits);
for i in 0 .. (num_bits_usize - 1) {
let should_act = (!done) & decomposition[i].ct_gt(&1);
// Subtract 2 from this coefficient
let amount_to_sub = <_>::conditional_select(&0, &2, should_act);
decomposition[i] -= amount_to_sub;
// Add 1 to the next coefficient
let amount_to_add = <_>::conditional_select(&0, &1, should_act);
decomposition[i + 1] += amount_to_add;
// Also update the sum of coefficients
sum_of_coefficients -= <_>::conditional_select(&0, &1, should_act);
// If we updated the coefficients this loop iter, we're done for this loop iter
done |= should_act;
}
}
}
for _ in 0 .. num_bits {
// If the sum of coefficients is the amount of bits, we're done
let mut done = sum_of_coefficients.ct_eq(&num_bits);
// Find the highest coefficient currently non-zero
for i in (1 .. decomposition.len()).rev() {
// If this is non-zero, we should decrement this coefficient if we haven't already
// decremented a coefficient this round
let is_non_zero = !(0.ct_eq(&decomposition[i]));
let should_act = (!done) & is_non_zero;
// Update this coefficient and the prior coefficient
let amount_to_sub = <_>::conditional_select(&0, &1, should_act);
decomposition[i] -= amount_to_sub;
let amount_to_add = <_>::conditional_select(&0, &2, should_act);
// i must be at least 1, so i - 1 will be at least 0 (meaning it's safe to index with)
decomposition[i - 1] += amount_to_add;
// Also update the sum of coefficients
sum_of_coefficients += <_>::conditional_select(&0, &1, should_act);
// If we updated the coefficients this loop iter, we're done for this loop iter
done |= should_act;
}
}
debug_assert!(bool::from(decomposition.iter().sum::<u64>().ct_eq(&num_bits)));
Some(ScalarDecomposition { scalar, decomposition })
}
/// The scalar.
pub fn scalar(&self) -> &F {
&self.scalar
}
/// The decomposition of the scalar.
pub fn decomposition(&self) -> &[u64] {
&self.decomposition
}
/// A divisor to prove a scalar multiplication.
///
/// The divisor will interpolate $-(s \cdot G)$ with $d_i$ instances of $2^i \cdot G$.
///
/// This function executes in constant time with regards to the scalar.
///
/// This function MAY panic if the generator is the point at infinity.
pub fn scalar_mul_divisor<C: Zeroize + DivisorCurve<Scalar = F>>(
&self,
mut generator: C,
) -> Poly<C::FieldElement> {
// 1 is used for the resulting point, NUM_BITS is used for the decomposition, and then we store
// one additional index in a usize for the points we shouldn't write at all (hence the +2)
let _ = usize::try_from(<C::Scalar as PrimeField>::NUM_BITS + 2)
.expect("NUM_BITS + 2 didn't fit in usize");
let mut divisor_points =
vec![C::identity(); (<C::Scalar as PrimeField>::NUM_BITS + 1) as usize];
// Write the inverse of the resulting point
divisor_points[0] = -generator * self.scalar;
// Write the decomposition
let mut write_above: u64 = 0;
for coefficient in &self.decomposition {
// Write the generator to every slot except the slots we have already written to.
for i in 1 ..= (<C::Scalar as PrimeField>::NUM_BITS as u64) {
divisor_points[i as usize].conditional_assign(&generator, i.ct_gt(&write_above));
}
// Increase the next write start by the coefficient.
write_above += coefficient;
generator = generator.double();
}
// Create a divisor out of the points
let res = new_divisor(&divisor_points).unwrap();
divisor_points.zeroize();
res
}
}
#[cfg(any(test, feature = "pasta"))]
mod pasta {
use group::{ff::Field, Curve};
use pasta_curves::{
arithmetic::{Coordinates, CurveAffine},
Ep, Fp, Eq, Fq,
};
use crate::DivisorCurve;
impl DivisorCurve for Ep {
type FieldElement = Fp;
fn a() -> Self::FieldElement {
Self::FieldElement::ZERO
}
fn b() -> Self::FieldElement {
Self::FieldElement::from(5u64)
}
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
Option::<Coordinates<_>>::from(point.to_affine().coordinates())
.map(|coords| (*coords.x(), *coords.y()))
}
}
impl DivisorCurve for Eq {
type FieldElement = Fq;
fn a() -> Self::FieldElement {
Self::FieldElement::ZERO
}
fn b() -> Self::FieldElement {
Self::FieldElement::from(5u64)
}
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
Option::<Coordinates<_>>::from(point.to_affine().coordinates())
.map(|coords| (*coords.x(), *coords.y()))
}
}
}
#[cfg(any(test, feature = "ed25519"))]
mod ed25519 {
use subtle::{Choice, ConditionallySelectable};
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use dalek_ff_group::{FieldElement, EdwardsPoint};
impl crate::DivisorCurve for EdwardsPoint {
type FieldElement = FieldElement;
// Wei25519 a/b
// https://www.ietf.org/archive/id/draft-ietf-lwig-curve-representations-02.pdf E.3
fn a() -> Self::FieldElement {
let mut be_bytes =
hex::decode("2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa984914a144").unwrap();
be_bytes.reverse();
let le_bytes = be_bytes;
Self::FieldElement::from_repr(le_bytes.try_into().unwrap()).unwrap()
}
fn b() -> Self::FieldElement {
let mut be_bytes =
hex::decode("7b425ed097b425ed097b425ed097b425ed097b425ed097b4260b5e9c7710c864").unwrap();
be_bytes.reverse();
let le_bytes = be_bytes;
Self::FieldElement::from_repr(le_bytes.try_into().unwrap()).unwrap()
}
// https://www.ietf.org/archive/id/draft-ietf-lwig-curve-representations-02.pdf E.2
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
if bool::from(point.is_identity()) {
None?;
}
// Extract the y coordinate from the compressed point
let mut edwards_y = point.to_bytes();
let x_is_odd = edwards_y[31] >> 7;
edwards_y[31] &= (1 << 7) - 1;
let edwards_y = Self::FieldElement::from_repr(edwards_y).unwrap();
// Recover the x coordinate
let edwards_y_sq = edwards_y * edwards_y;
let D = -Self::FieldElement::from(121665u64) *
Self::FieldElement::from(121666u64).invert().unwrap();
let mut edwards_x = ((edwards_y_sq - Self::FieldElement::ONE) *
((D * edwards_y_sq) + Self::FieldElement::ONE).invert().unwrap())
.sqrt()
.unwrap();
// Negate the x coordinate if the sign doesn't match
edwards_x = <_>::conditional_select(
&edwards_x,
&-edwards_x,
edwards_x.is_odd() ^ Choice::from(x_is_odd),
);
// Calculate the x and y coordinates for Wei25519
let edwards_y_plus_one = Self::FieldElement::ONE + edwards_y;
let one_minus_edwards_y = Self::FieldElement::ONE - edwards_y;
let wei_x = (edwards_y_plus_one * one_minus_edwards_y.invert().unwrap()) +
(Self::FieldElement::from(486662u64) * Self::FieldElement::from(3u64).invert().unwrap());
let c =
(-(Self::FieldElement::from(486662u64) + Self::FieldElement::from(2u64))).sqrt().unwrap();
let wei_y = c * edwards_y_plus_one * (one_minus_edwards_y * edwards_x).invert().unwrap();
Some((wei_x, wei_y))
}
}
}

View File

@@ -1,744 +0,0 @@
use core::ops::{Add, Neg, Sub, Mul, Rem};
use std_shims::{vec, vec::Vec};
use subtle::{Choice, ConstantTimeEq, ConstantTimeGreater, ConditionallySelectable};
use zeroize::{Zeroize, ZeroizeOnDrop};
use group::ff::PrimeField;
#[derive(Clone, Copy, PartialEq, Debug)]
struct CoefficientIndex {
y_pow: u64,
x_pow: u64,
}
impl ConditionallySelectable for CoefficientIndex {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Self {
y_pow: <_>::conditional_select(&a.y_pow, &b.y_pow, choice),
x_pow: <_>::conditional_select(&a.x_pow, &b.x_pow, choice),
}
}
}
impl ConstantTimeEq for CoefficientIndex {
fn ct_eq(&self, other: &Self) -> Choice {
self.y_pow.ct_eq(&other.y_pow) & self.x_pow.ct_eq(&other.x_pow)
}
}
impl ConstantTimeGreater for CoefficientIndex {
fn ct_gt(&self, other: &Self) -> Choice {
self.y_pow.ct_gt(&other.y_pow) |
(self.y_pow.ct_eq(&other.y_pow) & self.x_pow.ct_gt(&other.x_pow))
}
}
/// A structure representing a Polynomial with x^i, y^i, and y^i * x^j terms.
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
pub struct Poly<F: From<u64> + Zeroize + PrimeField> {
/// c\[i] * y^(i + 1)
pub y_coefficients: Vec<F>,
/// c\[i]\[j] * y^(i + 1) x^(j + 1)
pub yx_coefficients: Vec<Vec<F>>,
/// c\[i] * x^(i + 1)
pub x_coefficients: Vec<F>,
/// Coefficient for x^0, y^0, and x^0 y^0 (the coefficient for 1)
pub zero_coefficient: F,
}
impl<F: From<u64> + Zeroize + PrimeField> PartialEq for Poly<F> {
// This is not constant time and is not meant to be
fn eq(&self, b: &Poly<F>) -> bool {
{
let mutual_y_coefficients = self.y_coefficients.len().min(b.y_coefficients.len());
if self.y_coefficients[.. mutual_y_coefficients] != b.y_coefficients[.. mutual_y_coefficients]
{
return false;
}
for coeff in &self.y_coefficients[mutual_y_coefficients ..] {
if *coeff != F::ZERO {
return false;
}
}
for coeff in &b.y_coefficients[mutual_y_coefficients ..] {
if *coeff != F::ZERO {
return false;
}
}
}
{
for (i, yx_coeffs) in self.yx_coefficients.iter().enumerate() {
for (j, coeff) in yx_coeffs.iter().enumerate() {
if coeff != b.yx_coefficients.get(i).unwrap_or(&vec![]).get(j).unwrap_or(&F::ZERO) {
return false;
}
}
}
// Run from the other perspective in case other is longer than self
for (i, yx_coeffs) in b.yx_coefficients.iter().enumerate() {
for (j, coeff) in yx_coeffs.iter().enumerate() {
if coeff != self.yx_coefficients.get(i).unwrap_or(&vec![]).get(j).unwrap_or(&F::ZERO) {
return false;
}
}
}
}
{
let mutual_x_coefficients = self.x_coefficients.len().min(b.x_coefficients.len());
if self.x_coefficients[.. mutual_x_coefficients] != b.x_coefficients[.. mutual_x_coefficients]
{
return false;
}
for coeff in &self.x_coefficients[mutual_x_coefficients ..] {
if *coeff != F::ZERO {
return false;
}
}
for coeff in &b.x_coefficients[mutual_x_coefficients ..] {
if *coeff != F::ZERO {
return false;
}
}
}
self.zero_coefficient == b.zero_coefficient
}
}
impl<F: From<u64> + Zeroize + PrimeField> Poly<F> {
/// A polynomial for zero.
pub(crate) fn zero() -> Self {
Poly {
y_coefficients: vec![],
yx_coefficients: vec![],
x_coefficients: vec![],
zero_coefficient: F::ZERO,
}
}
}
impl<F: From<u64> + Zeroize + PrimeField> Add<&Self> for Poly<F> {
type Output = Self;
fn add(mut self, other: &Self) -> Self {
// Expand to be the neeeded size
while self.y_coefficients.len() < other.y_coefficients.len() {
self.y_coefficients.push(F::ZERO);
}
while self.yx_coefficients.len() < other.yx_coefficients.len() {
self.yx_coefficients.push(vec![]);
}
for i in 0 .. other.yx_coefficients.len() {
while self.yx_coefficients[i].len() < other.yx_coefficients[i].len() {
self.yx_coefficients[i].push(F::ZERO);
}
}
while self.x_coefficients.len() < other.x_coefficients.len() {
self.x_coefficients.push(F::ZERO);
}
// Perform the addition
for (i, coeff) in other.y_coefficients.iter().enumerate() {
self.y_coefficients[i] += coeff;
}
for (i, coeffs) in other.yx_coefficients.iter().enumerate() {
for (j, coeff) in coeffs.iter().enumerate() {
self.yx_coefficients[i][j] += coeff;
}
}
for (i, coeff) in other.x_coefficients.iter().enumerate() {
self.x_coefficients[i] += coeff;
}
self.zero_coefficient += other.zero_coefficient;
self
}
}
impl<F: From<u64> + Zeroize + PrimeField> Neg for Poly<F> {
type Output = Self;
fn neg(mut self) -> Self {
for y_coeff in self.y_coefficients.iter_mut() {
*y_coeff = -*y_coeff;
}
for yx_coeffs in self.yx_coefficients.iter_mut() {
for yx_coeff in yx_coeffs.iter_mut() {
*yx_coeff = -*yx_coeff;
}
}
for x_coeff in self.x_coefficients.iter_mut() {
*x_coeff = -*x_coeff;
}
self.zero_coefficient = -self.zero_coefficient;
self
}
}
impl<F: From<u64> + Zeroize + PrimeField> Sub for Poly<F> {
type Output = Self;
fn sub(self, other: Self) -> Self {
self + &-other
}
}
impl<F: From<u64> + Zeroize + PrimeField> Mul<F> for Poly<F> {
type Output = Self;
fn mul(mut self, scalar: F) -> Self {
for y_coeff in self.y_coefficients.iter_mut() {
*y_coeff *= scalar;
}
for coeffs in self.yx_coefficients.iter_mut() {
for coeff in coeffs.iter_mut() {
*coeff *= scalar;
}
}
for x_coeff in self.x_coefficients.iter_mut() {
*x_coeff *= scalar;
}
self.zero_coefficient *= scalar;
self
}
}
impl<F: From<u64> + Zeroize + PrimeField> Poly<F> {
#[must_use]
fn shift_by_x(mut self, power_of_x: usize) -> Self {
if power_of_x == 0 {
return self;
}
// Shift up every x coefficient
for _ in 0 .. power_of_x {
self.x_coefficients.insert(0, F::ZERO);
for yx_coeffs in &mut self.yx_coefficients {
yx_coeffs.insert(0, F::ZERO);
}
}
// Move the zero coefficient
self.x_coefficients[power_of_x - 1] = self.zero_coefficient;
self.zero_coefficient = F::ZERO;
// Move the y coefficients
// Start by creating yx coefficients with the necessary powers of x
let mut yx_coefficients_to_push = vec![];
while yx_coefficients_to_push.len() < power_of_x {
yx_coefficients_to_push.push(F::ZERO);
}
// Now, ensure the yx coefficients has the slots for the y coefficients we're moving
while self.yx_coefficients.len() < self.y_coefficients.len() {
self.yx_coefficients.push(yx_coefficients_to_push.clone());
}
// Perform the move
for (i, y_coeff) in self.y_coefficients.drain(..).enumerate() {
self.yx_coefficients[i][power_of_x - 1] = y_coeff;
}
self
}
#[must_use]
fn shift_by_y(mut self, power_of_y: usize) -> Self {
if power_of_y == 0 {
return self;
}
// Shift up every y coefficient
for _ in 0 .. power_of_y {
self.y_coefficients.insert(0, F::ZERO);
self.yx_coefficients.insert(0, vec![]);
}
// Move the zero coefficient
self.y_coefficients[power_of_y - 1] = self.zero_coefficient;
self.zero_coefficient = F::ZERO;
// Move the x coefficients
core::mem::swap(&mut self.yx_coefficients[power_of_y - 1], &mut self.x_coefficients);
self.x_coefficients = vec![];
self
}
}
impl<F: From<u64> + Zeroize + PrimeField> Mul<&Poly<F>> for Poly<F> {
type Output = Self;
fn mul(self, other: &Self) -> Self {
let mut res = self.clone() * other.zero_coefficient;
for (i, y_coeff) in other.y_coefficients.iter().enumerate() {
let scaled = self.clone() * *y_coeff;
res = res + &scaled.shift_by_y(i + 1);
}
for (y_i, yx_coeffs) in other.yx_coefficients.iter().enumerate() {
for (x_i, yx_coeff) in yx_coeffs.iter().enumerate() {
let scaled = self.clone() * *yx_coeff;
res = res + &scaled.shift_by_y(y_i + 1).shift_by_x(x_i + 1);
}
}
for (i, x_coeff) in other.x_coefficients.iter().enumerate() {
let scaled = self.clone() * *x_coeff;
res = res + &scaled.shift_by_x(i + 1);
}
res
}
}
impl<F: From<u64> + Zeroize + PrimeField> Poly<F> {
// The leading y coefficient and associated x coefficient.
fn leading_coefficient(&self) -> (usize, usize) {
if self.y_coefficients.len() > self.yx_coefficients.len() {
(self.y_coefficients.len(), 0)
} else if !self.yx_coefficients.is_empty() {
(self.yx_coefficients.len(), self.yx_coefficients.last().unwrap().len())
} else {
(0, self.x_coefficients.len())
}
}
/// Returns the highest non-zero coefficient greater than the specified coefficient.
///
/// If no non-zero coefficient is greater than the specified coefficient, this will return
/// (0, 0).
fn greater_than_or_equal_coefficient(
&self,
greater_than_or_equal: &CoefficientIndex,
) -> CoefficientIndex {
let mut leading_coefficient = CoefficientIndex { y_pow: 0, x_pow: 0 };
for (y_pow_sub_one, coeff) in self.y_coefficients.iter().enumerate() {
let y_pow = u64::try_from(y_pow_sub_one + 1).unwrap();
let coeff_is_non_zero = !coeff.is_zero();
let potential = CoefficientIndex { y_pow, x_pow: 0 };
leading_coefficient = <_>::conditional_select(
&leading_coefficient,
&potential,
coeff_is_non_zero &
potential.ct_gt(&leading_coefficient) &
(potential.ct_gt(greater_than_or_equal) | potential.ct_eq(greater_than_or_equal)),
);
}
for (y_pow_sub_one, yx_coefficients) in self.yx_coefficients.iter().enumerate() {
let y_pow = u64::try_from(y_pow_sub_one + 1).unwrap();
for (x_pow_sub_one, coeff) in yx_coefficients.iter().enumerate() {
let x_pow = u64::try_from(x_pow_sub_one + 1).unwrap();
let coeff_is_non_zero = !coeff.is_zero();
let potential = CoefficientIndex { y_pow, x_pow };
leading_coefficient = <_>::conditional_select(
&leading_coefficient,
&potential,
coeff_is_non_zero &
potential.ct_gt(&leading_coefficient) &
(potential.ct_gt(greater_than_or_equal) | potential.ct_eq(greater_than_or_equal)),
);
}
}
for (x_pow_sub_one, coeff) in self.x_coefficients.iter().enumerate() {
let x_pow = u64::try_from(x_pow_sub_one + 1).unwrap();
let coeff_is_non_zero = !coeff.is_zero();
let potential = CoefficientIndex { y_pow: 0, x_pow };
leading_coefficient = <_>::conditional_select(
&leading_coefficient,
&potential,
coeff_is_non_zero &
potential.ct_gt(&leading_coefficient) &
(potential.ct_gt(greater_than_or_equal) | potential.ct_eq(greater_than_or_equal)),
);
}
leading_coefficient
}
/// Perform multiplication mod `modulus`.
#[must_use]
pub(crate) fn mul_mod(self, other: &Self, modulus: &Self) -> Self {
(self * other) % modulus
}
/// Perform division, returning the result and remainder.
///
/// This function is constant time to the structure of the numerator and denominator. The actual
/// value of the coefficients will not introduce timing differences.
///
/// Panics upon division by a polynomial where all coefficients are zero.
#[must_use]
pub(crate) fn div_rem(self, denominator: &Self) -> (Self, Self) {
// These functions have undefined behavior if this isn't a valid index for this poly
fn ct_get<F: From<u64> + Zeroize + PrimeField>(poly: &Poly<F>, index: CoefficientIndex) -> F {
let mut res = poly.zero_coefficient;
for (y_pow_sub_one, coeff) in poly.y_coefficients.iter().enumerate() {
res = <_>::conditional_select(
&res,
coeff,
index
.ct_eq(&CoefficientIndex { y_pow: (y_pow_sub_one + 1).try_into().unwrap(), x_pow: 0 }),
);
}
for (y_pow_sub_one, coeffs) in poly.yx_coefficients.iter().enumerate() {
for (x_pow_sub_one, coeff) in coeffs.iter().enumerate() {
res = <_>::conditional_select(
&res,
coeff,
index.ct_eq(&CoefficientIndex {
y_pow: (y_pow_sub_one + 1).try_into().unwrap(),
x_pow: (x_pow_sub_one + 1).try_into().unwrap(),
}),
);
}
}
for (x_pow_sub_one, coeff) in poly.x_coefficients.iter().enumerate() {
res = <_>::conditional_select(
&res,
coeff,
index
.ct_eq(&CoefficientIndex { y_pow: 0, x_pow: (x_pow_sub_one + 1).try_into().unwrap() }),
);
}
res
}
fn ct_set<F: From<u64> + Zeroize + PrimeField>(
poly: &mut Poly<F>,
index: CoefficientIndex,
value: F,
) {
for (y_pow_sub_one, coeff) in poly.y_coefficients.iter_mut().enumerate() {
*coeff = <_>::conditional_select(
coeff,
&value,
index
.ct_eq(&CoefficientIndex { y_pow: (y_pow_sub_one + 1).try_into().unwrap(), x_pow: 0 }),
);
}
for (y_pow_sub_one, coeffs) in poly.yx_coefficients.iter_mut().enumerate() {
for (x_pow_sub_one, coeff) in coeffs.iter_mut().enumerate() {
*coeff = <_>::conditional_select(
coeff,
&value,
index.ct_eq(&CoefficientIndex {
y_pow: (y_pow_sub_one + 1).try_into().unwrap(),
x_pow: (x_pow_sub_one + 1).try_into().unwrap(),
}),
);
}
}
for (x_pow_sub_one, coeff) in poly.x_coefficients.iter_mut().enumerate() {
*coeff = <_>::conditional_select(
coeff,
&value,
index
.ct_eq(&CoefficientIndex { y_pow: 0, x_pow: (x_pow_sub_one + 1).try_into().unwrap() }),
);
}
poly.zero_coefficient = <_>::conditional_select(
&poly.zero_coefficient,
&value,
index.ct_eq(&CoefficientIndex { y_pow: 0, x_pow: 0 }),
);
}
fn conditional_select_poly<F: From<u64> + Zeroize + PrimeField>(
mut a: Poly<F>,
mut b: Poly<F>,
choice: Choice,
) -> Poly<F> {
let pad_to = |a: &mut Poly<F>, b: &Poly<F>| {
while a.x_coefficients.len() < b.x_coefficients.len() {
a.x_coefficients.push(F::ZERO);
}
while a.yx_coefficients.len() < b.yx_coefficients.len() {
a.yx_coefficients.push(vec![]);
}
for (a, b) in a.yx_coefficients.iter_mut().zip(&b.yx_coefficients) {
while a.len() < b.len() {
a.push(F::ZERO);
}
}
while a.y_coefficients.len() < b.y_coefficients.len() {
a.y_coefficients.push(F::ZERO);
}
};
// Pad these to be the same size/layout as each other
pad_to(&mut a, &b);
pad_to(&mut b, &a);
let mut res = Poly::zero();
for (a, b) in a.y_coefficients.iter().zip(&b.y_coefficients) {
res.y_coefficients.push(<_>::conditional_select(a, b, choice));
}
for (a, b) in a.yx_coefficients.iter().zip(&b.yx_coefficients) {
let mut yx_coefficients = Vec::with_capacity(a.len());
for (a, b) in a.iter().zip(b) {
yx_coefficients.push(<_>::conditional_select(a, b, choice))
}
res.yx_coefficients.push(yx_coefficients);
}
for (a, b) in a.x_coefficients.iter().zip(&b.x_coefficients) {
res.x_coefficients.push(<_>::conditional_select(a, b, choice));
}
res.zero_coefficient =
<_>::conditional_select(&a.zero_coefficient, &b.zero_coefficient, choice);
res
}
// The following long division algorithm only works if the denominator actually has a variable
// If the denominator isn't variable to anything, short-circuit to scalar 'division'
// This is safe as `leading_coefficient` is based on the structure, not the values, of the poly
let denominator_leading_coefficient = denominator.leading_coefficient();
if denominator_leading_coefficient == (0, 0) {
return (self * denominator.zero_coefficient.invert().unwrap(), Poly::zero());
}
// The structure of the quotient, which is the the numerator with all coefficients set to 0
let mut quotient_structure = Poly {
y_coefficients: vec![F::ZERO; self.y_coefficients.len()],
yx_coefficients: self.yx_coefficients.clone(),
x_coefficients: vec![F::ZERO; self.x_coefficients.len()],
zero_coefficient: F::ZERO,
};
for coeff in quotient_structure
.yx_coefficients
.iter_mut()
.flat_map(|yx_coefficients| yx_coefficients.iter_mut())
{
*coeff = F::ZERO;
}
// Calculate the amount of iterations we need to perform
let iterations = self.y_coefficients.len() +
self.yx_coefficients.iter().map(|yx_coefficients| yx_coefficients.len()).sum::<usize>() +
self.x_coefficients.len();
// Find the highest non-zero coefficient in the denominator
// This is the coefficient which we actually perform division with
let denominator_dividing_coefficient =
denominator.greater_than_or_equal_coefficient(&CoefficientIndex { y_pow: 0, x_pow: 0 });
let denominator_dividing_coefficient_inv =
ct_get(denominator, denominator_dividing_coefficient).invert().unwrap();
let mut quotient = quotient_structure.clone();
let mut remainder = self.clone();
for _ in 0 .. iterations {
// Find the numerator coefficient we're clearing
// This will be (0, 0) if we aren't clearing a coefficient
let numerator_coefficient =
remainder.greater_than_or_equal_coefficient(&denominator_dividing_coefficient);
// We only apply the effects of this iteration if the numerator's coefficient is actually >=
let meaningful_iteration = numerator_coefficient.ct_gt(&denominator_dividing_coefficient) |
numerator_coefficient.ct_eq(&denominator_dividing_coefficient);
// 1) Find the scalar `q` such that the leading coefficient of `q * denominator` is equal to
// the leading coefficient of self.
let numerator_coefficient_value = ct_get(&remainder, numerator_coefficient);
let q = numerator_coefficient_value * denominator_dividing_coefficient_inv;
// 2) Calculate the full term of the quotient by scaling with the necessary powers of y/x
let proper_powers_of_yx = CoefficientIndex {
y_pow: numerator_coefficient.y_pow.wrapping_sub(denominator_dividing_coefficient.y_pow),
x_pow: numerator_coefficient.x_pow.wrapping_sub(denominator_dividing_coefficient.x_pow),
};
let fallabck_powers_of_yx = CoefficientIndex { y_pow: 0, x_pow: 0 };
let mut quotient_term = quotient_structure.clone();
ct_set(
&mut quotient_term,
// If the numerator coefficient isn't >=, proper_powers_of_yx will have garbage in them
<_>::conditional_select(&fallabck_powers_of_yx, &proper_powers_of_yx, meaningful_iteration),
q,
);
let quotient_if_meaningful = quotient.clone() + &quotient_term;
quotient = conditional_select_poly(quotient, quotient_if_meaningful, meaningful_iteration);
// 3) Remove what we've divided out from self
let remainder_if_meaningful = remainder.clone() - (quotient_term * denominator);
remainder = conditional_select_poly(remainder, remainder_if_meaningful, meaningful_iteration);
}
quotient = conditional_select_poly(
quotient,
// If the dividing coefficient was for y**0 x**0, we return the poly scaled by its inverse
self * denominator_dividing_coefficient_inv,
denominator_dividing_coefficient.ct_eq(&CoefficientIndex { y_pow: 0, x_pow: 0 }),
);
remainder = conditional_select_poly(
remainder,
// If the dividing coefficient was for y**0 x**0, we're able to perfectly divide and there's
// no remainder
Poly::zero(),
denominator_dividing_coefficient.ct_eq(&CoefficientIndex { y_pow: 0, x_pow: 0 }),
);
// Clear any junk terms out of the remainder which are less than the denominator
let denominator_leading_coefficient = CoefficientIndex {
y_pow: denominator_leading_coefficient.0.try_into().unwrap(),
x_pow: denominator_leading_coefficient.1.try_into().unwrap(),
};
if denominator_leading_coefficient != (CoefficientIndex { y_pow: 0, x_pow: 0 }) {
while {
let index =
CoefficientIndex { y_pow: remainder.y_coefficients.len().try_into().unwrap(), x_pow: 0 };
bool::from(
index.ct_gt(&denominator_leading_coefficient) |
index.ct_eq(&denominator_leading_coefficient),
)
} {
let popped = remainder.y_coefficients.pop();
debug_assert_eq!(popped, Some(F::ZERO));
}
while {
let index = CoefficientIndex {
y_pow: remainder.yx_coefficients.len().try_into().unwrap(),
x_pow: remainder
.yx_coefficients
.last()
.map(|yx_coefficients| yx_coefficients.len())
.unwrap_or(0)
.try_into()
.unwrap(),
};
bool::from(
index.ct_gt(&denominator_leading_coefficient) |
index.ct_eq(&denominator_leading_coefficient),
)
} {
let popped = remainder.yx_coefficients.last_mut().unwrap().pop();
// This may have been `vec![]`
if let Some(popped) = popped {
debug_assert_eq!(popped, F::ZERO);
}
if remainder.yx_coefficients.last().unwrap().is_empty() {
let popped = remainder.yx_coefficients.pop();
debug_assert_eq!(popped, Some(vec![]));
}
}
while {
let index =
CoefficientIndex { y_pow: 0, x_pow: remainder.x_coefficients.len().try_into().unwrap() };
bool::from(
index.ct_gt(&denominator_leading_coefficient) |
index.ct_eq(&denominator_leading_coefficient),
)
} {
let popped = remainder.x_coefficients.pop();
debug_assert_eq!(popped, Some(F::ZERO));
}
}
(quotient, remainder)
}
}
impl<F: From<u64> + Zeroize + PrimeField> Rem<&Self> for Poly<F> {
type Output = Self;
fn rem(self, modulus: &Self) -> Self {
self.div_rem(modulus).1
}
}
impl<F: From<u64> + Zeroize + PrimeField> Poly<F> {
/// Evaluate this polynomial with the specified x/y values.
///
/// Panics on polynomials with terms whose powers exceed 2^64.
#[must_use]
pub fn eval(&self, x: F, y: F) -> F {
let mut res = self.zero_coefficient;
for (pow, coeff) in
self.y_coefficients.iter().enumerate().map(|(i, v)| (u64::try_from(i + 1).unwrap(), v))
{
res += y.pow([pow]) * coeff;
}
for (y_pow, coeffs) in
self.yx_coefficients.iter().enumerate().map(|(i, v)| (u64::try_from(i + 1).unwrap(), v))
{
let y_pow = y.pow([y_pow]);
for (x_pow, coeff) in
coeffs.iter().enumerate().map(|(i, v)| (u64::try_from(i + 1).unwrap(), v))
{
res += y_pow * x.pow([x_pow]) * coeff;
}
}
for (pow, coeff) in
self.x_coefficients.iter().enumerate().map(|(i, v)| (u64::try_from(i + 1).unwrap(), v))
{
res += x.pow([pow]) * coeff;
}
res
}
/// Differentiate a polynomial, reduced by a modulus with a leading y term y^2 x^0, by x and y.
///
/// This function has undefined behavior if unreduced.
#[must_use]
pub fn differentiate(&self) -> (Poly<F>, Poly<F>) {
// Differentation by x practically involves:
// - Dropping everything without an x component
// - Shifting everything down a power of x
// - Multiplying the new coefficient by the power it prior was used with
let diff_x = {
let mut diff_x = Poly {
y_coefficients: vec![],
yx_coefficients: vec![],
x_coefficients: vec![],
zero_coefficient: F::ZERO,
};
if !self.x_coefficients.is_empty() {
let mut x_coeffs = self.x_coefficients.clone();
diff_x.zero_coefficient = x_coeffs.remove(0);
diff_x.x_coefficients = x_coeffs;
let mut prior_x_power = F::from(2);
for x_coeff in &mut diff_x.x_coefficients {
*x_coeff *= prior_x_power;
prior_x_power += F::ONE;
}
}
if !self.yx_coefficients.is_empty() {
let mut yx_coeffs = self.yx_coefficients[0].clone();
if !yx_coeffs.is_empty() {
diff_x.y_coefficients = vec![yx_coeffs.remove(0)];
diff_x.yx_coefficients = vec![yx_coeffs];
let mut prior_x_power = F::from(2);
for yx_coeff in &mut diff_x.yx_coefficients[0] {
*yx_coeff *= prior_x_power;
prior_x_power += F::ONE;
}
}
}
diff_x
};
// Differentation by y is trivial
// It's the y coefficient as the zero coefficient, and the yx coefficients as the x
// coefficients
// This is thanks to any y term over y^2 being reduced out
let diff_y = Poly {
y_coefficients: vec![],
yx_coefficients: vec![],
x_coefficients: self.yx_coefficients.first().cloned().unwrap_or(vec![]),
zero_coefficient: self.y_coefficients.first().cloned().unwrap_or(F::ZERO),
};
(diff_x, diff_y)
}
/// Normalize the x coefficient to 1.
///
/// Panics if there is no x coefficient to normalize or if it cannot be normalized to 1.
#[must_use]
pub fn normalize_x_coefficient(self) -> Self {
let scalar = self.x_coefficients[0].invert().unwrap();
self * scalar
}
}

View File

@@ -1,237 +0,0 @@
use rand_core::OsRng;
use group::{ff::Field, Group};
use dalek_ff_group::EdwardsPoint;
use pasta_curves::{Ep, Eq};
use crate::{DivisorCurve, Poly, new_divisor};
mod poly;
// Equation 4 in the security proofs
fn check_divisor<C: DivisorCurve>(points: Vec<C>) {
// Create the divisor
let divisor = new_divisor::<C>(&points).unwrap();
let eval = |c| {
let (x, y) = C::to_xy(c).unwrap();
divisor.eval(x, y)
};
// Decide challgenges
let c0 = C::random(&mut OsRng);
let c1 = C::random(&mut OsRng);
let c2 = -(c0 + c1);
let (slope, intercept) = crate::slope_intercept::<C>(c0, c1);
let mut rhs = <C as DivisorCurve>::FieldElement::ONE;
for point in points {
let (x, y) = C::to_xy(point).unwrap();
rhs *= intercept - (y - (slope * x));
}
assert_eq!(eval(c0) * eval(c1) * eval(c2), rhs);
}
fn test_divisor<C: DivisorCurve>() {
for i in 1 ..= 255 {
println!("Test iteration {i}");
// Select points
let mut points = vec![];
for _ in 0 .. i {
points.push(C::random(&mut OsRng));
}
points.push(-points.iter().sum::<C>());
println!("Points {}", points.len());
// Perform the original check
check_divisor(points.clone());
// Create the divisor
let divisor = new_divisor::<C>(&points).unwrap();
// For a divisor interpolating 256 points, as one does when interpreting a 255-bit discrete log
// with the result of its scalar multiplication against a fixed generator, the lengths of the
// yx/x coefficients shouldn't supersede the following bounds
assert!((divisor.yx_coefficients.first().unwrap_or(&vec![]).len()) <= 126);
assert!((divisor.x_coefficients.len() - 1) <= 127);
assert!(
(1 + divisor.yx_coefficients.first().unwrap_or(&vec![]).len() +
(divisor.x_coefficients.len() - 1) +
1) <=
255
);
// Decide challgenges
let c0 = C::random(&mut OsRng);
let c1 = C::random(&mut OsRng);
let c2 = -(c0 + c1);
let (slope, intercept) = crate::slope_intercept::<C>(c0, c1);
// Perform the Logarithmic derivative check
{
let dx_over_dz = {
let dx = Poly {
y_coefficients: vec![],
yx_coefficients: vec![],
x_coefficients: vec![C::FieldElement::ZERO, C::FieldElement::from(3)],
zero_coefficient: C::a(),
};
let dy = Poly {
y_coefficients: vec![C::FieldElement::from(2)],
yx_coefficients: vec![],
x_coefficients: vec![],
zero_coefficient: C::FieldElement::ZERO,
};
let dz = (dy.clone() * -slope) + &dx;
// We want dx/dz, and dz/dx is equal to dy/dx - slope
// Sagemath claims this, dy / dz, is the proper inverse
(dy, dz)
};
{
let sanity_eval = |c| {
let (x, y) = C::to_xy(c).unwrap();
dx_over_dz.0.eval(x, y) * dx_over_dz.1.eval(x, y).invert().unwrap()
};
let sanity = sanity_eval(c0) + sanity_eval(c1) + sanity_eval(c2);
// This verifies the dx/dz polynomial is correct
assert_eq!(sanity, C::FieldElement::ZERO);
}
// Logarithmic derivative check
let test = |divisor: Poly<_>| {
let (dx, dy) = divisor.differentiate();
let lhs = |c| {
let (x, y) = C::to_xy(c).unwrap();
let n_0 = (C::FieldElement::from(3) * (x * x)) + C::a();
let d_0 = (C::FieldElement::from(2) * y).invert().unwrap();
let p_0_n_0 = n_0 * d_0;
let n_1 = dy.eval(x, y);
let first = p_0_n_0 * n_1;
let second = dx.eval(x, y);
let d_1 = divisor.eval(x, y);
let fraction_1_n = first + second;
let fraction_1_d = d_1;
let fraction_2_n = dx_over_dz.0.eval(x, y);
let fraction_2_d = dx_over_dz.1.eval(x, y);
fraction_1_n * fraction_2_n * (fraction_1_d * fraction_2_d).invert().unwrap()
};
let lhs = lhs(c0) + lhs(c1) + lhs(c2);
let mut rhs = C::FieldElement::ZERO;
for point in &points {
let (x, y) = <C as DivisorCurve>::to_xy(*point).unwrap();
rhs += (intercept - (y - (slope * x))).invert().unwrap();
}
assert_eq!(lhs, rhs);
};
// Test the divisor and the divisor with a normalized x coefficient
test(divisor.clone());
test(divisor.normalize_x_coefficient());
}
}
}
fn test_same_point<C: DivisorCurve>() {
let mut points = vec![C::random(&mut OsRng)];
points.push(points[0]);
points.push(-points.iter().sum::<C>());
check_divisor(points);
}
fn test_subset_sum_to_infinity<C: DivisorCurve>() {
// Internally, a binary tree algorithm is used
// This executes the first pass to end up with [0, 0] for further reductions
{
let mut points = vec![C::random(&mut OsRng)];
points.push(-points[0]);
let next = C::random(&mut OsRng);
points.push(next);
points.push(-next);
check_divisor(points);
}
// This executes the first pass to end up with [0, X, -X, 0]
{
let mut points = vec![C::random(&mut OsRng)];
points.push(-points[0]);
let x_1 = C::random(&mut OsRng);
let x_2 = C::random(&mut OsRng);
points.push(x_1);
points.push(x_2);
points.push(-x_1);
points.push(-x_2);
let next = C::random(&mut OsRng);
points.push(next);
points.push(-next);
check_divisor(points);
}
}
#[test]
fn test_divisor_pallas() {
test_same_point::<Ep>();
test_subset_sum_to_infinity::<Ep>();
test_divisor::<Ep>();
}
#[test]
fn test_divisor_vesta() {
test_same_point::<Eq>();
test_subset_sum_to_infinity::<Eq>();
test_divisor::<Eq>();
}
#[test]
fn test_divisor_ed25519() {
// Since we're implementing Wei25519 ourselves, check the isomorphism works as expected
{
let incomplete_add = |p1, p2| {
let (x1, y1) = EdwardsPoint::to_xy(p1).unwrap();
let (x2, y2) = EdwardsPoint::to_xy(p2).unwrap();
// mmadd-1998-cmo
let u = y2 - y1;
let uu = u * u;
let v = x2 - x1;
let vv = v * v;
let vvv = v * vv;
let R = vv * x1;
let A = uu - vvv - R.double();
let x3 = v * A;
let y3 = (u * (R - A)) - (vvv * y1);
let z3 = vvv;
// Normalize from XYZ to XY
let x3 = x3 * z3.invert().unwrap();
let y3 = y3 * z3.invert().unwrap();
// Edwards addition -> Wei25519 coordinates should be equivalent to Wei25519 addition
assert_eq!(EdwardsPoint::to_xy(p1 + p2).unwrap(), (x3, y3));
};
for _ in 0 .. 256 {
incomplete_add(EdwardsPoint::random(&mut OsRng), EdwardsPoint::random(&mut OsRng));
}
}
test_same_point::<EdwardsPoint>();
test_subset_sum_to_infinity::<EdwardsPoint>();
test_divisor::<EdwardsPoint>();
}

View File

@@ -1,148 +0,0 @@
use rand_core::OsRng;
use group::ff::Field;
use pasta_curves::Ep;
use crate::{DivisorCurve, Poly};
type F = <Ep as DivisorCurve>::FieldElement;
#[test]
fn test_poly() {
let zero = F::ZERO;
let one = F::ONE;
{
let mut poly = Poly::zero();
poly.y_coefficients = vec![zero, one];
let mut modulus = Poly::zero();
modulus.y_coefficients = vec![one];
assert_eq!(
poly.clone().div_rem(&modulus).0,
Poly {
y_coefficients: vec![one],
yx_coefficients: vec![],
x_coefficients: vec![],
zero_coefficient: zero
}
);
assert_eq!(
poly % &modulus,
Poly {
y_coefficients: vec![],
yx_coefficients: vec![],
x_coefficients: vec![],
zero_coefficient: zero
}
);
}
{
let mut poly = Poly::zero();
poly.y_coefficients = vec![zero, one];
let mut squared = Poly::zero();
squared.y_coefficients = vec![zero, zero, zero, one];
assert_eq!(poly.clone() * &poly, squared);
}
{
let mut a = Poly::zero();
a.zero_coefficient = F::from(2u64);
let mut b = Poly::zero();
b.zero_coefficient = F::from(3u64);
let mut res = Poly::zero();
res.zero_coefficient = F::from(6u64);
assert_eq!(a.clone() * &b, res);
b.y_coefficients = vec![F::from(4u64)];
res.y_coefficients = vec![F::from(8u64)];
assert_eq!(a.clone() * &b, res);
assert_eq!(b.clone() * &a, res);
a.x_coefficients = vec![F::from(5u64)];
res.x_coefficients = vec![F::from(15u64)];
res.yx_coefficients = vec![vec![F::from(20u64)]];
assert_eq!(a.clone() * &b, res);
assert_eq!(b * &a, res);
// res is now 20xy + 8*y + 15*x + 6
// res ** 2 =
// 400*x^2*y^2 + 320*x*y^2 + 64*y^2 + 600*x^2*y + 480*x*y + 96*y + 225*x^2 + 180*x + 36
let mut squared = Poly::zero();
squared.y_coefficients = vec![F::from(96u64), F::from(64u64)];
squared.yx_coefficients =
vec![vec![F::from(480u64), F::from(600u64)], vec![F::from(320u64), F::from(400u64)]];
squared.x_coefficients = vec![F::from(180u64), F::from(225u64)];
squared.zero_coefficient = F::from(36u64);
assert_eq!(res.clone() * &res, squared);
}
}
#[test]
fn test_differentation() {
let random = || F::random(&mut OsRng);
let input = Poly {
y_coefficients: vec![random()],
yx_coefficients: vec![vec![random()]],
x_coefficients: vec![random(), random(), random()],
zero_coefficient: random(),
};
let (diff_x, diff_y) = input.differentiate();
assert_eq!(
diff_x,
Poly {
y_coefficients: vec![input.yx_coefficients[0][0]],
yx_coefficients: vec![],
x_coefficients: vec![
F::from(2) * input.x_coefficients[1],
F::from(3) * input.x_coefficients[2]
],
zero_coefficient: input.x_coefficients[0],
}
);
assert_eq!(
diff_y,
Poly {
y_coefficients: vec![],
yx_coefficients: vec![],
x_coefficients: vec![input.yx_coefficients[0][0]],
zero_coefficient: input.y_coefficients[0],
}
);
let input = Poly {
y_coefficients: vec![random()],
yx_coefficients: vec![vec![random(), random()]],
x_coefficients: vec![random(), random(), random(), random()],
zero_coefficient: random(),
};
let (diff_x, diff_y) = input.differentiate();
assert_eq!(
diff_x,
Poly {
y_coefficients: vec![input.yx_coefficients[0][0]],
yx_coefficients: vec![vec![F::from(2) * input.yx_coefficients[0][1]]],
x_coefficients: vec![
F::from(2) * input.x_coefficients[1],
F::from(3) * input.x_coefficients[2],
F::from(4) * input.x_coefficients[3],
],
zero_coefficient: input.x_coefficients[0],
}
);
assert_eq!(
diff_y,
Poly {
y_coefficients: vec![],
yx_coefficients: vec![],
x_coefficients: vec![input.yx_coefficients[0][0], input.yx_coefficients[0][1]],
zero_coefficient: input.y_coefficients[0],
}
);
}

View File

@@ -1,27 +0,0 @@
[package]
name = "generalized-bulletproofs-ec-gadgets"
version = "0.1.0"
description = "Gadgets for working with an embedded Elliptic Curve in a Generalized Bulletproofs circuit"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/fcmps/ec-gadgets"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["bulletproofs", "circuit", "divisors"]
edition = "2021"
rust-version = "1.69"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
std-shims = { path = "../../../common/std-shims", version = "^0.1.1", default-features = false }
generic-array = { version = "1", default-features = false, features = ["alloc"] }
ciphersuite = { path = "../../ciphersuite", version = "0.4", default-features = false }
generalized-bulletproofs-circuit-abstraction = { path = "../circuit-abstraction", default-features = false }
[features]
std = ["std-shims/std", "ciphersuite/std", "generalized-bulletproofs-circuit-abstraction/std"]
default = ["std"]

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2024 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,3 +0,0 @@
# Generalized Bulletproofs Circuit Abstraction
A circuit abstraction around `generalized-bulletproofs`.

View File

@@ -1,524 +0,0 @@
use core::fmt;
use std_shims::{vec, vec::Vec};
use ciphersuite::{
group::ff::{Field, PrimeField, BatchInverter},
Ciphersuite,
};
use generalized_bulletproofs_circuit_abstraction::*;
use crate::*;
/// Parameters for a discrete logarithm proof.
pub trait DiscreteLogParameters {
/// The amount of bits used to represent a scalar.
type ScalarBits: ArrayLength;
/// The amount of x**i coefficients in a divisor.
///
/// This is the amount of points in a divisor (the amount of bits in a scalar, plus one) divided
/// by two.
type XCoefficients: ArrayLength;
/// The amount of x**i coefficients in a divisor, minus one.
type XCoefficientsMinusOne: ArrayLength;
/// The amount of y x**i coefficients in a divisor.
///
/// This is the amount of points in a divisor (the amount of bits in a scalar, plus one) divided
/// by two, minus two.
type YxCoefficients: ArrayLength;
}
/// A tabled generator for proving/verifying discrete logarithm claims.
#[derive(Clone)]
pub struct GeneratorTable<F: PrimeField, Parameters: DiscreteLogParameters>(
GenericArray<(F, F), Parameters::ScalarBits>,
);
impl<F: PrimeField, Parameters: DiscreteLogParameters> fmt::Debug
for GeneratorTable<F, Parameters>
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("GeneratorTable")
.field("x", &self.0[0].0)
.field("y", &self.0[0].1)
.finish_non_exhaustive()
}
}
impl<F: PrimeField, Parameters: DiscreteLogParameters> GeneratorTable<F, Parameters> {
/// Create a new table for this generator.
///
/// The generator is assumed to be well-formed and on-curve. This function may panic if it's not.
pub fn new(curve: &CurveSpec<F>, generator_x: F, generator_y: F) -> Self {
// mdbl-2007-bl
fn dbl<F: PrimeField>(a: F, x1: F, y1: F) -> (F, F) {
let xx = x1 * x1;
let w = a + (xx + xx.double());
let y1y1 = y1 * y1;
let r = y1y1 + y1y1;
let sss = (y1 * r).double().double();
let rr = r * r;
let b = x1 + r;
let b = (b * b) - xx - rr;
let h = (w * w) - b.double();
let x3 = h.double() * y1;
let y3 = (w * (b - h)) - rr.double();
let z3 = sss;
// Normalize from XYZ to XY
let z3_inv = z3.invert().unwrap();
let x3 = x3 * z3_inv;
let y3 = y3 * z3_inv;
(x3, y3)
}
let mut res = Self(GenericArray::default());
res.0[0] = (generator_x, generator_y);
for i in 1 .. Parameters::ScalarBits::USIZE {
let last = res.0[i - 1];
res.0[i] = dbl(curve.a, last.0, last.1);
}
res
}
}
/// A representation of the divisor.
///
/// The coefficient for x**1 is explicitly excluded as it's expected to be normalized to 1.
#[derive(Clone)]
pub struct Divisor<Parameters: DiscreteLogParameters> {
/// The coefficient for the `y` term of the divisor.
///
/// There is never more than one `y**i x**0` coefficient as the leading term of the modulus is
/// `y**2`. It's assumed the coefficient is non-zero (and present) as it will be for any divisor
/// exceeding trivial complexity.
pub y: Variable,
/// The coefficients for the `y**1 x**i` terms of the polynomial.
pub yx: GenericArray<Variable, Parameters::YxCoefficients>,
/// The coefficients for the `x**i` terms of the polynomial, skipping x**1.
///
/// x**1 is skipped as it's expected to be normalized to 1, and therefore constant, in order to
/// ensure the divisor is non-zero (as necessary for the proof to be complete).
// Subtract 1 from the length due to skipping the coefficient for x**1
pub x_from_power_of_2: GenericArray<Variable, Parameters::XCoefficientsMinusOne>,
/// The constant term in the polynomial (alternatively, the coefficient for y**0 x**0).
pub zero: Variable,
}
/// A point, its discrete logarithm, and the divisor to prove it.
#[derive(Clone)]
pub struct PointWithDlog<Parameters: DiscreteLogParameters> {
/// The point which is supposedly the result of scaling the generator by the discrete logarithm.
pub point: (Variable, Variable),
/// The discrete logarithm, represented as coefficients of a polynomial of 2**i.
pub dlog: GenericArray<Variable, Parameters::ScalarBits>,
/// The divisor interpolating the relevant doublings of generator with the inverse of the point.
pub divisor: Divisor<Parameters>,
}
/// A struct containing a point used for the evaluation of a divisor.
///
/// Preprocesses and caches as much of the calculation as possible to minimize work upon reuse of
/// challenge points.
struct ChallengePoint<F: PrimeField, Parameters: DiscreteLogParameters> {
y: F,
yx: GenericArray<F, Parameters::YxCoefficients>,
x: GenericArray<F, Parameters::XCoefficients>,
p_0_n_0: F,
x_p_0_n_0: GenericArray<F, Parameters::YxCoefficients>,
p_1_n: F,
p_1_d: F,
}
impl<F: PrimeField, Parameters: DiscreteLogParameters> ChallengePoint<F, Parameters> {
fn new(
curve: &CurveSpec<F>,
// The slope between all of the challenge points
slope: F,
// The x and y coordinates
x: F,
y: F,
// The inversion of twice the y coordinate
// We accept this as an argument so that the caller can calculcate these with a batch inversion
inv_two_y: F,
) -> Self {
// Powers of x, skipping x**0
let divisor_x_len = Parameters::XCoefficients::USIZE;
let mut x_pows = GenericArray::default();
x_pows[0] = x;
for i in 1 .. divisor_x_len {
let last = x_pows[i - 1];
x_pows[i] = last * x;
}
// Powers of x multiplied by y
let divisor_yx_len = Parameters::YxCoefficients::USIZE;
let mut yx = GenericArray::default();
// Skips x**0
yx[0] = y * x;
for i in 1 .. divisor_yx_len {
let last = yx[i - 1];
yx[i] = last * x;
}
let x_sq = x.square();
let three_x_sq = x_sq.double() + x_sq;
let three_x_sq_plus_a = three_x_sq + curve.a;
let two_y = y.double();
// p_0_n_0 from `DivisorChallenge`
let p_0_n_0 = three_x_sq_plus_a * inv_two_y;
let mut x_p_0_n_0 = GenericArray::default();
// Since this iterates over x, which skips x**0, this also skips p_0_n_0 x**0
for (i, x) in x_pows.iter().take(divisor_yx_len).enumerate() {
x_p_0_n_0[i] = p_0_n_0 * x;
}
// p_1_n from `DivisorChallenge`
let p_1_n = two_y;
// p_1_d from `DivisorChallenge`
let p_1_d = (-slope * p_1_n) + three_x_sq_plus_a;
ChallengePoint { x: x_pows, y, yx, p_0_n_0, x_p_0_n_0, p_1_n, p_1_d }
}
}
// `DivisorChallenge` from the section `Discrete Log Proof`
fn divisor_challenge_eval<C: Ciphersuite, Parameters: DiscreteLogParameters>(
circuit: &mut Circuit<C>,
divisor: &Divisor<Parameters>,
challenge: &ChallengePoint<C::F, Parameters>,
) -> Variable {
// The evaluation of the divisor differentiated by y, further multiplied by p_0_n_0
// Differentation drops everything without a y coefficient, and drops what remains by a power
// of y
// (y**1 -> y**0, yx**i -> x**i)
// This aligns with p_0_n_1 from `DivisorChallenge`
let p_0_n_1 = {
let mut p_0_n_1 = LinComb::empty().term(challenge.p_0_n_0, divisor.y);
for (j, var) in divisor.yx.iter().enumerate() {
// This does not raise by `j + 1` as x_p_0_n_0 omits x**0
p_0_n_1 = p_0_n_1.term(challenge.x_p_0_n_0[j], *var);
}
p_0_n_1
};
// The evaluation of the divisor differentiated by x
// This aligns with p_0_n_2 from `DivisorChallenge`
let p_0_n_2 = {
// The coefficient for x**1 is 1, so 1 becomes the new zero coefficient
let mut p_0_n_2 = LinComb::empty().constant(C::F::ONE);
// Handle the new y coefficient
p_0_n_2 = p_0_n_2.term(challenge.y, divisor.yx[0]);
// Handle the new yx coefficients
for (j, yx) in divisor.yx.iter().enumerate().skip(1) {
// For the power which was shifted down, we multiply this coefficient
// 3 x**2 -> 2 * 3 x**1
let original_power_of_x = C::F::from(u64::try_from(j + 1).unwrap());
// `j - 1` so `j = 1` indexes yx[0] as yx[0] is the y x**1
// (yx omits y x**0)
let this_weight = original_power_of_x * challenge.yx[j - 1];
p_0_n_2 = p_0_n_2.term(this_weight, *yx);
}
// Handle the x coefficients
// We don't skip the first one as `x_from_power_of_2` already omits x**1
for (i, x) in divisor.x_from_power_of_2.iter().enumerate() {
// i + 2 as the paper expects i to start from 1 and be + 1, yet we start from 0
let original_power_of_x = C::F::from(u64::try_from(i + 2).unwrap());
// Still x[i] as x[0] is x**1
let this_weight = original_power_of_x * challenge.x[i];
p_0_n_2 = p_0_n_2.term(this_weight, *x);
}
p_0_n_2
};
// p_0_n from `DivisorChallenge`
let p_0_n = p_0_n_1 + &p_0_n_2;
// Evaluation of the divisor
// p_0_d from `DivisorChallenge`
let p_0_d = {
let mut p_0_d = LinComb::empty().term(challenge.y, divisor.y);
for (var, c_yx) in divisor.yx.iter().zip(&challenge.yx) {
p_0_d = p_0_d.term(*c_yx, *var);
}
for (i, var) in divisor.x_from_power_of_2.iter().enumerate() {
// This `i+1` is preserved, despite most not being as x omits x**0, as this assumes we
// start with `i=1`
p_0_d = p_0_d.term(challenge.x[i + 1], *var);
}
// Adding x effectively adds a `1 x` term, ensuring the divisor isn't 0
p_0_d.term(C::F::ONE, divisor.zero).constant(challenge.x[0])
};
// Calculate the joint numerator
// p_n from `DivisorChallenge`
let p_n = p_0_n * challenge.p_1_n;
// Calculate the joint denominator
// p_d from `DivisorChallenge`
let p_d = p_0_d * challenge.p_1_d;
// We want `n / d = o`
// `n / d = o` == `n = d * o`
// These are safe unwraps as they're solely done by the prover and should always be non-zero
let witness =
circuit.eval(&p_d).map(|p_d| (p_d, circuit.eval(&p_n).unwrap() * p_d.invert().unwrap()));
let (_l, o, n_claim) = circuit.mul(Some(p_d), None, witness);
circuit.equality(p_n, &n_claim.into());
o
}
/// A challenge to evaluate divisors with.
///
/// This challenge must be sampled after writing the commitments to the transcript. This challenge
/// is reusable across various divisors.
pub struct DiscreteLogChallenge<F: PrimeField, Parameters: DiscreteLogParameters> {
c0: ChallengePoint<F, Parameters>,
c1: ChallengePoint<F, Parameters>,
c2: ChallengePoint<F, Parameters>,
slope: F,
intercept: F,
}
/// A generator which has been challenged and is ready for use in evaluating discrete logarithm
/// claims.
pub struct ChallengedGenerator<F: PrimeField, Parameters: DiscreteLogParameters>(
GenericArray<F, Parameters::ScalarBits>,
);
/// Gadgets for proving the discrete logarithm of points on an elliptic curve defined over the
/// scalar field of the curve of the Bulletproof.
pub trait EcDlogGadgets<C: Ciphersuite> {
/// Sample a challenge for a series of discrete logarithm claims.
///
/// This must be called after writing the commitments to the transcript.
///
/// The generators are assumed to be non-empty. They are not transcripted. If your generators are
/// dynamic, they must be properly transcripted into the context.
///
/// May panic/have undefined behavior if an assumption is broken.
#[allow(clippy::type_complexity)]
fn discrete_log_challenge<T: Transcript, Parameters: DiscreteLogParameters>(
&self,
transcript: &mut T,
curve: &CurveSpec<C::F>,
generators: &[&GeneratorTable<C::F, Parameters>],
) -> (DiscreteLogChallenge<C::F, Parameters>, Vec<ChallengedGenerator<C::F, Parameters>>);
/// Prove this point has the specified discrete logarithm over the specified generator.
///
/// The discrete logarithm is not validated to be in a canonical form. The only guarantee made on
/// it is that it's a consistent representation of _a_ discrete logarithm (reuse won't enable
/// re-interpretation as a distinct discrete logarithm).
///
/// This does ensure the point is on-curve.
///
/// This MUST only be called with `Variable`s present within commitments.
///
/// May panic/have undefined behavior if an assumption is broken, or if passed an invalid
/// witness.
fn discrete_log<Parameters: DiscreteLogParameters>(
&mut self,
curve: &CurveSpec<C::F>,
point: PointWithDlog<Parameters>,
challenge: &DiscreteLogChallenge<C::F, Parameters>,
challenged_generator: &ChallengedGenerator<C::F, Parameters>,
) -> OnCurve;
}
impl<C: Ciphersuite> EcDlogGadgets<C> for Circuit<C> {
// This is part of `DiscreteLog` from `Discrete Log Proof`, specifically, the challenges and
// the calculations dependent solely on them
fn discrete_log_challenge<T: Transcript, Parameters: DiscreteLogParameters>(
&self,
transcript: &mut T,
curve: &CurveSpec<C::F>,
generators: &[&GeneratorTable<C::F, Parameters>],
) -> (DiscreteLogChallenge<C::F, Parameters>, Vec<ChallengedGenerator<C::F, Parameters>>) {
// Get the challenge points
let sign_of_points = transcript.challenge_bytes();
let sign_of_point_0 = (sign_of_points[0] & 1) == 1;
let sign_of_point_1 = ((sign_of_points[0] >> 1) & 1) == 1;
let (c0_x, c0_y) = loop {
let c0_x = transcript.challenge::<C>();
let Some(c0_y) =
Option::<C::F>::from(((c0_x.square() * c0_x) + (curve.a * c0_x) + curve.b).sqrt())
else {
continue;
};
// Takes the even y coordinate as to not be dependent on whatever root the above sqrt
// happens to returns
break (c0_x, if bool::from(c0_y.is_odd()) != sign_of_point_0 { -c0_y } else { c0_y });
};
let (c1_x, c1_y) = loop {
let c1_x = transcript.challenge::<C>();
let Some(c1_y) =
Option::<C::F>::from(((c1_x.square() * c1_x) + (curve.a * c1_x) + curve.b).sqrt())
else {
continue;
};
break (c1_x, if bool::from(c1_y.is_odd()) != sign_of_point_1 { -c1_y } else { c1_y });
};
// mmadd-1998-cmo
fn incomplete_add<F: PrimeField>(x1: F, y1: F, x2: F, y2: F) -> Option<(F, F)> {
if x1 == x2 {
None?
}
let u = y2 - y1;
let uu = u * u;
let v = x2 - x1;
let vv = v * v;
let vvv = v * vv;
let r = vv * x1;
let a = uu - vvv - r.double();
let x3 = v * a;
let y3 = (u * (r - a)) - (vvv * y1);
let z3 = vvv;
// Normalize from XYZ to XY
let z3_inv = Option::<F>::from(z3.invert())?;
let x3 = x3 * z3_inv;
let y3 = y3 * z3_inv;
Some((x3, y3))
}
let (c2_x, c2_y) = incomplete_add::<C::F>(c0_x, c0_y, c1_x, c1_y)
.expect("randomly selected points shared an x coordinate");
// We want C0, C1, C2 = -(C0 + C1)
let c2_y = -c2_y;
// Calculate the slope and intercept
// Safe invert as these x coordinates must be distinct due to passing the above incomplete_add
let slope = (c1_y - c0_y) * (c1_x - c0_x).invert().unwrap();
let intercept = c0_y - (slope * c0_x);
// Calculate the inversions for 2 c_y (for each c) and all of the challenged generators
let mut inversions = vec![C::F::ZERO; 3 + (generators.len() * Parameters::ScalarBits::USIZE)];
// Needed for the left-hand side eval
{
inversions[0] = c0_y.double();
inversions[1] = c1_y.double();
inversions[2] = c2_y.double();
}
// Perform the inversions for the generators
for (i, generator) in generators.iter().enumerate() {
// Needed for the right-hand side eval
for (j, generator) in generator.0.iter().enumerate() {
// `DiscreteLog` has weights of `(mu - (G_i.y + (slope * G_i.x)))**-1` in its last line
inversions[3 + (i * Parameters::ScalarBits::USIZE) + j] =
intercept - (generator.1 - (slope * generator.0));
}
}
for challenge_inversion in &inversions {
// This should be unreachable barring negligible probability
if challenge_inversion.is_zero().into() {
panic!("trying to invert 0");
}
}
let mut scratch = vec![C::F::ZERO; inversions.len()];
let _ = BatchInverter::invert_with_external_scratch(&mut inversions, &mut scratch);
let mut inversions = inversions.into_iter();
let inv_c0_two_y = inversions.next().unwrap();
let inv_c1_two_y = inversions.next().unwrap();
let inv_c2_two_y = inversions.next().unwrap();
let c0 = ChallengePoint::new(curve, slope, c0_x, c0_y, inv_c0_two_y);
let c1 = ChallengePoint::new(curve, slope, c1_x, c1_y, inv_c1_two_y);
let c2 = ChallengePoint::new(curve, slope, c2_x, c2_y, inv_c2_two_y);
// Fill in the inverted values
let mut challenged_generators = Vec::with_capacity(generators.len());
for _ in 0 .. generators.len() {
let mut challenged_generator = GenericArray::default();
for i in 0 .. Parameters::ScalarBits::USIZE {
challenged_generator[i] = inversions.next().unwrap();
}
challenged_generators.push(ChallengedGenerator(challenged_generator));
}
(DiscreteLogChallenge { c0, c1, c2, slope, intercept }, challenged_generators)
}
// `DiscreteLog` from `Discrete Log Proof`
fn discrete_log<Parameters: DiscreteLogParameters>(
&mut self,
curve: &CurveSpec<C::F>,
point: PointWithDlog<Parameters>,
challenge: &DiscreteLogChallenge<C::F, Parameters>,
challenged_generator: &ChallengedGenerator<C::F, Parameters>,
) -> OnCurve {
let PointWithDlog { divisor, dlog, point } = point;
// Ensure this is being safely called
let arg_iter = [point.0, point.1, divisor.y, divisor.zero];
let arg_iter = arg_iter.iter().chain(divisor.yx.iter());
let arg_iter = arg_iter.chain(divisor.x_from_power_of_2.iter());
let arg_iter = arg_iter.chain(dlog.iter());
for variable in arg_iter {
debug_assert!(
matches!(variable, Variable::CG { .. } | Variable::V(_)),
"discrete log proofs requires all arguments belong to commitments",
);
}
// Check the point is on curve
let point = self.on_curve(curve, point);
// The challenge has already been sampled so those lines aren't necessary
// lhs from the paper, evaluating the divisor
let lhs_eval = LinComb::from(divisor_challenge_eval(self, &divisor, &challenge.c0)) +
&LinComb::from(divisor_challenge_eval(self, &divisor, &challenge.c1)) +
&LinComb::from(divisor_challenge_eval(self, &divisor, &challenge.c2));
// Interpolate the doublings of the generator
let mut rhs_eval = LinComb::empty();
// We call this `bit` yet it's not constrained to being a bit
// It's presumed to be yet may be malleated
for (bit, weight) in dlog.into_iter().zip(&challenged_generator.0) {
rhs_eval = rhs_eval.term(*weight, bit);
}
// Interpolate the output point
// intercept - (y - (slope * x))
// intercept - y + (slope * x)
// -y + (slope * x) + intercept
// EXCEPT the output point we're proving the discrete log for isn't the one interpolated
// Its negative is, so -y becomes y
// y + (slope * x) + intercept
let output_interpolation = LinComb::empty()
.constant(challenge.intercept)
.term(C::F::ONE, point.y)
.term(challenge.slope, point.x);
let output_interpolation_eval = self.eval(&output_interpolation);
let (_output_interpolation, inverse) =
self.inverse(Some(output_interpolation), output_interpolation_eval);
rhs_eval = rhs_eval.term(C::F::ONE, inverse);
self.equality(lhs_eval, &rhs_eval);
point
}
}

View File

@@ -1,131 +0,0 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
#![deny(missing_docs)]
#![allow(non_snake_case)]
use generic_array::{typenum::Unsigned, ArrayLength, GenericArray};
use ciphersuite::{group::ff::Field, Ciphersuite};
use generalized_bulletproofs_circuit_abstraction::*;
mod dlog;
pub use dlog::*;
/// The specification of a short Weierstrass curve over the field `F`.
///
/// The short Weierstrass curve is defined via the formula `y**2 = x**3 + a*x + b`.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct CurveSpec<F> {
/// The `a` constant in the curve formula.
pub a: F,
/// The `b` constant in the curve formula.
pub b: F,
}
/// A struct for a point on a towered curve which has been confirmed to be on-curve.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct OnCurve {
pub(crate) x: Variable,
pub(crate) y: Variable,
}
impl OnCurve {
/// The variable for the x-coordinate.
pub fn x(&self) -> Variable {
self.x
}
/// The variable for the y-coordinate.
pub fn y(&self) -> Variable {
self.y
}
}
/// Gadgets for working with points on an elliptic curve defined over the scalar field of the curve
/// of the Bulletproof.
pub trait EcGadgets<C: Ciphersuite> {
/// Constrain an x and y coordinate as being on the specified curve.
///
/// The specified curve is defined over the scalar field of the curve this proof is performed
/// over, offering efficient arithmetic.
///
/// May panic if the prover and the point is not actually on-curve.
fn on_curve(&mut self, curve: &CurveSpec<C::F>, point: (Variable, Variable)) -> OnCurve;
/// Perform incomplete addition for a fixed point and an on-curve point.
///
/// `a` is the x and y coordinates of the fixed point, assumed to be on-curve.
///
/// `b` is a point prior checked to be on-curve.
///
/// `c` is a point prior checked to be on-curve, constrained to be the sum of `a` and `b`.
///
/// `a` and `b` are checked to have distinct x coordinates.
///
/// This function may panic if `a` is malformed or if the prover and `c` is not actually the sum
/// of `a` and `b`.
fn incomplete_add_fixed(&mut self, a: (C::F, C::F), b: OnCurve, c: OnCurve) -> OnCurve;
}
impl<C: Ciphersuite> EcGadgets<C> for Circuit<C> {
fn on_curve(&mut self, curve: &CurveSpec<C::F>, (x, y): (Variable, Variable)) -> OnCurve {
let x_eval = self.eval(&LinComb::from(x));
let (_x, _x_2, x2) =
self.mul(Some(LinComb::from(x)), Some(LinComb::from(x)), x_eval.map(|x| (x, x)));
let (_x, _x_2, x3) =
self.mul(Some(LinComb::from(x2)), Some(LinComb::from(x)), x_eval.map(|x| (x * x, x)));
let expected_y2 = LinComb::from(x3).term(curve.a, x).constant(curve.b);
let y_eval = self.eval(&LinComb::from(y));
let (_y, _y_2, y2) =
self.mul(Some(LinComb::from(y)), Some(LinComb::from(y)), y_eval.map(|y| (y, y)));
self.equality(y2.into(), &expected_y2);
OnCurve { x, y }
}
fn incomplete_add_fixed(&mut self, a: (C::F, C::F), b: OnCurve, c: OnCurve) -> OnCurve {
// Check b.x != a.0
{
let bx_lincomb = LinComb::from(b.x);
let bx_eval = self.eval(&bx_lincomb);
self.inequality(bx_lincomb, &LinComb::empty().constant(a.0), bx_eval.map(|bx| (bx, a.0)));
}
let (x0, y0) = (a.0, a.1);
let (x1, y1) = (b.x, b.y);
let (x2, y2) = (c.x, c.y);
let slope_eval = self.eval(&LinComb::from(x1)).map(|x1| {
let y1 = self.eval(&LinComb::from(b.y)).unwrap();
(y1 - y0) * (x1 - x0).invert().unwrap()
});
// slope * (x1 - x0) = y1 - y0
let x1_minus_x0 = LinComb::from(x1).constant(-x0);
let x1_minus_x0_eval = self.eval(&x1_minus_x0);
let (slope, _r, o) =
self.mul(None, Some(x1_minus_x0), slope_eval.map(|slope| (slope, x1_minus_x0_eval.unwrap())));
self.equality(LinComb::from(o), &LinComb::from(y1).constant(-y0));
// slope * (x2 - x0) = -y2 - y0
let x2_minus_x0 = LinComb::from(x2).constant(-x0);
let x2_minus_x0_eval = self.eval(&x2_minus_x0);
let (_slope, _x2_minus_x0, o) = self.mul(
Some(slope.into()),
Some(x2_minus_x0),
slope_eval.map(|slope| (slope, x2_minus_x0_eval.unwrap())),
);
self.equality(o.into(), &LinComb::empty().term(-C::F::ONE, y2).constant(-y0));
// slope * slope = x0 + x1 + x2
let (_slope, _slope_2, o) =
self.mul(Some(slope.into()), Some(slope.into()), slope_eval.map(|slope| (slope, slope)));
self.equality(o.into(), &LinComb::from(x1).term(C::F::ONE, x2).constant(x0));
OnCurve { x: x2, y: y2 }
}
}

View File

@@ -31,8 +31,8 @@ dalek-ff-group = { path = "../../dalek-ff-group", version = "0.4", default-featu
blake2 = { version = "0.10", default-features = false }
ciphersuite = { path = "../../ciphersuite", version = "0.4", default-features = false }
ec-divisors = { path = "../divisors", default-features = false }
generalized-bulletproofs-ec-gadgets = { path = "../ec-gadgets", default-features = false }
ec-divisors = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e", default-features = false }
generalized-bulletproofs-ec-gadgets = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e", default-features = false }
[dev-dependencies]
hex = "0.4"

View File

@@ -2,6 +2,8 @@
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
#[allow(unused_imports)]
use std_shims::prelude::*;
#[cfg(any(feature = "alloc", feature = "std"))]
use std_shims::io::{self, Read};
@@ -37,10 +39,6 @@ impl ciphersuite::Ciphersuite for Embedwards25519 {
Point::generator()
}
fn reduce_512(scalar: [u8; 64]) -> Self::F {
Scalar::wide_reduce(scalar)
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
use blake2::Digest;
Scalar::wide_reduce(Self::H::digest([dst, data].concat()).as_slice().try_into().unwrap())
@@ -57,7 +55,7 @@ impl ciphersuite::Ciphersuite for Embedwards25519 {
reader.read_exact(encoding.as_mut())?;
let point = Option::<Self::G>::from(Self::G::from_bytes(&encoding))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid point"))?;
.ok_or_else(|| io::Error::other("invalid point"))?;
Ok(point)
}
}

View File

@@ -377,6 +377,15 @@ impl PrimeGroup for Point {}
impl ec_divisors::DivisorCurve for Point {
type FieldElement = FieldElement;
type XyPoint = ec_divisors::Projective<Self>;
fn interpolator_for_scalar_mul() -> &'static ec_divisors::Interpolator<Self::FieldElement> {
static PRECOMPUTE: std_shims::sync::LazyLock<ec_divisors::Interpolator<FieldElement>> =
std_shims::sync::LazyLock::new(|| {
ec_divisors::Interpolator::new(usize::try_from(130).unwrap())
});
&PRECOMPUTE
}
fn a() -> Self::FieldElement {
-FieldElement::from(3u64)

View File

@@ -1,38 +0,0 @@
[package]
name = "generalized-bulletproofs"
version = "0.1.0"
description = "Generalized Bulletproofs"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/generalized-bulletproofs"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["ciphersuite", "ff", "group"]
edition = "2021"
rust-version = "1.69"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
std-shims = { path = "../../../common/std-shims", version = "^0.1.1", default-features = false }
rand_core = { version = "0.6", default-features = false }
zeroize = { version = "^1.5", default-features = false, features = ["zeroize_derive"] }
blake2 = { version = "0.10", default-features = false }
multiexp = { path = "../../multiexp", version = "0.4", default-features = false, features = ["batch"] }
ciphersuite = { path = "../../ciphersuite", version = "0.4", default-features = false }
[dev-dependencies]
rand_core = { version = "0.6", features = ["getrandom"] }
transcript = { package = "flexible-transcript", path = "../../transcript", features = ["recommended"] }
ciphersuite = { path = "../../ciphersuite", features = ["ristretto"] }
[features]
std = ["std-shims/std", "rand_core/std", "zeroize/std", "blake2/std", "multiexp/std", "ciphersuite/std"]
tests = ["std"]
default = ["std"]

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2021-2024 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,6 +0,0 @@
# Generalized Bulletproofs
An implementation of
[Generalized Bulletproofs](https://repo.getmonero.org/monero-project/ccs-proposals/uploads/a9baa50c38c6312efc0fea5c6a188bb9/gbp.pdf),
a variant of the Bulletproofs arithmetic circuit statement to support Pedersen
vector commitments.

View File

@@ -1,663 +0,0 @@
use std_shims::{vec, vec::Vec};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop};
use multiexp::{multiexp, multiexp_vartime};
use ciphersuite::{group::ff::Field, Ciphersuite};
use crate::{
ScalarVector, PointVector, ProofGenerators, PedersenCommitment, PedersenVectorCommitment,
BatchVerifier,
transcript::*,
lincomb::accumulate_vector,
inner_product::{IpError, IpStatement, IpWitness, P},
};
pub use crate::lincomb::{Variable, LinComb};
/// An Arithmetic Circuit Statement.
///
/// Bulletproofs' constraints are of the form
/// `aL * aR = aO, WL * aL + WR * aR + WO * aO = WV * V + c`.
///
/// Generalized Bulletproofs modifies this to
/// `aL * aR = aO, WL * aL + WR * aR + WO * aO + WCG * C_G = WV * V + c`.
///
/// We implement the latter, yet represented (for simplicity) as
/// `aL * aR = aO, WL * aL + WR * aR + WO * aO + WCG * C_G + WV * V + c = 0`.
#[derive(Clone, Debug)]
pub struct ArithmeticCircuitStatement<'a, C: Ciphersuite> {
generators: ProofGenerators<'a, C>,
constraints: Vec<LinComb<C::F>>,
C: PointVector<C>,
V: PointVector<C>,
}
impl<C: Ciphersuite> Zeroize for ArithmeticCircuitStatement<'_, C> {
fn zeroize(&mut self) {
self.constraints.zeroize();
self.C.zeroize();
self.V.zeroize();
}
}
/// The witness for an arithmetic circuit statement.
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
pub struct ArithmeticCircuitWitness<C: Ciphersuite> {
aL: ScalarVector<C::F>,
aR: ScalarVector<C::F>,
aO: ScalarVector<C::F>,
c: Vec<PedersenVectorCommitment<C>>,
v: Vec<PedersenCommitment<C>>,
}
/// An error incurred during arithmetic circuit proof operations.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum AcError {
/// The vectors of scalars which are multiplied against each other were of different lengths.
DifferingLrLengths,
/// The matrices of constraints are of different lengths.
InconsistentAmountOfConstraints,
/// A constraint referred to a non-existent term.
ConstrainedNonExistentTerm,
/// A constraint referred to a non-existent commitment.
ConstrainedNonExistentCommitment,
/// There weren't enough generators to prove for this statement.
NotEnoughGenerators,
/// The witness was inconsistent to the statement.
///
/// Sanity checks on the witness are always performed. If the library is compiled with debug
/// assertions on, the satisfaction of all constraints and validity of the commitmentsd is
/// additionally checked.
InconsistentWitness,
/// There was an error from the inner-product proof.
Ip(IpError),
/// The proof wasn't complete and the necessary values could not be read from the transcript.
IncompleteProof,
}
impl<C: Ciphersuite> ArithmeticCircuitWitness<C> {
/// Constructs a new witness instance.
pub fn new(
aL: ScalarVector<C::F>,
aR: ScalarVector<C::F>,
c: Vec<PedersenVectorCommitment<C>>,
v: Vec<PedersenCommitment<C>>,
) -> Result<Self, AcError> {
if aL.len() != aR.len() {
Err(AcError::DifferingLrLengths)?;
}
// The Pedersen Vector Commitments don't have their variables' lengths checked as they aren't
// paired off with each other as aL, aR are
// The PVC commit function ensures there's enough generators for their amount of terms
// If there aren't enough/the same generators when this is proven for, it'll trigger
// InconsistentWitness
let aO = aL.clone() * &aR;
Ok(ArithmeticCircuitWitness { aL, aR, aO, c, v })
}
}
struct YzChallenges<C: Ciphersuite> {
y_inv: ScalarVector<C::F>,
z: ScalarVector<C::F>,
}
impl<'a, C: Ciphersuite> ArithmeticCircuitStatement<'a, C> {
// The amount of multiplications performed.
fn n(&self) -> usize {
self.generators.len()
}
// The amount of constraints.
fn q(&self) -> usize {
self.constraints.len()
}
// The amount of Pedersen vector commitments.
fn c(&self) -> usize {
self.C.len()
}
// The amount of Pedersen commitments.
fn m(&self) -> usize {
self.V.len()
}
/// Create a new ArithmeticCircuitStatement for the specified relationship.
///
/// The `LinComb`s passed as `constraints` will be bound to evaluate to 0.
///
/// The constraints are not transcripted. They're expected to be deterministic from the context
/// and higher-level statement. If your constraints are variable, you MUST transcript them before
/// calling prove/verify.
///
/// The commitments are expected to have been transcripted extenally to this statement's
/// invocation. That's practically ensured by taking a `Commitments` struct here, which is only
/// obtainable via a transcript.
pub fn new(
generators: ProofGenerators<'a, C>,
constraints: Vec<LinComb<C::F>>,
commitments: Commitments<C>,
) -> Result<Self, AcError> {
let Commitments { C, V } = commitments;
for constraint in &constraints {
if Some(generators.len()) <= constraint.highest_a_index {
Err(AcError::ConstrainedNonExistentTerm)?;
}
if Some(C.len()) <= constraint.highest_c_index {
Err(AcError::ConstrainedNonExistentCommitment)?;
}
if Some(V.len()) <= constraint.highest_v_index {
Err(AcError::ConstrainedNonExistentCommitment)?;
}
}
Ok(Self { generators, constraints, C, V })
}
fn yz_challenges(&self, y: C::F, z_1: C::F) -> YzChallenges<C> {
let y_inv = y.invert().unwrap();
let y_inv = ScalarVector::powers(y_inv, self.n());
// Powers of z *starting with z**1*
// We could reuse powers and remove the first element, yet this is cheaper than the shift that
// would require
let q = self.q();
let mut z = ScalarVector(Vec::with_capacity(q));
z.0.push(z_1);
for _ in 1 .. q {
z.0.push(*z.0.last().unwrap() * z_1);
}
z.0.truncate(q);
YzChallenges { y_inv, z }
}
/// Prove for this statement/witness.
pub fn prove<R: RngCore + CryptoRng>(
self,
rng: &mut R,
transcript: &mut Transcript,
mut witness: ArithmeticCircuitWitness<C>,
) -> Result<(), AcError> {
let n = self.n();
let c = self.c();
let m = self.m();
// Check the witness length and pad it to the necessary power of two
if witness.aL.len() > n {
Err(AcError::NotEnoughGenerators)?;
}
while witness.aL.len() < n {
witness.aL.0.push(C::F::ZERO);
witness.aR.0.push(C::F::ZERO);
witness.aO.0.push(C::F::ZERO);
}
for c in &mut witness.c {
if c.g_values.len() > n {
Err(AcError::NotEnoughGenerators)?;
}
// The Pedersen vector commitments internally have n terms
while c.g_values.len() < n {
c.g_values.0.push(C::F::ZERO);
}
}
// Check the witness's consistency with the statement
if (c != witness.c.len()) || (m != witness.v.len()) {
Err(AcError::InconsistentWitness)?;
}
#[cfg(debug_assertions)]
{
for (commitment, opening) in self.V.0.iter().zip(witness.v.iter()) {
if *commitment != opening.commit(self.generators.g(), self.generators.h()) {
Err(AcError::InconsistentWitness)?;
}
}
for (commitment, opening) in self.C.0.iter().zip(witness.c.iter()) {
if Some(*commitment) != opening.commit(self.generators.g_bold_slice(), self.generators.h())
{
Err(AcError::InconsistentWitness)?;
}
}
for constraint in &self.constraints {
let eval =
constraint
.WL
.iter()
.map(|(i, weight)| *weight * witness.aL[*i])
.chain(constraint.WR.iter().map(|(i, weight)| *weight * witness.aR[*i]))
.chain(constraint.WO.iter().map(|(i, weight)| *weight * witness.aO[*i]))
.chain(
constraint.WCG.iter().zip(&witness.c).flat_map(|(weights, c)| {
weights.iter().map(|(j, weight)| *weight * c.g_values[*j])
}),
)
.chain(constraint.WV.iter().map(|(i, weight)| *weight * witness.v[*i].value))
.chain(core::iter::once(constraint.c))
.sum::<C::F>();
if eval != C::F::ZERO {
Err(AcError::InconsistentWitness)?;
}
}
}
let alpha = C::F::random(&mut *rng);
let beta = C::F::random(&mut *rng);
let rho = C::F::random(&mut *rng);
let AI = {
let alg = witness.aL.0.iter().enumerate().map(|(i, aL)| (*aL, self.generators.g_bold(i)));
let arh = witness.aR.0.iter().enumerate().map(|(i, aR)| (*aR, self.generators.h_bold(i)));
let ah = core::iter::once((alpha, self.generators.h()));
let mut AI_terms = alg.chain(arh).chain(ah).collect::<Vec<_>>();
let AI = multiexp(&AI_terms);
AI_terms.zeroize();
AI
};
let AO = {
let aog = witness.aO.0.iter().enumerate().map(|(i, aO)| (*aO, self.generators.g_bold(i)));
let bh = core::iter::once((beta, self.generators.h()));
let mut AO_terms = aog.chain(bh).collect::<Vec<_>>();
let AO = multiexp(&AO_terms);
AO_terms.zeroize();
AO
};
let mut sL = ScalarVector(Vec::with_capacity(n));
let mut sR = ScalarVector(Vec::with_capacity(n));
for _ in 0 .. n {
sL.0.push(C::F::random(&mut *rng));
sR.0.push(C::F::random(&mut *rng));
}
let S = {
let slg = sL.0.iter().enumerate().map(|(i, sL)| (*sL, self.generators.g_bold(i)));
let srh = sR.0.iter().enumerate().map(|(i, sR)| (*sR, self.generators.h_bold(i)));
let rh = core::iter::once((rho, self.generators.h()));
let mut S_terms = slg.chain(srh).chain(rh).collect::<Vec<_>>();
let S = multiexp(&S_terms);
S_terms.zeroize();
S
};
transcript.push_point(AI);
transcript.push_point(AO);
transcript.push_point(S);
let y = transcript.challenge::<C>();
let z = transcript.challenge::<C>();
let YzChallenges { y_inv, z } = self.yz_challenges(y, z);
let y = ScalarVector::powers(y, n);
// t is a n'-term polynomial
// While Bulletproofs discuss it as a 6-term polynomial, Generalized Bulletproofs re-defines it
// as `2(n' + 1)`-term, where `n'` is `2 (c + 1)`.
// When `c = 0`, `n' = 2`, and t is `6` (which lines up with Bulletproofs having a 6-term
// polynomial).
// ni = n'
let ni = 2 + (2 * (c / 2));
// These indexes are from the Generalized Bulletproofs paper
#[rustfmt::skip]
let ilr = ni / 2; // 1 if c = 0
#[rustfmt::skip]
let io = ni; // 2 if c = 0
#[rustfmt::skip]
let is = ni + 1; // 3 if c = 0
#[rustfmt::skip]
let jlr = ni / 2; // 1 if c = 0
#[rustfmt::skip]
let jo = 0; // 0 if c = 0
#[rustfmt::skip]
let js = ni + 1; // 3 if c = 0
// If c = 0, these indexes perfectly align with the stated powers of X from the Bulletproofs
// paper for the following coefficients
// Declare the l and r polynomials, assigning the traditional coefficients to their positions
let mut l = vec![];
let mut r = vec![];
for _ in 0 .. (is + 1) {
l.push(ScalarVector::new(0));
r.push(ScalarVector::new(0));
}
let mut l_weights = ScalarVector::new(n);
let mut r_weights = ScalarVector::new(n);
let mut o_weights = ScalarVector::new(n);
for (constraint, z) in self.constraints.iter().zip(&z.0) {
accumulate_vector(&mut l_weights, &constraint.WL, *z);
accumulate_vector(&mut r_weights, &constraint.WR, *z);
accumulate_vector(&mut o_weights, &constraint.WO, *z);
}
l[ilr] = (r_weights * &y_inv) + &witness.aL;
l[io] = witness.aO.clone();
l[is] = sL;
r[jlr] = l_weights + &(witness.aR.clone() * &y);
r[jo] = o_weights - &y;
r[js] = sR * &y;
// Pad as expected
for l in &mut l {
debug_assert!((l.len() == 0) || (l.len() == n));
if l.len() == 0 {
*l = ScalarVector::new(n);
}
}
for r in &mut r {
debug_assert!((r.len() == 0) || (r.len() == n));
if r.len() == 0 {
*r = ScalarVector::new(n);
}
}
// We now fill in the vector commitments
// We use unused coefficients of l increasing from 0 (skipping ilr), and unused coefficients of
// r decreasing from n' (skipping jlr)
let mut cg_weights = Vec::with_capacity(witness.c.len());
for i in 0 .. witness.c.len() {
let mut cg = ScalarVector::new(n);
for (constraint, z) in self.constraints.iter().zip(&z.0) {
if let Some(WCG) = constraint.WCG.get(i) {
accumulate_vector(&mut cg, WCG, *z);
}
}
cg_weights.push(cg);
}
for (mut i, (c, cg_weights)) in witness.c.iter().zip(cg_weights).enumerate() {
if i >= ilr {
i += 1;
}
// Because i has skipped ilr, j will skip jlr
let j = ni - i;
l[i] = c.g_values.clone();
r[j] = cg_weights;
}
// Multiply them to obtain t
let mut t = ScalarVector::new(1 + (2 * (l.len() - 1)));
for (i, l) in l.iter().enumerate() {
for (j, r) in r.iter().enumerate() {
let new_coeff = i + j;
t[new_coeff] += l.inner_product(r.0.iter());
}
}
// Per Bulletproofs, calculate masks tau for each t where (i > 0) && (i != 2)
// Per Generalized Bulletproofs, calculate masks tau for each t where i != n'
// With Bulletproofs, t[0] is zero, hence its omission, yet Generalized Bulletproofs uses it
let mut tau_before_ni = vec![];
for _ in 0 .. ni {
tau_before_ni.push(C::F::random(&mut *rng));
}
let mut tau_after_ni = vec![];
for _ in 0 .. t.0[(ni + 1) ..].len() {
tau_after_ni.push(C::F::random(&mut *rng));
}
// Calculate commitments to the coefficients of t, blinded by tau
debug_assert_eq!(t.0[0 .. ni].len(), tau_before_ni.len());
for (t, tau) in t.0[0 .. ni].iter().zip(tau_before_ni.iter()) {
transcript.push_point(multiexp(&[(*t, self.generators.g()), (*tau, self.generators.h())]));
}
debug_assert_eq!(t.0[(ni + 1) ..].len(), tau_after_ni.len());
for (t, tau) in t.0[(ni + 1) ..].iter().zip(tau_after_ni.iter()) {
transcript.push_point(multiexp(&[(*t, self.generators.g()), (*tau, self.generators.h())]));
}
let x: ScalarVector<C::F> = ScalarVector::powers(transcript.challenge::<C>(), t.len());
let poly_eval = |poly: &[ScalarVector<C::F>], x: &ScalarVector<_>| -> ScalarVector<_> {
let mut res = ScalarVector::<C::F>::new(poly[0].0.len());
for (i, coeff) in poly.iter().enumerate() {
res = res + &(coeff.clone() * x[i]);
}
res
};
let l = poly_eval(&l, &x);
let r = poly_eval(&r, &x);
let t_caret = l.inner_product(r.0.iter());
let mut V_weights = ScalarVector::new(self.V.len());
for (constraint, z) in self.constraints.iter().zip(&z.0) {
// We use `-z`, not `z`, as we write our constraint as `... + WV V = 0` not `= WV V + ..`
// This means we need to subtract `WV V` from both sides, which we accomplish here
accumulate_vector(&mut V_weights, &constraint.WV, -*z);
}
let tau_x = {
let mut tau_x_poly = vec![];
tau_x_poly.extend(tau_before_ni);
tau_x_poly.push(V_weights.inner_product(witness.v.iter().map(|v| &v.mask)));
tau_x_poly.extend(tau_after_ni);
let mut tau_x = C::F::ZERO;
for (i, coeff) in tau_x_poly.into_iter().enumerate() {
tau_x += coeff * x[i];
}
tau_x
};
// Calculate u for the powers of x variable to ilr/io/is
let u = {
// Calculate the first part of u
let mut u = (alpha * x[ilr]) + (beta * x[io]) + (rho * x[is]);
// Incorporate the commitment masks multiplied by the associated power of x
for (mut i, commitment) in witness.c.iter().enumerate() {
// If this index is ni / 2, skip it
if i >= (ni / 2) {
i += 1;
}
u += x[i] * commitment.mask;
}
u
};
// Use the Inner-Product argument to prove for this
// P = t_caret * g + l * g_bold + r * (y_inv * h_bold)
let mut P_terms = Vec::with_capacity(1 + (2 * self.generators.len()));
debug_assert_eq!(l.len(), r.len());
for (i, (l, r)) in l.0.iter().zip(r.0.iter()).enumerate() {
P_terms.push((*l, self.generators.g_bold(i)));
P_terms.push((y_inv[i] * r, self.generators.h_bold(i)));
}
// Protocol 1, inlined, since our IpStatement is for Protocol 2
transcript.push_scalar(tau_x);
transcript.push_scalar(u);
transcript.push_scalar(t_caret);
let ip_x = transcript.challenge::<C>();
P_terms.push((ip_x * t_caret, self.generators.g()));
IpStatement::new(
self.generators,
y_inv,
ip_x,
// Safe since IpStatement isn't a ZK proof
P::Prover(multiexp_vartime(&P_terms)),
)
.unwrap()
.prove(transcript, IpWitness::new(l, r).unwrap())
.map_err(AcError::Ip)
}
/// Verify a proof for this statement.
///
/// This solely queues the statement for batch verification. The resulting BatchVerifier MUST
/// still be verified.
///
/// If this proof returns an error, the BatchVerifier MUST be assumed corrupted and discarded.
pub fn verify<R: RngCore + CryptoRng>(
self,
rng: &mut R,
verifier: &mut BatchVerifier<C>,
transcript: &mut VerifierTranscript,
) -> Result<(), AcError> {
if verifier.g_bold.len() < self.generators.len() {
verifier.g_bold.resize(self.generators.len(), C::F::ZERO);
verifier.h_bold.resize(self.generators.len(), C::F::ZERO);
verifier.h_sum.resize(self.generators.len(), C::F::ZERO);
}
let n = self.n();
let c = self.c();
let ni = 2 + (2 * (c / 2));
let ilr = ni / 2;
let io = ni;
let is = ni + 1;
let jlr = ni / 2;
let l_r_poly_len = 1 + ni + 1;
let t_poly_len = (2 * l_r_poly_len) - 1;
let AI = transcript.read_point::<C>().map_err(|_| AcError::IncompleteProof)?;
let AO = transcript.read_point::<C>().map_err(|_| AcError::IncompleteProof)?;
let S = transcript.read_point::<C>().map_err(|_| AcError::IncompleteProof)?;
let y = transcript.challenge::<C>();
let z = transcript.challenge::<C>();
let YzChallenges { y_inv, z } = self.yz_challenges(y, z);
let mut l_weights = ScalarVector::new(n);
let mut r_weights = ScalarVector::new(n);
let mut o_weights = ScalarVector::new(n);
for (constraint, z) in self.constraints.iter().zip(&z.0) {
accumulate_vector(&mut l_weights, &constraint.WL, *z);
accumulate_vector(&mut r_weights, &constraint.WR, *z);
accumulate_vector(&mut o_weights, &constraint.WO, *z);
}
let r_weights = r_weights * &y_inv;
let delta = r_weights.inner_product(l_weights.0.iter());
let mut T_before_ni = Vec::with_capacity(ni);
let mut T_after_ni = Vec::with_capacity(t_poly_len - ni - 1);
for _ in 0 .. ni {
T_before_ni.push(transcript.read_point::<C>().map_err(|_| AcError::IncompleteProof)?);
}
for _ in 0 .. (t_poly_len - ni - 1) {
T_after_ni.push(transcript.read_point::<C>().map_err(|_| AcError::IncompleteProof)?);
}
let x: ScalarVector<C::F> = ScalarVector::powers(transcript.challenge::<C>(), t_poly_len);
let tau_x = transcript.read_scalar::<C>().map_err(|_| AcError::IncompleteProof)?;
let u = transcript.read_scalar::<C>().map_err(|_| AcError::IncompleteProof)?;
let t_caret = transcript.read_scalar::<C>().map_err(|_| AcError::IncompleteProof)?;
// Lines 88-90, modified per Generalized Bulletproofs as needed w.r.t. t
{
let verifier_weight = C::F::random(&mut *rng);
// lhs of the equation, weighted to enable batch verification
verifier.g += t_caret * verifier_weight;
verifier.h += tau_x * verifier_weight;
let mut V_weights = ScalarVector::new(self.V.len());
for (constraint, z) in self.constraints.iter().zip(&z.0) {
// We use `-z`, not `z`, as we write our constraint as `... + WV V = 0` not `= WV V + ..`
// This means we need to subtract `WV V` from both sides, which we accomplish here
accumulate_vector(&mut V_weights, &constraint.WV, -*z);
}
V_weights = V_weights * x[ni];
// rhs of the equation, negated to cause a sum to zero
// `delta - z...`, instead of `delta + z...`, is done for the same reason as in the above WV
// matrix transform
verifier.g -= verifier_weight *
x[ni] *
(delta - z.inner_product(self.constraints.iter().map(|constraint| &constraint.c)));
for pair in V_weights.0.into_iter().zip(self.V.0) {
verifier.additional.push((-verifier_weight * pair.0, pair.1));
}
for (i, T) in T_before_ni.into_iter().enumerate() {
verifier.additional.push((-verifier_weight * x[i], T));
}
for (i, T) in T_after_ni.into_iter().enumerate() {
verifier.additional.push((-verifier_weight * x[ni + 1 + i], T));
}
}
let verifier_weight = C::F::random(&mut *rng);
// Multiply `x` by `verifier_weight` as this effects `verifier_weight` onto most scalars and
// saves a notable amount of operations
let x = x * verifier_weight;
// This following block effectively calculates P, within the multiexp
{
verifier.additional.push((x[ilr], AI));
verifier.additional.push((x[io], AO));
// h' ** y is equivalent to h as h' is h ** y_inv
let mut log2_n = 0;
while (1 << log2_n) != n {
log2_n += 1;
}
verifier.h_sum[log2_n] -= verifier_weight;
verifier.additional.push((x[is], S));
// Lines 85-87 calculate WL, WR, WO
// We preserve them in terms of g_bold and h_bold for a more efficient multiexp
let mut h_bold_scalars = l_weights * x[jlr];
for (i, wr) in (r_weights * x[jlr]).0.into_iter().enumerate() {
verifier.g_bold[i] += wr;
}
// WO is weighted by x**jo where jo == 0, hence why we can ignore the x term
h_bold_scalars = h_bold_scalars + &(o_weights * verifier_weight);
let mut cg_weights = Vec::with_capacity(self.C.len());
for i in 0 .. self.C.len() {
let mut cg = ScalarVector::new(n);
for (constraint, z) in self.constraints.iter().zip(&z.0) {
if let Some(WCG) = constraint.WCG.get(i) {
accumulate_vector(&mut cg, WCG, *z);
}
}
cg_weights.push(cg);
}
// Push the terms for C, which increment from 0, and the terms for WC, which decrement from
// n'
for (mut i, (C, WCG)) in self.C.0.into_iter().zip(cg_weights).enumerate() {
if i >= (ni / 2) {
i += 1;
}
let j = ni - i;
verifier.additional.push((x[i], C));
h_bold_scalars = h_bold_scalars + &(WCG * x[j]);
}
// All terms for h_bold here have actually been for h_bold', h_bold * y_inv
h_bold_scalars = h_bold_scalars * &y_inv;
for (i, scalar) in h_bold_scalars.0.into_iter().enumerate() {
verifier.h_bold[i] += scalar;
}
// Remove u * h from P
verifier.h -= verifier_weight * u;
}
// Prove for lines 88, 92 with an Inner-Product statement
// This inlines Protocol 1, as our IpStatement implements Protocol 2
let ip_x = transcript.challenge::<C>();
// P is amended with this additional term
verifier.g += verifier_weight * ip_x * t_caret;
IpStatement::new(self.generators, y_inv, ip_x, P::Verifier { verifier_weight })
.unwrap()
.verify(verifier, transcript)
.map_err(AcError::Ip)?;
Ok(())
}
}

View File

@@ -1,370 +0,0 @@
use std_shims::{vec, vec::Vec};
use multiexp::multiexp_vartime;
use ciphersuite::{group::ff::Field, Ciphersuite};
#[rustfmt::skip]
use crate::{ScalarVector, PointVector, ProofGenerators, BatchVerifier, transcript::*, padded_pow_of_2};
/// An error from proving/verifying Inner-Product statements.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum IpError {
/// An incorrect amount of generators was provided.
IncorrectAmountOfGenerators,
/// The witness was inconsistent to the statement.
///
/// Sanity checks on the witness are always performed. If the library is compiled with debug
/// assertions on, whether or not this witness actually opens `P` is checked.
InconsistentWitness,
/// The proof wasn't complete and the necessary values could not be read from the transcript.
IncompleteProof,
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) enum P<C: Ciphersuite> {
Verifier { verifier_weight: C::F },
Prover(C::G),
}
/// The Bulletproofs Inner-Product statement.
///
/// This is for usage with Protocol 2 from the Bulletproofs paper.
#[derive(Clone, Debug)]
pub(crate) struct IpStatement<'a, C: Ciphersuite> {
generators: ProofGenerators<'a, C>,
// Weights for h_bold
h_bold_weights: ScalarVector<C::F>,
// u as the discrete logarithm of G
u: C::F,
// P
P: P<C>,
}
/// The witness for the Bulletproofs Inner-Product statement.
#[derive(Clone, Debug)]
pub(crate) struct IpWitness<C: Ciphersuite> {
// a
a: ScalarVector<C::F>,
// b
b: ScalarVector<C::F>,
}
impl<C: Ciphersuite> IpWitness<C> {
/// Construct a new witness for an Inner-Product statement.
///
/// If the witness is less than a power of two, it is padded to the nearest power of two.
///
/// This functions return None if the lengths of a, b are mismatched or either are empty.
pub(crate) fn new(mut a: ScalarVector<C::F>, mut b: ScalarVector<C::F>) -> Option<Self> {
if a.0.is_empty() || (a.len() != b.len()) {
None?;
}
// Pad to the nearest power of 2
let missing = padded_pow_of_2(a.len()) - a.len();
a.0.reserve(missing);
b.0.reserve(missing);
for _ in 0 .. missing {
a.0.push(C::F::ZERO);
b.0.push(C::F::ZERO);
}
Some(Self { a, b })
}
}
impl<'a, C: Ciphersuite> IpStatement<'a, C> {
/// Create a new Inner-Product statement.
///
/// This does not perform any transcripting of any variables within this statement. They must be
/// deterministic to the existing transcript.
pub(crate) fn new(
generators: ProofGenerators<'a, C>,
h_bold_weights: ScalarVector<C::F>,
u: C::F,
P: P<C>,
) -> Result<Self, IpError> {
if generators.h_bold_slice().len() != h_bold_weights.len() {
Err(IpError::IncorrectAmountOfGenerators)?
}
Ok(Self { generators, h_bold_weights, u, P })
}
/// Prove for this Inner-Product statement.
///
/// Returns an error if this statement couldn't be proven for (such as if the witness isn't
/// consistent).
pub(crate) fn prove(
self,
transcript: &mut Transcript,
witness: IpWitness<C>,
) -> Result<(), IpError> {
let (mut g_bold, mut h_bold, u, mut P, mut a, mut b) = {
let IpStatement { generators, h_bold_weights, u, P } = self;
let u = generators.g() * u;
// Ensure we have the exact amount of generators
if generators.g_bold_slice().len() != witness.a.len() {
Err(IpError::IncorrectAmountOfGenerators)?;
}
// Acquire a local copy of the generators
let g_bold = PointVector::<C>(generators.g_bold_slice().to_vec());
let h_bold = PointVector::<C>(generators.h_bold_slice().to_vec()).mul_vec(&h_bold_weights);
let IpWitness { a, b } = witness;
let P = match P {
P::Prover(point) => point,
P::Verifier { .. } => {
panic!("prove called with a P specification which was for the verifier")
}
};
// Ensure this witness actually opens this statement
#[cfg(debug_assertions)]
{
let ag = a.0.iter().cloned().zip(g_bold.0.iter().cloned());
let bh = b.0.iter().cloned().zip(h_bold.0.iter().cloned());
let cu = core::iter::once((a.inner_product(b.0.iter()), u));
if P != multiexp_vartime(&ag.chain(bh).chain(cu).collect::<Vec<_>>()) {
Err(IpError::InconsistentWitness)?;
}
}
(g_bold, h_bold, u, P, a, b)
};
// `else: (n > 1)` case, lines 18-35 of the Bulletproofs paper
// This interprets `g_bold.len()` as `n`
while g_bold.len() > 1 {
// Split a, b, g_bold, h_bold as needed for lines 20-24
let (a1, a2) = a.clone().split();
let (b1, b2) = b.clone().split();
let (g_bold1, g_bold2) = g_bold.split();
let (h_bold1, h_bold2) = h_bold.split();
let n_hat = g_bold1.len();
// Sanity
debug_assert_eq!(a1.len(), n_hat);
debug_assert_eq!(a2.len(), n_hat);
debug_assert_eq!(b1.len(), n_hat);
debug_assert_eq!(b2.len(), n_hat);
debug_assert_eq!(g_bold1.len(), n_hat);
debug_assert_eq!(g_bold2.len(), n_hat);
debug_assert_eq!(h_bold1.len(), n_hat);
debug_assert_eq!(h_bold2.len(), n_hat);
// cl, cr, lines 21-22
let cl = a1.inner_product(b2.0.iter());
let cr = a2.inner_product(b1.0.iter());
let L = {
let mut L_terms = Vec::with_capacity(1 + (2 * g_bold1.len()));
for (a, g) in a1.0.iter().zip(g_bold2.0.iter()) {
L_terms.push((*a, *g));
}
for (b, h) in b2.0.iter().zip(h_bold1.0.iter()) {
L_terms.push((*b, *h));
}
L_terms.push((cl, u));
// Uses vartime since this isn't a ZK proof
multiexp_vartime(&L_terms)
};
let R = {
let mut R_terms = Vec::with_capacity(1 + (2 * g_bold1.len()));
for (a, g) in a2.0.iter().zip(g_bold1.0.iter()) {
R_terms.push((*a, *g));
}
for (b, h) in b1.0.iter().zip(h_bold2.0.iter()) {
R_terms.push((*b, *h));
}
R_terms.push((cr, u));
multiexp_vartime(&R_terms)
};
// Now that we've calculate L, R, transcript them to receive x (26-27)
transcript.push_point(L);
transcript.push_point(R);
let x: C::F = transcript.challenge::<C>();
let x_inv = x.invert().unwrap();
// The prover and verifier now calculate the following (28-31)
g_bold = PointVector(Vec::with_capacity(g_bold1.len()));
for (a, b) in g_bold1.0.into_iter().zip(g_bold2.0.into_iter()) {
g_bold.0.push(multiexp_vartime(&[(x_inv, a), (x, b)]));
}
h_bold = PointVector(Vec::with_capacity(h_bold1.len()));
for (a, b) in h_bold1.0.into_iter().zip(h_bold2.0.into_iter()) {
h_bold.0.push(multiexp_vartime(&[(x, a), (x_inv, b)]));
}
P = (L * (x * x)) + P + (R * (x_inv * x_inv));
// 32-34
a = (a1 * x) + &(a2 * x_inv);
b = (b1 * x_inv) + &(b2 * x);
}
// `if n = 1` case from line 14-17
// Sanity
debug_assert_eq!(g_bold.len(), 1);
debug_assert_eq!(h_bold.len(), 1);
debug_assert_eq!(a.len(), 1);
debug_assert_eq!(b.len(), 1);
// We simply send a/b
transcript.push_scalar(a[0]);
transcript.push_scalar(b[0]);
Ok(())
}
/*
This has room for optimization worth investigating further. It currently takes
an iterative approach. It can be optimized further via divide and conquer.
Assume there are 4 challenges.
Iterative approach (current):
1. Do the optimal multiplications across challenge column 0 and 1.
2. Do the optimal multiplications across that result and column 2.
3. Do the optimal multiplications across that result and column 3.
Divide and conquer (worth investigating further):
1. Do the optimal multiplications across challenge column 0 and 1.
2. Do the optimal multiplications across challenge column 2 and 3.
3. Multiply both results together.
When there are 4 challenges (n=16), the iterative approach does 28 multiplications
versus divide and conquer's 24.
*/
fn challenge_products(challenges: &[(C::F, C::F)]) -> Vec<C::F> {
let mut products = vec![C::F::ONE; 1 << challenges.len()];
if !challenges.is_empty() {
products[0] = challenges[0].1;
products[1] = challenges[0].0;
for (j, challenge) in challenges.iter().enumerate().skip(1) {
let mut slots = (1 << (j + 1)) - 1;
while slots > 0 {
products[slots] = products[slots / 2] * challenge.0;
products[slots - 1] = products[slots / 2] * challenge.1;
slots = slots.saturating_sub(2);
}
}
// Sanity check since if the above failed to populate, it'd be critical
for product in &products {
debug_assert!(!bool::from(product.is_zero()));
}
}
products
}
/// Queue an Inner-Product proof for batch verification.
///
/// This will return Err if there is an error. This will return Ok if the proof was successfully
/// queued for batch verification. The caller is required to verify the batch in order to ensure
/// the proof is actually correct.
///
/// If this proof returns an error, the BatchVerifier MUST be assumed corrupted and discarded.
pub(crate) fn verify(
self,
verifier: &mut BatchVerifier<C>,
transcript: &mut VerifierTranscript,
) -> Result<(), IpError> {
if verifier.g_bold.len() < self.generators.len() {
verifier.g_bold.resize(self.generators.len(), C::F::ZERO);
verifier.h_bold.resize(self.generators.len(), C::F::ZERO);
verifier.h_sum.resize(self.generators.len(), C::F::ZERO);
}
let IpStatement { generators, h_bold_weights, u, P } = self;
// Calculate the discrete log w.r.t. 2 for the amount of generators present
let mut lr_len = 0;
while (1 << lr_len) < generators.g_bold_slice().len() {
lr_len += 1;
}
let weight = match P {
P::Prover(_) => panic!("prove called with a P specification which was for the prover"),
P::Verifier { verifier_weight } => verifier_weight,
};
// Again, we start with the `else: (n > 1)` case
// We need x, x_inv per lines 25-27 for lines 28-31
let mut L = Vec::with_capacity(lr_len);
let mut R = Vec::with_capacity(lr_len);
let mut xs: Vec<C::F> = Vec::with_capacity(lr_len);
for _ in 0 .. lr_len {
L.push(transcript.read_point::<C>().map_err(|_| IpError::IncompleteProof)?);
R.push(transcript.read_point::<C>().map_err(|_| IpError::IncompleteProof)?);
xs.push(transcript.challenge::<C>());
}
// We calculate their inverse in batch
let mut x_invs = xs.clone();
{
let mut scratch = vec![C::F::ZERO; x_invs.len()];
ciphersuite::group::ff::BatchInverter::invert_with_external_scratch(
&mut x_invs,
&mut scratch,
);
}
// Now, with x and x_inv, we need to calculate g_bold', h_bold', P'
//
// For the sake of performance, we solely want to calculate all of these in terms of scalings
// for g_bold, h_bold, P, and don't want to actually perform intermediary scalings of the
// points
//
// L and R are easy, as it's simply x**2, x**-2
//
// For the series of g_bold, h_bold, we use the `challenge_products` function
// For how that works, please see its own documentation
let product_cache = {
let mut challenges = Vec::with_capacity(lr_len);
let x_iter = xs.into_iter().zip(x_invs);
let lr_iter = L.into_iter().zip(R);
for ((x, x_inv), (L, R)) in x_iter.zip(lr_iter) {
challenges.push((x, x_inv));
verifier.additional.push((weight * x.square(), L));
verifier.additional.push((weight * x_inv.square(), R));
}
Self::challenge_products(&challenges)
};
// And now for the `if n = 1` case
let a = transcript.read_scalar::<C>().map_err(|_| IpError::IncompleteProof)?;
let b = transcript.read_scalar::<C>().map_err(|_| IpError::IncompleteProof)?;
let c = a * b;
// The multiexp of these terms equate to the final permutation of P
// We now add terms for a * g_bold' + b * h_bold' b + c * u, with the scalars negative such
// that the terms sum to 0 for an honest prover
// The g_bold * a term case from line 16
#[allow(clippy::needless_range_loop)]
for i in 0 .. generators.g_bold_slice().len() {
verifier.g_bold[i] -= weight * product_cache[i] * a;
}
// The h_bold * b term case from line 16
for i in 0 .. generators.h_bold_slice().len() {
verifier.h_bold[i] -=
weight * product_cache[product_cache.len() - 1 - i] * b * h_bold_weights[i];
}
// The c * u term case from line 16
verifier.g -= weight * c * u;
Ok(())
}
}

View File

@@ -1,336 +0,0 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
#![deny(missing_docs)]
#![allow(non_snake_case)]
use core::fmt;
use std_shims::{vec, vec::Vec, collections::HashSet};
use zeroize::Zeroize;
use multiexp::{multiexp, multiexp_vartime};
use ciphersuite::{
group::{ff::Field, Group, GroupEncoding},
Ciphersuite,
};
mod scalar_vector;
pub use scalar_vector::ScalarVector;
mod point_vector;
pub use point_vector::PointVector;
/// The transcript formats.
pub mod transcript;
pub(crate) mod inner_product;
pub(crate) mod lincomb;
/// The arithmetic circuit proof.
pub mod arithmetic_circuit_proof;
/// Functionlity useful when testing.
#[cfg(any(test, feature = "tests"))]
pub mod tests;
/// Calculate the nearest power of two greater than or equivalent to the argument.
pub(crate) fn padded_pow_of_2(i: usize) -> usize {
let mut next_pow_of_2 = 1;
while next_pow_of_2 < i {
next_pow_of_2 <<= 1;
}
next_pow_of_2
}
/// An error from working with generators.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum GeneratorsError {
/// The provided list of generators for `g` (bold) was empty.
GBoldEmpty,
/// The provided list of generators for `h` (bold) did not match `g` (bold) in length.
DifferingGhBoldLengths,
/// The amount of provided generators were not a power of two.
NotPowerOfTwo,
/// A generator was used multiple times.
DuplicatedGenerator,
}
/// A full set of generators.
#[derive(Clone)]
pub struct Generators<C: Ciphersuite> {
g: C::G,
h: C::G,
g_bold: Vec<C::G>,
h_bold: Vec<C::G>,
h_sum: Vec<C::G>,
}
/// A batch verifier of proofs.
#[must_use]
#[derive(Clone)]
pub struct BatchVerifier<C: Ciphersuite> {
/// The summed scalar for the G generator.
pub g: C::F,
/// The summed scalar for the G generator.
pub h: C::F,
/// The summed scalars for the G_bold generators.
pub g_bold: Vec<C::F>,
/// The summed scalars for the H_bold generators.
pub h_bold: Vec<C::F>,
/// The summed scalars for the sums of all H generators prior to the index.
///
/// This is not populated with the full set of summed H generators. This is only populated with
/// the powers of 2. Accordingly, an index i specifies a scalar for the sum of all H generators
/// from H**2**0 ..= H**2**i.
pub h_sum: Vec<C::F>,
/// Additional (non-fixed) points to include in the multiexp.
///
/// This is used for proof-specific elements.
pub additional: Vec<(C::F, C::G)>,
}
impl<C: Ciphersuite> fmt::Debug for Generators<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let g = self.g.to_bytes();
let g: &[u8] = g.as_ref();
let h = self.h.to_bytes();
let h: &[u8] = h.as_ref();
fmt.debug_struct("Generators").field("g", &g).field("h", &h).finish_non_exhaustive()
}
}
/// The generators for a specific proof.
///
/// This potentially have been reduced in size from the original set of generators, as beneficial
/// to performance.
#[derive(Copy, Clone)]
pub struct ProofGenerators<'a, C: Ciphersuite> {
g: &'a C::G,
h: &'a C::G,
g_bold: &'a [C::G],
h_bold: &'a [C::G],
}
impl<C: Ciphersuite> fmt::Debug for ProofGenerators<'_, C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let g = self.g.to_bytes();
let g: &[u8] = g.as_ref();
let h = self.h.to_bytes();
let h: &[u8] = h.as_ref();
fmt.debug_struct("ProofGenerators").field("g", &g).field("h", &h).finish_non_exhaustive()
}
}
impl<C: Ciphersuite> Generators<C> {
/// Construct an instance of Generators for usage with Bulletproofs.
pub fn new(
g: C::G,
h: C::G,
g_bold: Vec<C::G>,
h_bold: Vec<C::G>,
) -> Result<Self, GeneratorsError> {
if g_bold.is_empty() {
Err(GeneratorsError::GBoldEmpty)?;
}
if g_bold.len() != h_bold.len() {
Err(GeneratorsError::DifferingGhBoldLengths)?;
}
if padded_pow_of_2(g_bold.len()) != g_bold.len() {
Err(GeneratorsError::NotPowerOfTwo)?;
}
let mut set = HashSet::new();
let mut add_generator = |generator: &C::G| {
assert!(!bool::from(generator.is_identity()));
let bytes = generator.to_bytes();
!set.insert(bytes.as_ref().to_vec())
};
assert!(!add_generator(&g), "g was prior present in empty set");
if add_generator(&h) {
Err(GeneratorsError::DuplicatedGenerator)?;
}
for g in &g_bold {
if add_generator(g) {
Err(GeneratorsError::DuplicatedGenerator)?;
}
}
for h in &h_bold {
if add_generator(h) {
Err(GeneratorsError::DuplicatedGenerator)?;
}
}
let mut running_h_sum = C::G::identity();
let mut h_sum = vec![];
let mut next_pow_of_2 = 1;
for (i, h) in h_bold.iter().enumerate() {
running_h_sum += h;
if (i + 1) == next_pow_of_2 {
h_sum.push(running_h_sum);
next_pow_of_2 *= 2;
}
}
Ok(Generators { g, h, g_bold, h_bold, h_sum })
}
/// Create a BatchVerifier for proofs which use a consistent set of generators.
pub fn batch_verifier() -> BatchVerifier<C> {
BatchVerifier {
g: C::F::ZERO,
h: C::F::ZERO,
g_bold: vec![],
h_bold: vec![],
h_sum: vec![],
additional: Vec::with_capacity(128),
}
}
/// Verify all proofs queued for batch verification in this BatchVerifier.
#[must_use]
pub fn verify(&self, verifier: BatchVerifier<C>) -> bool {
multiexp_vartime(
&[(verifier.g, self.g), (verifier.h, self.h)]
.into_iter()
.chain(verifier.g_bold.into_iter().zip(self.g_bold.iter().cloned()))
.chain(verifier.h_bold.into_iter().zip(self.h_bold.iter().cloned()))
.chain(verifier.h_sum.into_iter().zip(self.h_sum.iter().cloned()))
.chain(verifier.additional)
.collect::<Vec<_>>(),
)
.is_identity()
.into()
}
/// The `g` generator.
pub fn g(&self) -> C::G {
self.g
}
/// The `h` generator.
pub fn h(&self) -> C::G {
self.h
}
/// A slice to view the `g` (bold) generators.
pub fn g_bold_slice(&self) -> &[C::G] {
&self.g_bold
}
/// A slice to view the `h` (bold) generators.
pub fn h_bold_slice(&self) -> &[C::G] {
&self.h_bold
}
/// Reduce a set of generators to the quantity necessary to support a certain amount of
/// in-circuit multiplications/terms in a Pedersen vector commitment.
///
/// Returns None if reducing to 0 or if the generators reduced are insufficient to provide this
/// many generators.
pub fn reduce(&self, generators: usize) -> Option<ProofGenerators<'_, C>> {
if generators == 0 {
None?;
}
// Round to the nearest power of 2
let generators = padded_pow_of_2(generators);
if generators > self.g_bold.len() {
None?;
}
Some(ProofGenerators {
g: &self.g,
h: &self.h,
g_bold: &self.g_bold[.. generators],
h_bold: &self.h_bold[.. generators],
})
}
}
impl<C: Ciphersuite> ProofGenerators<'_, C> {
pub(crate) fn len(&self) -> usize {
self.g_bold.len()
}
pub(crate) fn g(&self) -> C::G {
*self.g
}
pub(crate) fn h(&self) -> C::G {
*self.h
}
pub(crate) fn g_bold(&self, i: usize) -> C::G {
self.g_bold[i]
}
pub(crate) fn h_bold(&self, i: usize) -> C::G {
self.h_bold[i]
}
pub(crate) fn g_bold_slice(&self) -> &[C::G] {
self.g_bold
}
pub(crate) fn h_bold_slice(&self) -> &[C::G] {
self.h_bold
}
}
/// The opening of a Pedersen commitment.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct PedersenCommitment<C: Ciphersuite> {
/// The value committed to.
pub value: C::F,
/// The mask blinding the value committed to.
pub mask: C::F,
}
impl<C: Ciphersuite> PedersenCommitment<C> {
/// Commit to this value, yielding the Pedersen commitment.
pub fn commit(&self, g: C::G, h: C::G) -> C::G {
multiexp(&[(self.value, g), (self.mask, h)])
}
}
/// The opening of a Pedersen vector commitment.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct PedersenVectorCommitment<C: Ciphersuite> {
/// The values committed to across the `g` (bold) generators.
pub g_values: ScalarVector<C::F>,
/// The mask blinding the values committed to.
pub mask: C::F,
}
impl<C: Ciphersuite> PedersenVectorCommitment<C> {
/// Commit to the vectors of values.
///
/// This function returns None if the amount of generators is less than the amount of values
/// within the relevant vector.
pub fn commit(&self, g_bold: &[C::G], h: C::G) -> Option<C::G> {
if g_bold.len() < self.g_values.len() {
None?;
};
let mut terms = vec![(self.mask, h)];
for pair in self.g_values.0.iter().cloned().zip(g_bold.iter().cloned()) {
terms.push(pair);
}
let res = multiexp(&terms);
terms.zeroize();
Some(res)
}
}

View File

@@ -1,227 +0,0 @@
use core::ops::{Add, Sub, Mul};
use std_shims::{vec, vec::Vec};
use zeroize::Zeroize;
use ciphersuite::group::ff::PrimeField;
use crate::ScalarVector;
/// A reference to a variable usable within linear combinations.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[allow(non_camel_case_types)]
pub enum Variable {
/// A variable within the left vector of vectors multiplied against each other.
aL(usize),
/// A variable within the right vector of vectors multiplied against each other.
aR(usize),
/// A variable within the output vector of the left vector multiplied by the right vector.
aO(usize),
/// A variable within a Pedersen vector commitment, committed to with a generator from `g` (bold).
CG {
/// The commitment being indexed.
commitment: usize,
/// The index of the variable.
index: usize,
},
/// A variable within a Pedersen commitment.
V(usize),
}
// Does a NOP as there shouldn't be anything critical here
impl Zeroize for Variable {
fn zeroize(&mut self) {}
}
/// A linear combination.
///
/// Specifically, `WL aL + WR aR + WO aO + WCG C_G + WV V + c`.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
#[must_use]
pub struct LinComb<F: PrimeField> {
pub(crate) highest_a_index: Option<usize>,
pub(crate) highest_c_index: Option<usize>,
pub(crate) highest_v_index: Option<usize>,
// Sparse representation of WL/WR/WO
pub(crate) WL: Vec<(usize, F)>,
pub(crate) WR: Vec<(usize, F)>,
pub(crate) WO: Vec<(usize, F)>,
// Sparse representation once within a commitment
pub(crate) WCG: Vec<Vec<(usize, F)>>,
// Sparse representation of WV
pub(crate) WV: Vec<(usize, F)>,
pub(crate) c: F,
}
impl<F: PrimeField> From<Variable> for LinComb<F> {
fn from(constrainable: Variable) -> LinComb<F> {
LinComb::empty().term(F::ONE, constrainable)
}
}
impl<F: PrimeField> Add<&LinComb<F>> for LinComb<F> {
type Output = Self;
fn add(mut self, constraint: &Self) -> Self {
self.highest_a_index = self.highest_a_index.max(constraint.highest_a_index);
self.highest_c_index = self.highest_c_index.max(constraint.highest_c_index);
self.highest_v_index = self.highest_v_index.max(constraint.highest_v_index);
self.WL.extend(&constraint.WL);
self.WR.extend(&constraint.WR);
self.WO.extend(&constraint.WO);
while self.WCG.len() < constraint.WCG.len() {
self.WCG.push(vec![]);
}
for (sWC, cWC) in self.WCG.iter_mut().zip(&constraint.WCG) {
sWC.extend(cWC);
}
self.WV.extend(&constraint.WV);
self.c += constraint.c;
self
}
}
impl<F: PrimeField> Sub<&LinComb<F>> for LinComb<F> {
type Output = Self;
fn sub(mut self, constraint: &Self) -> Self {
self.highest_a_index = self.highest_a_index.max(constraint.highest_a_index);
self.highest_c_index = self.highest_c_index.max(constraint.highest_c_index);
self.highest_v_index = self.highest_v_index.max(constraint.highest_v_index);
self.WL.extend(constraint.WL.iter().map(|(i, weight)| (*i, -*weight)));
self.WR.extend(constraint.WR.iter().map(|(i, weight)| (*i, -*weight)));
self.WO.extend(constraint.WO.iter().map(|(i, weight)| (*i, -*weight)));
while self.WCG.len() < constraint.WCG.len() {
self.WCG.push(vec![]);
}
for (sWC, cWC) in self.WCG.iter_mut().zip(&constraint.WCG) {
sWC.extend(cWC.iter().map(|(i, weight)| (*i, -*weight)));
}
self.WV.extend(constraint.WV.iter().map(|(i, weight)| (*i, -*weight)));
self.c -= constraint.c;
self
}
}
impl<F: PrimeField> Mul<F> for LinComb<F> {
type Output = Self;
fn mul(mut self, scalar: F) -> Self {
for (_, weight) in self.WL.iter_mut() {
*weight *= scalar;
}
for (_, weight) in self.WR.iter_mut() {
*weight *= scalar;
}
for (_, weight) in self.WO.iter_mut() {
*weight *= scalar;
}
for WC in self.WCG.iter_mut() {
for (_, weight) in WC {
*weight *= scalar;
}
}
for (_, weight) in self.WV.iter_mut() {
*weight *= scalar;
}
self.c *= scalar;
self
}
}
impl<F: PrimeField> LinComb<F> {
/// Create an empty linear combination.
pub fn empty() -> Self {
Self {
highest_a_index: None,
highest_c_index: None,
highest_v_index: None,
WL: vec![],
WR: vec![],
WO: vec![],
WCG: vec![],
WV: vec![],
c: F::ZERO,
}
}
/// Add a new instance of a term to this linear combination.
pub fn term(mut self, scalar: F, constrainable: Variable) -> Self {
match constrainable {
Variable::aL(i) => {
self.highest_a_index = self.highest_a_index.max(Some(i));
self.WL.push((i, scalar))
}
Variable::aR(i) => {
self.highest_a_index = self.highest_a_index.max(Some(i));
self.WR.push((i, scalar))
}
Variable::aO(i) => {
self.highest_a_index = self.highest_a_index.max(Some(i));
self.WO.push((i, scalar))
}
Variable::CG { commitment: i, index: j } => {
self.highest_c_index = self.highest_c_index.max(Some(i));
self.highest_a_index = self.highest_a_index.max(Some(j));
while self.WCG.len() <= i {
self.WCG.push(vec![]);
}
self.WCG[i].push((j, scalar))
}
Variable::V(i) => {
self.highest_v_index = self.highest_v_index.max(Some(i));
self.WV.push((i, scalar));
}
};
self
}
/// Add to the constant c.
pub fn constant(mut self, scalar: F) -> Self {
self.c += scalar;
self
}
/// View the current weights for aL.
pub fn WL(&self) -> &[(usize, F)] {
&self.WL
}
/// View the current weights for aR.
pub fn WR(&self) -> &[(usize, F)] {
&self.WR
}
/// View the current weights for aO.
pub fn WO(&self) -> &[(usize, F)] {
&self.WO
}
/// View the current weights for CG.
pub fn WCG(&self) -> &[Vec<(usize, F)>] {
&self.WCG
}
/// View the current weights for V.
pub fn WV(&self) -> &[(usize, F)] {
&self.WV
}
/// View the current constant.
pub fn c(&self) -> F {
self.c
}
}
pub(crate) fn accumulate_vector<F: PrimeField>(
accumulator: &mut ScalarVector<F>,
values: &[(usize, F)],
weight: F,
) {
for (i, coeff) in values {
accumulator[*i] += *coeff * weight;
}
}

View File

@@ -1,122 +0,0 @@
use core::ops::{Index, IndexMut};
use std_shims::vec::Vec;
use zeroize::Zeroize;
use ciphersuite::Ciphersuite;
#[cfg(test)]
use multiexp::multiexp;
use crate::ScalarVector;
/// A point vector struct with the functionality necessary for Bulletproofs.
///
/// The math operations for this panic upon any invalid operation, such as if vectors of different
/// lengths are added. The full extent of invalidity is not fully defined. Only field access is
/// guaranteed to have a safe, public API.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct PointVector<C: Ciphersuite>(pub(crate) Vec<C::G>);
impl<C: Ciphersuite> Index<usize> for PointVector<C> {
type Output = C::G;
fn index(&self, index: usize) -> &C::G {
&self.0[index]
}
}
impl<C: Ciphersuite> IndexMut<usize> for PointVector<C> {
fn index_mut(&mut self, index: usize) -> &mut C::G {
&mut self.0[index]
}
}
impl<C: Ciphersuite> PointVector<C> {
/*
pub(crate) fn add(&self, point: impl AsRef<C::G>) -> Self {
let mut res = self.clone();
for val in res.0.iter_mut() {
*val += point.as_ref();
}
res
}
pub(crate) fn sub(&self, point: impl AsRef<C::G>) -> Self {
let mut res = self.clone();
for val in res.0.iter_mut() {
*val -= point.as_ref();
}
res
}
pub(crate) fn mul(&self, scalar: impl core::borrow::Borrow<C::F>) -> Self {
let mut res = self.clone();
for val in res.0.iter_mut() {
*val *= scalar.borrow();
}
res
}
pub(crate) fn add_vec(&self, vector: &Self) -> Self {
debug_assert_eq!(self.len(), vector.len());
let mut res = self.clone();
for (i, val) in res.0.iter_mut().enumerate() {
*val += vector.0[i];
}
res
}
pub(crate) fn sub_vec(&self, vector: &Self) -> Self {
debug_assert_eq!(self.len(), vector.len());
let mut res = self.clone();
for (i, val) in res.0.iter_mut().enumerate() {
*val -= vector.0[i];
}
res
}
*/
pub(crate) fn mul_vec(&self, vector: &ScalarVector<C::F>) -> Self {
debug_assert_eq!(self.len(), vector.len());
let mut res = self.clone();
for (i, val) in res.0.iter_mut().enumerate() {
*val *= vector.0[i];
}
res
}
#[cfg(test)]
pub(crate) fn multiexp(&self, vector: &crate::ScalarVector<C::F>) -> C::G {
debug_assert_eq!(self.len(), vector.len());
let mut res = Vec::with_capacity(self.len());
for (point, scalar) in self.0.iter().copied().zip(vector.0.iter().copied()) {
res.push((scalar, point));
}
multiexp(&res)
}
/*
pub(crate) fn multiexp_vartime(&self, vector: &ScalarVector<C::F>) -> C::G {
debug_assert_eq!(self.len(), vector.len());
let mut res = Vec::with_capacity(self.len());
for (point, scalar) in self.0.iter().copied().zip(vector.0.iter().copied()) {
res.push((scalar, point));
}
multiexp_vartime(&res)
}
pub(crate) fn sum(&self) -> C::G {
self.0.iter().sum()
}
*/
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(mut self) -> (Self, Self) {
assert!(self.len() > 1);
let r = self.0.split_off(self.0.len() / 2);
debug_assert_eq!(self.len(), r.len());
(self, PointVector(r))
}
}

View File

@@ -1,147 +0,0 @@
use core::ops::{Index, IndexMut, Add, Sub, Mul};
use std_shims::{vec, vec::Vec};
use zeroize::Zeroize;
use ciphersuite::group::ff::PrimeField;
/// A scalar vector struct with the functionality necessary for Bulletproofs.
///
/// The math operations for this panic upon any invalid operation, such as if vectors of different
/// lengths are added. The full extent of invalidity is not fully defined. Only `new`, `len`,
/// and field access is guaranteed to have a safe, public API.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct ScalarVector<F: PrimeField>(pub(crate) Vec<F>);
impl<F: PrimeField + Zeroize> Zeroize for ScalarVector<F> {
fn zeroize(&mut self) {
self.0.zeroize()
}
}
impl<F: PrimeField> Index<usize> for ScalarVector<F> {
type Output = F;
fn index(&self, index: usize) -> &F {
&self.0[index]
}
}
impl<F: PrimeField> IndexMut<usize> for ScalarVector<F> {
fn index_mut(&mut self, index: usize) -> &mut F {
&mut self.0[index]
}
}
impl<F: PrimeField> Add<F> for ScalarVector<F> {
type Output = ScalarVector<F>;
fn add(mut self, scalar: F) -> Self {
for s in &mut self.0 {
*s += scalar;
}
self
}
}
impl<F: PrimeField> Sub<F> for ScalarVector<F> {
type Output = ScalarVector<F>;
fn sub(mut self, scalar: F) -> Self {
for s in &mut self.0 {
*s -= scalar;
}
self
}
}
impl<F: PrimeField> Mul<F> for ScalarVector<F> {
type Output = ScalarVector<F>;
fn mul(mut self, scalar: F) -> Self {
for s in &mut self.0 {
*s *= scalar;
}
self
}
}
impl<F: PrimeField> Add<&ScalarVector<F>> for ScalarVector<F> {
type Output = ScalarVector<F>;
fn add(mut self, other: &ScalarVector<F>) -> Self {
assert_eq!(self.len(), other.len());
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
*s += o;
}
self
}
}
impl<F: PrimeField> Sub<&ScalarVector<F>> for ScalarVector<F> {
type Output = ScalarVector<F>;
fn sub(mut self, other: &ScalarVector<F>) -> Self {
assert_eq!(self.len(), other.len());
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
*s -= o;
}
self
}
}
impl<F: PrimeField> Mul<&ScalarVector<F>> for ScalarVector<F> {
type Output = ScalarVector<F>;
fn mul(mut self, other: &ScalarVector<F>) -> Self {
assert_eq!(self.len(), other.len());
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
*s *= o;
}
self
}
}
impl<F: PrimeField> ScalarVector<F> {
/// Create a new scalar vector, initialized with `len` zero scalars.
pub fn new(len: usize) -> Self {
ScalarVector(vec![F::ZERO; len])
}
pub(crate) fn powers(x: F, len: usize) -> Self {
assert!(len != 0);
let mut res = Vec::with_capacity(len);
res.push(F::ONE);
res.push(x);
for i in 2 .. len {
res.push(res[i - 1] * x);
}
res.truncate(len);
ScalarVector(res)
}
/// The length of this scalar vector.
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.0.len()
}
/*
pub(crate) fn sum(mut self) -> F {
self.0.drain(..).sum()
}
*/
pub(crate) fn inner_product<'a, V: Iterator<Item = &'a F>>(&self, vector: V) -> F {
let mut count = 0;
let mut res = F::ZERO;
for (a, b) in self.0.iter().zip(vector) {
res += *a * b;
count += 1;
}
debug_assert_eq!(self.len(), count);
res
}
pub(crate) fn split(mut self) -> (Self, Self) {
assert!(self.len() > 1);
let r = self.0.split_off(self.0.len() / 2);
debug_assert_eq!(self.len(), r.len());
(self, ScalarVector(r))
}
}
impl<F: PrimeField> From<Vec<F>> for ScalarVector<F> {
fn from(vec: Vec<F>) -> Self {
Self(vec)
}
}

View File

@@ -1,222 +0,0 @@
use rand_core::{RngCore, OsRng};
use ciphersuite::{group::ff::Field, Ciphersuite, Ristretto};
use crate::{
ScalarVector, PedersenCommitment, PedersenVectorCommitment, Generators,
transcript::*,
arithmetic_circuit_proof::{
Variable, LinComb, ArithmeticCircuitStatement, ArithmeticCircuitWitness,
},
tests::generators,
};
#[test]
fn test_zero_arithmetic_circuit() {
let generators = generators(1);
let value = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
let gamma = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
let commitment = (generators.g() * value) + (generators.h() * gamma);
let V = vec![commitment];
let aL = ScalarVector::<<Ristretto as Ciphersuite>::F>(vec![<Ristretto as Ciphersuite>::F::ZERO]);
let aR = aL.clone();
let mut transcript = Transcript::new([0; 32]);
let commitments = transcript.write_commitments(vec![], V);
let statement = ArithmeticCircuitStatement::<Ristretto>::new(
generators.reduce(1).unwrap(),
vec![],
commitments.clone(),
)
.unwrap();
let witness = ArithmeticCircuitWitness::<Ristretto>::new(
aL,
aR,
vec![],
vec![PedersenCommitment { value, mask: gamma }],
)
.unwrap();
let proof = {
statement.clone().prove(&mut OsRng, &mut transcript, witness).unwrap();
transcript.complete()
};
let mut verifier = Generators::batch_verifier();
let mut transcript = VerifierTranscript::new([0; 32], &proof);
let verifier_commmitments = transcript.read_commitments(0, 1);
assert_eq!(commitments, verifier_commmitments.unwrap());
statement.verify(&mut OsRng, &mut verifier, &mut transcript).unwrap();
assert!(generators.verify(verifier));
}
#[test]
fn test_vector_commitment_arithmetic_circuit() {
let generators = generators(2);
let reduced = generators.reduce(2).unwrap();
let v1 = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
let v2 = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
let gamma = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
let commitment = (reduced.g_bold(0) * v1) + (reduced.g_bold(1) * v2) + (generators.h() * gamma);
let V = vec![];
let C = vec![commitment];
let zero_vec =
|| ScalarVector::<<Ristretto as Ciphersuite>::F>(vec![<Ristretto as Ciphersuite>::F::ZERO]);
let aL = zero_vec();
let aR = zero_vec();
let mut transcript = Transcript::new([0; 32]);
let commitments = transcript.write_commitments(C, V);
let statement = ArithmeticCircuitStatement::<Ristretto>::new(
reduced,
vec![LinComb::empty()
.term(<Ristretto as Ciphersuite>::F::ONE, Variable::CG { commitment: 0, index: 0 })
.term(<Ristretto as Ciphersuite>::F::from(2u64), Variable::CG { commitment: 0, index: 1 })
.constant(-(v1 + (v2 + v2)))],
commitments.clone(),
)
.unwrap();
let witness = ArithmeticCircuitWitness::<Ristretto>::new(
aL,
aR,
vec![PedersenVectorCommitment { g_values: ScalarVector(vec![v1, v2]), mask: gamma }],
vec![],
)
.unwrap();
let proof = {
statement.clone().prove(&mut OsRng, &mut transcript, witness).unwrap();
transcript.complete()
};
let mut verifier = Generators::batch_verifier();
let mut transcript = VerifierTranscript::new([0; 32], &proof);
let verifier_commmitments = transcript.read_commitments(1, 0);
assert_eq!(commitments, verifier_commmitments.unwrap());
statement.verify(&mut OsRng, &mut verifier, &mut transcript).unwrap();
assert!(generators.verify(verifier));
}
#[test]
fn fuzz_test_arithmetic_circuit() {
let generators = generators(32);
for i in 0 .. 100 {
dbg!(i);
// Create aL, aR, aO
let mut aL = ScalarVector(vec![]);
let mut aR = ScalarVector(vec![]);
while aL.len() < ((OsRng.next_u64() % 8) + 1).try_into().unwrap() {
aL.0.push(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
}
while aR.len() < aL.len() {
aR.0.push(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
}
let aO = aL.clone() * &aR;
// Create C
let mut C = vec![];
while C.len() < (OsRng.next_u64() % 16).try_into().unwrap() {
let mut g_values = ScalarVector(vec![]);
while g_values.0.len() < ((OsRng.next_u64() % 8) + 1).try_into().unwrap() {
g_values.0.push(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
}
C.push(PedersenVectorCommitment {
g_values,
mask: <Ristretto as Ciphersuite>::F::random(&mut OsRng),
});
}
// Create V
let mut V = vec![];
while V.len() < (OsRng.next_u64() % 4).try_into().unwrap() {
V.push(PedersenCommitment {
value: <Ristretto as Ciphersuite>::F::random(&mut OsRng),
mask: <Ristretto as Ciphersuite>::F::random(&mut OsRng),
});
}
// Generate random constraints
let mut constraints = vec![];
for _ in 0 .. (OsRng.next_u64() % 8).try_into().unwrap() {
let mut eval = <Ristretto as Ciphersuite>::F::ZERO;
let mut constraint = LinComb::empty();
for _ in 0 .. (OsRng.next_u64() % 4) {
let index = usize::try_from(OsRng.next_u64()).unwrap() % aL.len();
let weight = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
constraint = constraint.term(weight, Variable::aL(index));
eval += weight * aL[index];
}
for _ in 0 .. (OsRng.next_u64() % 4) {
let index = usize::try_from(OsRng.next_u64()).unwrap() % aR.len();
let weight = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
constraint = constraint.term(weight, Variable::aR(index));
eval += weight * aR[index];
}
for _ in 0 .. (OsRng.next_u64() % 4) {
let index = usize::try_from(OsRng.next_u64()).unwrap() % aO.len();
let weight = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
constraint = constraint.term(weight, Variable::aO(index));
eval += weight * aO[index];
}
for (commitment, C) in C.iter().enumerate() {
for _ in 0 .. (OsRng.next_u64() % 4) {
let index = usize::try_from(OsRng.next_u64()).unwrap() % C.g_values.len();
let weight = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
constraint = constraint.term(weight, Variable::CG { commitment, index });
eval += weight * C.g_values[index];
}
}
if !V.is_empty() {
for _ in 0 .. (OsRng.next_u64() % 4) {
let index = usize::try_from(OsRng.next_u64()).unwrap() % V.len();
let weight = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
constraint = constraint.term(weight, Variable::V(index));
eval += weight * V[index].value;
}
}
constraint = constraint.constant(-eval);
constraints.push(constraint);
}
let mut transcript = Transcript::new([0; 32]);
let commitments = transcript.write_commitments(
C.iter().map(|C| C.commit(generators.g_bold_slice(), generators.h()).unwrap()).collect(),
V.iter().map(|V| V.commit(generators.g(), generators.h())).collect(),
);
let statement = ArithmeticCircuitStatement::<Ristretto>::new(
generators.reduce(16).unwrap(),
constraints,
commitments.clone(),
)
.unwrap();
let witness = ArithmeticCircuitWitness::<Ristretto>::new(aL, aR, C.clone(), V.clone()).unwrap();
let proof = {
statement.clone().prove(&mut OsRng, &mut transcript, witness).unwrap();
transcript.complete()
};
let mut verifier = Generators::batch_verifier();
let mut transcript = VerifierTranscript::new([0; 32], &proof);
let verifier_commmitments = transcript.read_commitments(C.len(), V.len());
assert_eq!(commitments, verifier_commmitments.unwrap());
statement.verify(&mut OsRng, &mut verifier, &mut transcript).unwrap();
assert!(generators.verify(verifier));
}
}

View File

@@ -1,113 +0,0 @@
// The inner product relation is P = sum(g_bold * a, h_bold * b, g * (a * b))
use rand_core::OsRng;
use ciphersuite::{
group::{ff::Field, Group},
Ciphersuite, Ristretto,
};
use crate::{
ScalarVector, PointVector, Generators,
transcript::*,
inner_product::{P, IpStatement, IpWitness},
tests::generators,
};
#[test]
fn test_zero_inner_product() {
let P = <Ristretto as Ciphersuite>::G::identity();
let generators = generators::<Ristretto>(1);
let reduced = generators.reduce(1).unwrap();
let witness = IpWitness::<Ristretto>::new(
ScalarVector::<<Ristretto as Ciphersuite>::F>::new(1),
ScalarVector::<<Ristretto as Ciphersuite>::F>::new(1),
)
.unwrap();
let proof = {
let mut transcript = Transcript::new([0; 32]);
IpStatement::<Ristretto>::new(
reduced,
ScalarVector(vec![<Ristretto as Ciphersuite>::F::ONE; 1]),
<Ristretto as Ciphersuite>::F::ONE,
P::Prover(P),
)
.unwrap()
.clone()
.prove(&mut transcript, witness)
.unwrap();
transcript.complete()
};
let mut verifier = Generators::batch_verifier();
IpStatement::<Ristretto>::new(
reduced,
ScalarVector(vec![<Ristretto as Ciphersuite>::F::ONE; 1]),
<Ristretto as Ciphersuite>::F::ONE,
P::Verifier { verifier_weight: <Ristretto as Ciphersuite>::F::ONE },
)
.unwrap()
.verify(&mut verifier, &mut VerifierTranscript::new([0; 32], &proof))
.unwrap();
assert!(generators.verify(verifier));
}
#[test]
fn test_inner_product() {
// P = sum(g_bold * a, h_bold * b)
let generators = generators::<Ristretto>(32);
let mut verifier = Generators::batch_verifier();
for i in [1, 2, 4, 8, 16, 32] {
let generators = generators.reduce(i).unwrap();
let g = generators.g();
assert_eq!(generators.len(), i);
let mut g_bold = vec![];
let mut h_bold = vec![];
for i in 0 .. i {
g_bold.push(generators.g_bold(i));
h_bold.push(generators.h_bold(i));
}
let g_bold = PointVector::<Ristretto>(g_bold);
let h_bold = PointVector::<Ristretto>(h_bold);
let mut a = ScalarVector::<<Ristretto as Ciphersuite>::F>::new(i);
let mut b = ScalarVector::<<Ristretto as Ciphersuite>::F>::new(i);
for i in 0 .. i {
a[i] = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
b[i] = <Ristretto as Ciphersuite>::F::random(&mut OsRng);
}
let P = g_bold.multiexp(&a) + h_bold.multiexp(&b) + (g * a.inner_product(b.0.iter()));
let witness = IpWitness::<Ristretto>::new(a, b).unwrap();
let proof = {
let mut transcript = Transcript::new([0; 32]);
IpStatement::<Ristretto>::new(
generators,
ScalarVector(vec![<Ristretto as Ciphersuite>::F::ONE; i]),
<Ristretto as Ciphersuite>::F::ONE,
P::Prover(P),
)
.unwrap()
.prove(&mut transcript, witness)
.unwrap();
transcript.complete()
};
verifier.additional.push((<Ristretto as Ciphersuite>::F::ONE, P));
IpStatement::<Ristretto>::new(
generators,
ScalarVector(vec![<Ristretto as Ciphersuite>::F::ONE; i]),
<Ristretto as Ciphersuite>::F::ONE,
P::Verifier { verifier_weight: <Ristretto as Ciphersuite>::F::ONE },
)
.unwrap()
.verify(&mut verifier, &mut VerifierTranscript::new([0; 32], &proof))
.unwrap();
}
assert!(generators.verify(verifier));
}

View File

@@ -1,27 +0,0 @@
use rand_core::OsRng;
use ciphersuite::{group::Group, Ciphersuite};
use crate::{Generators, padded_pow_of_2};
#[cfg(test)]
mod inner_product;
#[cfg(test)]
mod arithmetic_circuit_proof;
/// Generate a set of generators for testing purposes.
///
/// This should not be considered secure.
pub fn generators<C: Ciphersuite>(n: usize) -> Generators<C> {
assert_eq!(padded_pow_of_2(n), n, "amount of generators wasn't a power of 2");
let gens = || {
let mut res = Vec::with_capacity(n);
for _ in 0 .. n {
res.push(C::G::random(&mut OsRng));
}
res
};
Generators::new(C::G::random(&mut OsRng), C::G::random(&mut OsRng), gens(), gens()).unwrap()
}

View File

@@ -1,211 +0,0 @@
use std_shims::{vec::Vec, io};
use blake2::{Digest, Blake2b512};
use ciphersuite::{
group::{
ff::{Field, PrimeField},
GroupEncoding,
},
Ciphersuite,
};
use crate::PointVector;
const SCALAR: u8 = 0;
const POINT: u8 = 1;
const CHALLENGE: u8 = 2;
fn challenge<C: Ciphersuite>(digest: &mut Blake2b512) -> C::F {
digest.update([CHALLENGE]);
let chl = digest.clone().finalize().into();
let res = C::reduce_512(chl);
// Negligible probability
if bool::from(res.is_zero()) {
panic!("zero challenge");
}
res
}
/// Commitments written to/read from a transcript.
// We use a dedicated type for this to coerce the caller into transcripting the commitments as
// expected.
#[cfg_attr(test, derive(Clone, PartialEq, Debug))]
pub struct Commitments<C: Ciphersuite> {
pub(crate) C: PointVector<C>,
pub(crate) V: PointVector<C>,
}
impl<C: Ciphersuite> Commitments<C> {
/// The vector commitments.
pub fn C(&self) -> &[C::G] {
&self.C.0
}
/// The non-vector commitments.
pub fn V(&self) -> &[C::G] {
&self.V.0
}
}
/// A transcript for proving proofs.
pub struct Transcript {
digest: Blake2b512,
transcript: Vec<u8>,
}
/*
We define our proofs as Vec<u8> and derive our transcripts from the values we deserialize from
them. This format assumes the order of the values read, their size, and their quantity are
constant to the context.
*/
impl Transcript {
/// Create a new transcript off some context.
pub fn new(context: [u8; 32]) -> Self {
let mut digest = Blake2b512::new();
digest.update(context);
Self { digest, transcript: Vec::with_capacity(1024) }
}
/// Push a scalar onto the transcript.
///
/// The order and layout of this must be constant to the context.
pub fn push_scalar(&mut self, scalar: impl PrimeField) {
self.digest.update([SCALAR]);
let bytes = scalar.to_repr();
self.digest.update(bytes);
self.transcript.extend(bytes.as_ref());
}
/// Push a point onto the transcript.
///
/// The order and layout of this must be constant to the context.
pub fn push_point(&mut self, point: impl GroupEncoding) {
self.digest.update([POINT]);
let bytes = point.to_bytes();
self.digest.update(bytes);
self.transcript.extend(bytes.as_ref());
}
/// Write the Pedersen (vector) commitments to this transcript.
pub fn write_commitments<C: Ciphersuite>(
&mut self,
C: Vec<C::G>,
V: Vec<C::G>,
) -> Commitments<C> {
self.digest.update(u32::try_from(C.len()).unwrap().to_le_bytes());
for C in &C {
self.push_point(*C);
}
self.digest.update(u32::try_from(V.len()).unwrap().to_le_bytes());
for V in &V {
self.push_point(*V);
}
Commitments { C: PointVector(C), V: PointVector(V) }
}
/// Sample a challenge.
pub fn challenge<C: Ciphersuite>(&mut self) -> C::F {
challenge::<C>(&mut self.digest)
}
/// Sample a challenge as a byte array.
pub fn challenge_bytes(&mut self) -> [u8; 64] {
self.digest.update([CHALLENGE]);
self.digest.clone().finalize().into()
}
/// Complete a transcript, yielding the fully serialized proof.
pub fn complete(self) -> Vec<u8> {
self.transcript
}
}
/// A transcript for verifying proofs.
pub struct VerifierTranscript<'a> {
digest: Blake2b512,
transcript: &'a [u8],
}
impl<'a> VerifierTranscript<'a> {
/// Create a new transcript to verify a proof with.
pub fn new(context: [u8; 32], proof: &'a [u8]) -> Self {
let mut digest = Blake2b512::new();
digest.update(context);
Self { digest, transcript: proof }
}
/// Read a scalar from the transcript.
///
/// The order and layout of this must be constant to the context.
pub fn read_scalar<C: Ciphersuite>(&mut self) -> io::Result<C::F> {
// Read the scalar onto the transcript using the serialization present in the transcript
self.digest.update([SCALAR]);
let scalar_len = <C::F as PrimeField>::Repr::default().as_ref().len();
if self.transcript.len() < scalar_len {
Err(io::Error::new(io::ErrorKind::Other, "not enough bytes to read_scalar"))?;
}
self.digest.update(&self.transcript[.. scalar_len]);
// Read the actual scalar, where `read_F` ensures its canonically serialized
let scalar = C::read_F(&mut self.transcript)?;
Ok(scalar)
}
/// Read a point from the transcript.
///
/// The order and layout of this must be constant to the context.
pub fn read_point<C: Ciphersuite>(&mut self) -> io::Result<C::G> {
// Read the point onto the transcript using the serialization present in the transcript
self.digest.update([POINT]);
let point_len = <C::G as GroupEncoding>::Repr::default().as_ref().len();
if self.transcript.len() < point_len {
Err(io::Error::new(io::ErrorKind::Other, "not enough bytes to read_point"))?;
}
self.digest.update(&self.transcript[.. point_len]);
// Read the actual point, where `read_G` ensures its canonically serialized
let point = C::read_G(&mut self.transcript)?;
Ok(point)
}
/// Read the Pedersen (Vector) Commitments from the transcript.
///
/// The lengths of the vectors are not transcripted.
#[allow(clippy::type_complexity)]
pub fn read_commitments<C: Ciphersuite>(
&mut self,
C: usize,
V: usize,
) -> io::Result<Commitments<C>> {
self.digest.update(u32::try_from(C).unwrap().to_le_bytes());
let mut C_vec = Vec::with_capacity(C);
for _ in 0 .. C {
C_vec.push(self.read_point::<C>()?);
}
self.digest.update(u32::try_from(V).unwrap().to_le_bytes());
let mut V_vec = Vec::with_capacity(V);
for _ in 0 .. V {
V_vec.push(self.read_point::<C>()?);
}
Ok(Commitments { C: PointVector(C_vec), V: PointVector(V_vec) })
}
/// Sample a challenge.
pub fn challenge<C: Ciphersuite>(&mut self) -> C::F {
challenge::<C>(&mut self.digest)
}
/// Sample a challenge as a byte array.
pub fn challenge_bytes(&mut self) -> [u8; 64] {
self.digest.update([CHALLENGE]);
self.digest.clone().finalize().into()
}
/// Complete the transcript transcript, yielding what remains.
pub fn complete(self) -> &'a [u8] {
self.transcript
}
}

View File

@@ -31,8 +31,8 @@ k256 = { version = "0.13", default-features = false, features = ["arithmetic"] }
blake2 = { version = "0.10", default-features = false }
ciphersuite = { path = "../../ciphersuite", version = "0.4", default-features = false }
ec-divisors = { path = "../divisors", default-features = false }
generalized-bulletproofs-ec-gadgets = { path = "../ec-gadgets", default-features = false }
ec-divisors = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e", default-features = false }
generalized-bulletproofs-ec-gadgets = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e", default-features = false }
[dev-dependencies]
hex = "0.4"

View File

@@ -2,6 +2,8 @@
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
#[allow(unused_imports)]
use std_shims::prelude::*;
#[cfg(any(feature = "alloc", feature = "std"))]
use std_shims::io::{self, Read};
@@ -37,10 +39,6 @@ impl ciphersuite::Ciphersuite for Secq256k1 {
Point::generator()
}
fn reduce_512(scalar: [u8; 64]) -> Self::F {
Scalar::wide_reduce(scalar)
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
use blake2::Digest;
Scalar::wide_reduce(Self::H::digest([dst, data].concat()).as_slice().try_into().unwrap())
@@ -57,7 +55,7 @@ impl ciphersuite::Ciphersuite for Secq256k1 {
reader.read_exact(encoding.as_mut())?;
let point = Option::<Self::G>::from(Self::G::from_bytes(&encoding))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid point"))?;
.ok_or_else(|| io::Error::other("invalid point"))?;
Ok(point)
}
}

View File

@@ -376,6 +376,15 @@ impl PrimeGroup for Point {}
impl ec_divisors::DivisorCurve for Point {
type FieldElement = FieldElement;
type XyPoint = ec_divisors::Projective<Self>;
fn interpolator_for_scalar_mul() -> &'static ec_divisors::Interpolator<Self::FieldElement> {
static PRECOMPUTE: std_shims::sync::LazyLock<ec_divisors::Interpolator<FieldElement>> =
std_shims::sync::LazyLock::new(|| {
ec_divisors::Interpolator::new(usize::try_from(130).unwrap())
});
&PRECOMPUTE
}
fn a() -> Self::FieldElement {
FieldElement::from(0u64)