Merge branch 'develop' into next

This resolves the conflicts and gets the workspace `Cargo.toml`s to not be
invalid. It doesn't actually get clippy to pass again yet.

Does move `crypto/dkg/src/evrf` into a new `crypto/dkg/evrf` crate (which does
not yet compile).
This commit is contained in:
Luke Parker
2025-08-23 15:04:39 -04:00
319 changed files with 4016 additions and 26990 deletions

View File

@@ -0,0 +1,68 @@
[package]
name = "dkg-evrf"
version = "0.1.0"
description = "Distributed key generation over ff/group"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/dkg/evrf"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["dkg", "multisig", "threshold", "ff", "group"]
edition = "2021"
rust-version = "1.81"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[lints]
workspace = true
[dependencies]
thiserror = { version = "2", default-features = false }
rand_core = { version = "0.6", default-features = false }
zeroize = { version = "^1.5", default-features = false, features = ["zeroize_derive"] }
transcript = { package = "flexible-transcript", path = "../../transcript", version = "^0.3.2", default-features = false, features = ["recommended"] }
ciphersuite = { path = "../../ciphersuite", version = "^0.4.1", default-features = false }
multiexp = { path = "../../multiexp", version = "0.4", default-features = false }
generic-array = { version = "1", default-features = false, features = ["alloc"] }
blake2 = { version = "0.10", default-features = false, features = ["std"] }
rand_chacha = { version = "0.3", default-features = false, features = ["std"] }
generalized-bulletproofs = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e", default-features = false }
ec-divisors = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e", default-features = false }
generalized-bulletproofs-circuit-abstraction = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e" }
generalized-bulletproofs-ec-gadgets = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e" }
dkg = { path = ".." }
secq256k1 = { path = "../../evrf/secq256k1", optional = true }
embedwards25519 = { path = "../../evrf/embedwards25519", optional = true }
[dev-dependencies]
rand_core = { version = "0.6", default-features = false, features = ["getrandom"] }
rand = { version = "0.8", default-features = false, features = ["std"] }
ciphersuite = { path = "../../ciphersuite", default-features = false, features = ["std"] }
dalek-ff-group = { path = "../../dalek-ff-group", default-features = false, features = ["std"] }
generalized-bulletproofs = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e", features = ["tests"] }
ec-divisors = { git = "https://github.com/kayabaNerve/monero-oxide", rev = "b6dd1a9ff7ac6b96eb7cb488a4501fd1f6f2dd1e" }
[features]
std = [
"thiserror/std",
"rand_core/std",
"transcript/std",
"ciphersuite/std",
"multiexp/std",
"multiexp/batch",
]
secp256k1 = ["secq256k1"]
ed25519 = ["embedwards25519"]
ristretto = ["embedwards25519"]
tests = ["rand_core/getrandom"]
default = ["std"]

585
crypto/dkg/evrf/src/lib.rs Normal file
View File

@@ -0,0 +1,585 @@
/*
We implement a DKG using an eVRF, as detailed in the eVRF paper. For the eVRF itself, we do not
use a Paillier-based construction, nor the detailed construction premised on a Bulletproof.
For reference, the detailed construction premised on a Bulletproof involves two curves, notated
here as `C` and `E`, where the scalar field of `C` is the field of `E`. Accordingly, Bulletproofs
over `C` can efficiently perform group operations of points of curve `E`. Each participant has a
private point (`P_i`) on curve `E` committed to over curve `C`. The eVRF selects a pair of
scalars `a, b`, where the participant proves in-Bulletproof the points `A_i, B_i` are
`a * P_i, b * P_i`. The eVRF proceeds to commit to `A_i.x + B_i.x` in a Pedersen Commitment.
Our eVRF uses
[Generalized Bulletproofs](
https://repo.getmonero.org/monero-project/ccs-proposals
/uploads/a9baa50c38c6312efc0fea5c6a188bb9/gbp.pdf
).
This allows us much larger witnesses without growing the reference string, and enables us to
efficiently sample challenges off in-circuit variables (via placing the variables in a vector
commitment, then challenging from a transcript of the commitments). We proceed to use
[elliptic curve divisors](
https://repo.getmonero.org/-/project/54/
uploads/eb1bf5b4d4855a3480c38abf895bd8e8/Veridise_Divisor_Proofs.pdf
)
(which require the ability to sample a challenge off in-circuit variables) to prove discrete
logarithms efficiently.
This is done via having a private scalar (`p_i`) on curve `E`, not a private point, and
publishing the public key for it (`P_i = p_i * G`, where `G` is a generator of `E`). The eVRF
samples two points with unknown discrete logarithms `A, B`, and the circuit proves a Pedersen
Commitment commits to `(p_i * A).x + (p_i * B).x`.
With the eVRF established, we now detail our other novel aspect. The eVRF paper expects secret
shares to be sent to the other parties yet does not detail a precise way to do so. If we
encrypted the secret shares with some stream cipher, each recipient would have to attest validity
or accuse the sender of impropriety. We want an encryption scheme where anyone can verify the
secret shares were encrypted properly, without additional info, efficiently.
Please note from the published commitments, it's possible to calculcate a commitment to the
secret share each party should receive (`V_i`).
We have the sender sample two scalars per recipient, denoted `x_i, y_i` (where `i` is the
recipient index). They perform the eVRF to prove a Pedersen Commitment commits to
`z_i = (x_i * P_i).x + (y_i * P_i).x` and `x_i, y_i` are the discrete logarithms of `X_i, Y_i`
over `G`. They then publish the encrypted share `s_i + z_i` and `X_i, Y_i`.
The recipient is able to decrypt the share via calculating
`s_i - ((p_i * X_i).x + (p_i * Y_i).x)`.
To verify the secret share, we have the `F` terms of the Pedersen Commitments revealed (where
`F, H` are generators of `C`, `F` is used for binding and `H` for blinding). This already needs
to be done for the eVRF outputs used within the DKG, in order to obtain thecommitments to the
coefficients. When we have the commitment `Z_i = ((p_i * A).x + (p_i * B).x) * F`, we simply
check `s_i * F = Z_i + V_i`.
In order to open the Pedersen Commitments to their `F` terms, we transcript the commitments and
the claimed openings, then assign random weights to each pair of `(commitment, opening). The
prover proves knowledge of the discrete logarithm of the sum weighted commitments, minus the sum
sum weighted openings, over `H`.
The benefit to this construction is that given an broadcast channel which is reliable and
ordered, only `t` messages must be broadcast from honest parties in order to create a `t`-of-`n`
multisig. If the encrypted secret shares were not verifiable, one would need at least `t + n`
messages to ensure every participant has a correct dealing and can participate in future
reconstructions of the secret. This would also require all `n` parties be online, whereas this is
robust to threshold `t`.
*/
use core::ops::Deref;
use std::{
io::{self, Read, Write},
collections::{HashSet, HashMap},
};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, Zeroizing};
use blake2::{Digest, Blake2s256};
use ciphersuite::{
group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
},
Ciphersuite,
};
use multiexp::multiexp_vartime;
use generalized_bulletproofs::{Generators, arithmetic_circuit_proof::*};
use ec_divisors::DivisorCurve;
use dkg::{Participant, ThresholdParams, Interpolation, ThresholdKeys};
pub(crate) mod proof;
use proof::*;
pub use proof::{EvrfCurve, EvrfGenerators};
/// Participation in the DKG.
///
/// `Participation` is meant to be broadcast to all other participants over an authenticated,
/// reliable broadcast channel.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Participation<C: Ciphersuite> {
proof: Vec<u8>,
encrypted_secret_shares: HashMap<Participant, C::F>,
}
impl<C: Ciphersuite> Participation<C> {
pub fn read<R: Read>(reader: &mut R, n: u16) -> io::Result<Self> {
// TODO: Replace `len` with some calculation deterministic to the params
let mut len = [0; 4];
reader.read_exact(&mut len)?;
let len = usize::try_from(u32::from_le_bytes(len)).expect("<32-bit platform?");
// Don't allocate a buffer for the claimed length
// Read chunks until we reach the claimed length
// This means if we were told to read GB, we must actually be sent GB before allocating as such
const CHUNK_SIZE: usize = 1024;
let mut proof = Vec::with_capacity(len.min(CHUNK_SIZE));
while proof.len() < len {
let next_chunk = (len - proof.len()).min(CHUNK_SIZE);
let old_proof_len = proof.len();
proof.resize(old_proof_len + next_chunk, 0);
reader.read_exact(&mut proof[old_proof_len ..])?;
}
let mut encrypted_secret_shares = HashMap::with_capacity(usize::from(n));
for i in (1 ..= n).map(Participant) {
encrypted_secret_shares.insert(i, C::read_F(reader)?);
}
Ok(Self { proof, encrypted_secret_shares })
}
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&u32::try_from(self.proof.len()).unwrap().to_le_bytes())?;
writer.write_all(&self.proof)?;
for i in (1 ..= u16::try_from(self.encrypted_secret_shares.len())
.expect("writing a Participation which has a n > u16::MAX"))
.map(Participant)
{
writer.write_all(self.encrypted_secret_shares[&i].to_repr().as_ref())?;
}
Ok(())
}
}
fn polynomial<F: PrimeField + Zeroize>(
coefficients: &[Zeroizing<F>],
l: Participant,
) -> Zeroizing<F> {
let l = F::from(u64::from(u16::from(l)));
// This should never be reached since Participant is explicitly non-zero
assert!(l != F::ZERO, "zero participant passed to polynomial");
let mut share = Zeroizing::new(F::ZERO);
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
*share += coefficient.deref();
if idx != (coefficients.len() - 1) {
*share *= l;
}
}
share
}
#[allow(clippy::type_complexity)]
fn share_verification_statements<C: Ciphersuite>(
rng: &mut (impl RngCore + CryptoRng),
commitments: &[C::G],
n: u16,
encryption_commitments: &[C::G],
encrypted_secret_shares: &HashMap<Participant, C::F>,
) -> (C::F, Vec<(C::F, C::G)>) {
debug_assert_eq!(usize::from(n), encryption_commitments.len());
debug_assert_eq!(usize::from(n), encrypted_secret_shares.len());
let mut g_scalar = C::F::ZERO;
let mut pairs = Vec::with_capacity(commitments.len() + encryption_commitments.len());
for commitment in commitments {
pairs.push((C::F::ZERO, *commitment));
}
let mut weight;
for (i, enc_share) in encrypted_secret_shares {
let enc_commitment = encryption_commitments[usize::from(u16::from(*i)) - 1];
weight = C::F::random(&mut *rng);
// s_i F
g_scalar += weight * enc_share;
// - Z_i
let weight = -weight;
pairs.push((weight, enc_commitment));
// - V_i
{
let i = C::F::from(u64::from(u16::from(*i)));
// The first `commitments.len()` pairs are for the commitments
(0 .. commitments.len()).fold(weight, |exp, j| {
pairs[j].0 += exp;
exp * i
});
}
}
(g_scalar, pairs)
}
/// Errors from the eVRF DKG.
#[derive(Clone, PartialEq, Eq, Debug, thiserror::Error)]
pub enum EvrfError {
#[error("n, the amount of participants, exceeded a u16")]
TooManyParticipants,
#[error("the threshold t wasn't in range 1 <= t <= n")]
InvalidThreshold,
#[error("a public key was the identity point")]
PublicKeyWasIdentity,
#[error("participating in a DKG we aren't a participant in")]
NotAParticipant,
#[error("a participant with an unrecognized ID participated")]
NonExistentParticipant,
#[error("the passed in generators did not have enough generators for this DKG")]
NotEnoughGenerators,
}
/// The result of calling EvrfDkg::verify.
pub enum VerifyResult<C: EvrfCurve> {
Valid(EvrfDkg<C>),
Invalid(Vec<Participant>),
NotEnoughParticipants,
}
/// Struct to perform/verify the DKG with.
#[derive(Debug)]
pub struct EvrfDkg<C: EvrfCurve> {
t: u16,
n: u16,
evrf_public_keys: Vec<<C::EmbeddedCurve as Ciphersuite>::G>,
group_key: C::G,
verification_shares: HashMap<Participant, C::G>,
#[allow(clippy::type_complexity)]
encrypted_secret_shares:
HashMap<Participant, HashMap<Participant, ([<C::EmbeddedCurve as Ciphersuite>::G; 2], C::F)>>,
}
impl<C: EvrfCurve> EvrfDkg<C> {
// Form the initial transcript for the proofs.
fn initial_transcript(
invocation: [u8; 32],
evrf_public_keys: &[<C::EmbeddedCurve as Ciphersuite>::G],
t: u16,
) -> [u8; 32] {
let mut transcript = Blake2s256::new();
transcript.update(invocation);
for key in evrf_public_keys {
transcript.update(key.to_bytes().as_ref());
}
transcript.update(t.to_le_bytes());
transcript.finalize().into()
}
/// Participate in performing the DKG for the specified parameters.
///
/// The context MUST be unique across invocations. Reuse of context will lead to sharing
/// prior-shared secrets.
///
/// Public keys are not allowed to be the identity point. This will error if any are.
pub fn participate(
rng: &mut (impl RngCore + CryptoRng),
generators: &EvrfGenerators<C>,
context: [u8; 32],
t: u16,
evrf_public_keys: &[<C::EmbeddedCurve as Ciphersuite>::G],
evrf_private_key: &Zeroizing<<C::EmbeddedCurve as Ciphersuite>::F>,
) -> Result<Participation<C>, EvrfError> {
let Ok(n) = u16::try_from(evrf_public_keys.len()) else { Err(EvrfError::TooManyParticipants)? };
if (t == 0) || (t > n) {
Err(EvrfError::InvalidThreshold)?;
}
if evrf_public_keys.iter().any(|key| bool::from(key.is_identity())) {
Err(EvrfError::PublicKeyWasIdentity)?;
};
// This also checks the private key is not 0
let evrf_public_key = <C::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref();
if !evrf_public_keys.iter().any(|key| *key == evrf_public_key) {
Err(EvrfError::NotAParticipant)?;
};
let transcript = Self::initial_transcript(context, evrf_public_keys, t);
// Further bind to the participant index so each index gets unique generators
// This allows reusing eVRF public keys as the prover
let mut per_proof_transcript = Blake2s256::new();
per_proof_transcript.update(transcript);
per_proof_transcript.update(evrf_public_key.to_bytes());
// The above transcript is expected to be binding to all arguments here
// The generators are constant to this ciphersuite's generator, and the parameters are
// transcripted
let EvrfProveResult { coefficients, encryption_masks, proof } = match Evrf::prove(
rng,
&generators.0,
per_proof_transcript.finalize().into(),
usize::from(t),
evrf_public_keys,
evrf_private_key,
) {
Ok(res) => res,
Err(AcError::NotEnoughGenerators) => Err(EvrfError::NotEnoughGenerators)?,
Err(
AcError::DifferingLrLengths |
AcError::InconsistentAmountOfConstraints |
AcError::ConstrainedNonExistentTerm |
AcError::ConstrainedNonExistentCommitment |
AcError::InconsistentWitness |
AcError::Ip(_) |
AcError::IncompleteProof,
) => {
panic!("failed to prove for the eVRF proof")
}
};
let mut encrypted_secret_shares = HashMap::with_capacity(usize::from(n));
for (l, encryption_mask) in (1 ..= n).map(Participant).zip(encryption_masks) {
let share = polynomial::<C::F>(&coefficients, l);
encrypted_secret_shares.insert(l, *share + *encryption_mask);
}
Ok(Participation { proof, encrypted_secret_shares })
}
/// Check if a batch of `Participation`s are valid.
///
/// If any `Participation` is invalid, the list of all invalid participants will be returned.
/// If all `Participation`s are valid and there's at least `t`, an instance of this struct
/// (usable to obtain a threshold share of generated key) is returned. If all are valid and
/// there's not at least `t`, `VerifyResult::NotEnoughParticipants` is returned.
///
/// This DKG is unbiased if all `n` people participate. This DKG is biased if only a threshold
/// participate.
pub fn verify(
rng: &mut (impl RngCore + CryptoRng),
generators: &EvrfGenerators<C>,
context: [u8; 32],
t: u16,
evrf_public_keys: &[<C::EmbeddedCurve as Ciphersuite>::G],
participations: &HashMap<Participant, Participation<C>>,
) -> Result<VerifyResult<C>, EvrfError> {
let Ok(n) = u16::try_from(evrf_public_keys.len()) else { Err(EvrfError::TooManyParticipants)? };
if (t == 0) || (t > n) {
Err(EvrfError::InvalidThreshold)?;
}
if evrf_public_keys.iter().any(|key| bool::from(key.is_identity())) {
Err(EvrfError::PublicKeyWasIdentity)?;
};
for i in participations.keys() {
if u16::from(*i) > n {
Err(EvrfError::NonExistentParticipant)?;
}
}
let mut valid = HashMap::with_capacity(participations.len());
let mut faulty = HashSet::new();
let transcript = Self::initial_transcript(context, evrf_public_keys, t);
let mut evrf_verifier = Generators::batch_verifier();
for (i, participation) in participations {
let evrf_public_key = evrf_public_keys[usize::from(u16::from(*i)) - 1];
let mut per_proof_transcript = Blake2s256::new();
per_proof_transcript.update(transcript);
per_proof_transcript.update(evrf_public_key.to_bytes());
// Clone the verifier so if this proof is faulty, it doesn't corrupt the verifier
let mut verifier_clone = evrf_verifier.clone();
let Ok(data) = Evrf::<C>::verify(
rng,
&generators.0,
&mut verifier_clone,
per_proof_transcript.finalize().into(),
usize::from(t),
evrf_public_keys,
evrf_public_key,
&participation.proof,
) else {
faulty.insert(*i);
continue;
};
evrf_verifier = verifier_clone;
valid.insert(*i, (participation.encrypted_secret_shares.clone(), data));
}
debug_assert_eq!(valid.len() + faulty.len(), participations.len());
// Perform the batch verification of the eVRFs
if !generators.0.verify(evrf_verifier) {
// If the batch failed, verify them each individually
for (i, participation) in participations {
if faulty.contains(i) {
continue;
}
let mut evrf_verifier = Generators::batch_verifier();
Evrf::<C>::verify(
rng,
&generators.0,
&mut evrf_verifier,
context,
usize::from(t),
evrf_public_keys,
evrf_public_keys[usize::from(u16::from(*i)) - 1],
&participation.proof,
)
.expect("evrf failed basic checks yet prover wasn't prior marked faulty");
if !generators.0.verify(evrf_verifier) {
valid.remove(i);
faulty.insert(*i);
}
}
}
debug_assert_eq!(valid.len() + faulty.len(), participations.len());
// Perform the batch verification of the shares
let mut sum_encrypted_secret_shares = HashMap::with_capacity(usize::from(n));
let mut sum_masks = HashMap::with_capacity(usize::from(n));
let mut all_encrypted_secret_shares = HashMap::with_capacity(usize::from(t));
{
let mut share_verification_statements_actual = HashMap::with_capacity(valid.len());
if !{
let mut g_scalar = C::F::ZERO;
let mut pairs = Vec::with_capacity(valid.len() * (usize::from(t) + evrf_public_keys.len()));
for (i, (encrypted_secret_shares, data)) in &valid {
let (this_g_scalar, mut these_pairs) = share_verification_statements::<C>(
&mut *rng,
&data.coefficients,
evrf_public_keys
.len()
.try_into()
.expect("n prior checked to be <= u16::MAX couldn't be converted to a u16"),
&data.encryption_commitments,
encrypted_secret_shares,
);
// Queue this into our batch
g_scalar += this_g_scalar;
pairs.extend(&these_pairs);
// Also push this g_scalar onto these_pairs so these_pairs can be verified individually
// upon error
these_pairs.push((this_g_scalar, generators.0.g()));
share_verification_statements_actual.insert(*i, these_pairs);
// Also format this data as we'd need it upon success
let mut formatted_encrypted_secret_shares = HashMap::with_capacity(usize::from(n));
for (j, enc_share) in encrypted_secret_shares {
/*
We calculcate verification shares as the sum of the encrypted scalars, minus their
masks. This only does one scalar multiplication, and `1+t` point additions (with
one negation), and is accordingly much cheaper than interpolating the commitments.
This is only possible because already interpolated the commitments to verify the
encrypted secret share.
*/
let sum_encrypted_secret_share =
sum_encrypted_secret_shares.get(j).copied().unwrap_or(C::F::ZERO);
let sum_mask = sum_masks.get(j).copied().unwrap_or(C::G::identity());
sum_encrypted_secret_shares.insert(*j, sum_encrypted_secret_share + enc_share);
let j_index = usize::from(u16::from(*j)) - 1;
sum_masks.insert(*j, sum_mask + data.encryption_commitments[j_index]);
formatted_encrypted_secret_shares.insert(*j, (data.ecdh_keys[j_index], *enc_share));
}
all_encrypted_secret_shares.insert(*i, formatted_encrypted_secret_shares);
}
pairs.push((g_scalar, generators.0.g()));
bool::from(multiexp_vartime(&pairs).is_identity())
} {
// If the batch failed, verify them each individually
for (i, pairs) in share_verification_statements_actual {
if !bool::from(multiexp_vartime(&pairs).is_identity()) {
valid.remove(&i);
faulty.insert(i);
}
}
}
}
debug_assert_eq!(valid.len() + faulty.len(), participations.len());
let mut faulty = faulty.into_iter().collect::<Vec<_>>();
if !faulty.is_empty() {
faulty.sort_unstable();
return Ok(VerifyResult::Invalid(faulty));
}
// We check at least t key shares of people have participated in contributing entropy
// Since the key shares of the participants exceed t, meaning if they're malicious they can
// reconstruct the key regardless, this is safe to the threshold
{
let mut participating_weight = 0;
let mut evrf_public_keys_mut = evrf_public_keys.to_vec();
for i in valid.keys() {
let evrf_public_key = evrf_public_keys[usize::from(u16::from(*i)) - 1];
// Remove this key from the Vec to prevent double-counting
/*
Double-counting would be a risk if multiple participants shared an eVRF public key and
participated. This code does still allow such participants (in order to let participants
be weighted), and any one of them participating will count as all participating. This is
fine as any one such participant will be able to decrypt the shares for themselves and
all other participants, so this is still a key generated by an amount of participants who
could simply reconstruct the key.
*/
let start_len = evrf_public_keys_mut.len();
evrf_public_keys_mut.retain(|key| *key != evrf_public_key);
let end_len = evrf_public_keys_mut.len();
let count = start_len - end_len;
participating_weight += count;
}
if participating_weight < usize::from(t) {
return Ok(VerifyResult::NotEnoughParticipants);
}
}
// If we now have >= t participations, calculate the group key and verification shares
// The group key is the sum of the zero coefficients
let group_key = valid.values().map(|(_, evrf_data)| evrf_data.coefficients[0]).sum::<C::G>();
// Calculate each user's verification share
let mut verification_shares = HashMap::with_capacity(usize::from(n));
for i in (1 ..= n).map(Participant) {
verification_shares
.insert(i, (C::generator() * sum_encrypted_secret_shares[&i]) - sum_masks[&i]);
}
Ok(VerifyResult::Valid(EvrfDkg {
t,
n,
evrf_public_keys: evrf_public_keys.to_vec(),
group_key,
verification_shares,
encrypted_secret_shares: all_encrypted_secret_shares,
}))
}
pub fn keys(
&self,
evrf_private_key: &Zeroizing<<C::EmbeddedCurve as Ciphersuite>::F>,
) -> Vec<ThresholdKeys<C>> {
let evrf_public_key = <C::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref();
let mut is = Vec::with_capacity(1);
for (i, evrf_key) in self.evrf_public_keys.iter().enumerate() {
if *evrf_key == evrf_public_key {
let i = u16::try_from(i).expect("n <= u16::MAX yet i > u16::MAX?");
let i = Participant(1 + i);
is.push(i);
}
}
let mut res = Vec::with_capacity(is.len());
for i in is {
let mut secret_share = Zeroizing::new(C::F::ZERO);
for shares in self.encrypted_secret_shares.values() {
let (ecdh_keys, enc_share) = shares[&i];
let mut ecdh = Zeroizing::new(C::F::ZERO);
for point in ecdh_keys {
let (mut x, mut y) =
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(point * evrf_private_key.deref()).unwrap();
*ecdh += x;
x.zeroize();
y.zeroize();
}
*secret_share += enc_share - ecdh.deref();
}
debug_assert_eq!(self.verification_shares[&i], C::generator() * secret_share.deref());
res.push(ThresholdKeys::from(ThresholdCore {
params: ThresholdParams::new(self.t, self.n, i).unwrap(),
interpolation: Interpolation::Lagrange,
secret_share,
group_key: self.group_key,
verification_shares: self.verification_shares.clone(),
}));
}
res
}
}

View File

@@ -0,0 +1,690 @@
use core::{marker::PhantomData, ops::Deref, fmt};
use zeroize::{Zeroize, Zeroizing};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use generic_array::{typenum::Unsigned, ArrayLength, GenericArray};
use blake2::{Digest, Blake2s256};
use ciphersuite::{
group::{ff::Field, Group, GroupEncoding},
Ciphersuite,
};
use generalized_bulletproofs::{
*,
transcript::{Transcript as ProverTranscript, VerifierTranscript},
arithmetic_circuit_proof::*,
};
use generalized_bulletproofs_circuit_abstraction::*;
use ec_divisors::{DivisorCurve, ScalarDecomposition};
use generalized_bulletproofs_ec_gadgets::*;
/// A pair of curves to perform the eVRF with.
pub trait EvrfCurve: Ciphersuite {
type EmbeddedCurve: Ciphersuite<G: DivisorCurve<FieldElement = <Self as Ciphersuite>::F>>;
type EmbeddedCurveParameters: DiscreteLogParameters;
}
#[cfg(feature = "evrf-secp256k1")]
impl EvrfCurve for ciphersuite::Secp256k1 {
type EmbeddedCurve = secq256k1::Secq256k1;
type EmbeddedCurveParameters = secq256k1::Secq256k1;
}
#[cfg(feature = "evrf-ed25519")]
impl EvrfCurve for ciphersuite::Ed25519 {
type EmbeddedCurve = embedwards25519::Embedwards25519;
type EmbeddedCurveParameters = embedwards25519::Embedwards25519;
}
#[cfg(feature = "evrf-ristretto")]
impl EvrfCurve for ciphersuite::Ristretto {
type EmbeddedCurve = embedwards25519::Embedwards25519;
type EmbeddedCurveParameters = embedwards25519::Embedwards25519;
}
fn sample_point<C: Ciphersuite>(rng: &mut (impl RngCore + CryptoRng)) -> C::G {
let mut repr = <C::G as GroupEncoding>::Repr::default();
loop {
rng.fill_bytes(repr.as_mut());
if let Ok(point) = C::read_G(&mut repr.as_ref()) {
if bool::from(!point.is_identity()) {
return point;
}
}
}
}
/// Generators for eVRF proof.
#[derive(Clone, Debug)]
pub struct EvrfGenerators<C: EvrfCurve>(pub(crate) Generators<C>);
impl<C: EvrfCurve> EvrfGenerators<C> {
/// Create a new set of generators.
pub fn new(max_threshold: u16, max_participants: u16) -> EvrfGenerators<C> {
let g = C::generator();
let mut rng = ChaCha20Rng::from_seed(Blake2s256::digest(g.to_bytes()).into());
let h = sample_point::<C>(&mut rng);
let (_, generators) =
Evrf::<C>::muls_and_generators_to_use(max_threshold.into(), max_participants.into());
let mut g_bold = vec![];
let mut h_bold = vec![];
for _ in 0 .. generators {
g_bold.push(sample_point::<C>(&mut rng));
h_bold.push(sample_point::<C>(&mut rng));
}
Self(Generators::new(g, h, g_bold, h_bold).unwrap())
}
}
/// The result of proving for an eVRF.
pub(crate) struct EvrfProveResult<C: Ciphersuite> {
/// The coefficients for use in the DKG.
pub(crate) coefficients: Vec<Zeroizing<C::F>>,
/// The masks to encrypt secret shares with.
pub(crate) encryption_masks: Vec<Zeroizing<C::F>>,
/// The proof itself.
pub(crate) proof: Vec<u8>,
}
/// The result of verifying an eVRF.
pub(crate) struct EvrfVerifyResult<C: EvrfCurve> {
/// The commitments to the coefficients for use in the DKG.
pub(crate) coefficients: Vec<C::G>,
/// The ephemeral public keys to perform ECDHs with
pub(crate) ecdh_keys: Vec<[<C::EmbeddedCurve as Ciphersuite>::G; 2]>,
/// The commitments to the masks used to encrypt secret shares with.
pub(crate) encryption_commitments: Vec<C::G>,
}
impl<C: EvrfCurve> fmt::Debug for EvrfVerifyResult<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("EvrfVerifyResult").finish_non_exhaustive()
}
}
/// A struct to prove/verify eVRFs with.
pub(crate) struct Evrf<C: EvrfCurve>(PhantomData<C>);
impl<C: EvrfCurve> Evrf<C> {
// Sample uniform points (via rejection-sampling) on the embedded elliptic curve
fn transcript_to_points(
seed: [u8; 32],
coefficients: usize,
) -> Vec<<C::EmbeddedCurve as Ciphersuite>::G> {
// We need to do two Diffie-Hellman's per coefficient in order to achieve an unbiased result
let quantity = 2 * coefficients;
let mut rng = ChaCha20Rng::from_seed(seed);
let mut res = Vec::with_capacity(quantity);
for _ in 0 .. quantity {
res.push(sample_point::<C::EmbeddedCurve>(&mut rng));
}
res
}
/// Read a Variable from a theoretical vector commitment tape
fn read_one_from_tape(generators_to_use: usize, start: &mut usize) -> Variable {
// Each commitment has twice as many variables as generators in use
let commitment = *start / generators_to_use;
// The index will be less than the amount of generators in use, as half are left and half are
// right
let index = *start % generators_to_use;
let res = Variable::CG { commitment, index };
*start += 1;
res
}
/// Read a set of variables from a theoretical vector commitment tape
fn read_from_tape<N: ArrayLength>(
generators_to_use: usize,
start: &mut usize,
) -> GenericArray<Variable, N> {
let mut buf = Vec::with_capacity(N::USIZE);
for _ in 0 .. N::USIZE {
buf.push(Self::read_one_from_tape(generators_to_use, start));
}
GenericArray::from_slice(&buf).clone()
}
/// Read `PointWithDlog`s, which share a discrete logarithm, from the theoretical vector
/// commitment tape.
fn point_with_dlogs(
start: &mut usize,
quantity: usize,
generators_to_use: usize,
) -> Vec<PointWithDlog<C::EmbeddedCurveParameters>> {
// We define a serialized tape of the discrete logarithm, then for each divisor/point, we push:
// zero, x**i, y x**i, y, x_coord, y_coord
// We then chunk that into vector commitments
// Here, we take the assumed layout and generate the expected `Variable`s for this layout
let dlog = Self::read_from_tape(generators_to_use, start);
let mut res = Vec::with_capacity(quantity);
let mut read_point_with_dlog = || {
let zero = Self::read_one_from_tape(generators_to_use, start);
let x_from_power_of_2 = Self::read_from_tape(generators_to_use, start);
let yx = Self::read_from_tape(generators_to_use, start);
let y = Self::read_one_from_tape(generators_to_use, start);
let divisor = Divisor { zero, x_from_power_of_2, yx, y };
let point = (
Self::read_one_from_tape(generators_to_use, start),
Self::read_one_from_tape(generators_to_use, start),
);
res.push(PointWithDlog { dlog: dlog.clone(), divisor, point });
};
for _ in 0 .. quantity {
read_point_with_dlog();
}
res
}
fn muls_and_generators_to_use(coefficients: usize, ecdhs: usize) -> (usize, usize) {
const MULS_PER_DH: usize = 7;
// 1 DH to prove the discrete logarithm corresponds to the eVRF public key
// 2 DHs per generated coefficient
// 2 DHs per generated ECDH
let expected_muls = MULS_PER_DH * (1 + (2 * coefficients) + (2 * 2 * ecdhs));
let generators_to_use = {
let mut padded_pow_of_2 = 1;
while padded_pow_of_2 < expected_muls {
padded_pow_of_2 <<= 1;
}
// This may as small as 16, which would create an excessive amount of vector commitments
// We set a floor of 2048 rows for bandwidth reasons
padded_pow_of_2.max(2048)
};
(expected_muls, generators_to_use)
}
fn circuit(
curve_spec: &CurveSpec<C::F>,
evrf_public_key: (C::F, C::F),
coefficients: usize,
ecdh_commitments: &[[(C::F, C::F); 2]],
generator_tables: &[&GeneratorTable<C::F, C::EmbeddedCurveParameters>],
circuit: &mut Circuit<C>,
transcript: &mut impl Transcript,
) {
let (expected_muls, generators_to_use) =
Self::muls_and_generators_to_use(coefficients, ecdh_commitments.len());
let (challenge, challenged_generators) =
circuit.discrete_log_challenge(transcript, curve_spec, generator_tables);
debug_assert_eq!(challenged_generators.len(), 1 + (2 * coefficients) + ecdh_commitments.len());
// The generators tables/challenged generators are expected to have the following layouts
// G, coefficients * [A, B], ecdhs * [P]
#[allow(non_snake_case)]
let challenged_G = &challenged_generators[0];
// Execute the circuit for the coefficients
let mut tape_pos = 0;
{
let mut point_with_dlogs =
Self::point_with_dlogs(&mut tape_pos, 1 + (2 * coefficients), generators_to_use)
.into_iter();
// Verify the discrete logarithm is in the fact the discrete logarithm of the eVRF public key
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_G,
);
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(evrf_public_key.0));
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(evrf_public_key.1));
// Verify the DLog claims against the sampled points
for (i, pair) in challenged_generators[1 ..].chunks(2).take(coefficients).enumerate() {
let mut lincomb = LinComb::empty();
debug_assert_eq!(pair.len(), 2);
for challenged_generator in pair {
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_generator,
);
// For each point in this pair, add its x coordinate to a lincomb
lincomb = lincomb.term(C::F::ONE, point.x());
}
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
// commitment
circuit.equality(lincomb, &LinComb::from(Variable::V(i)));
}
debug_assert!(point_with_dlogs.next().is_none());
}
// Now execute the circuit for the ECDHs
let mut challenged_generators = challenged_generators.iter().skip(1 + (2 * coefficients));
for (i, ecdh) in ecdh_commitments.iter().enumerate() {
let challenged_generator = challenged_generators.next().unwrap();
let mut lincomb = LinComb::empty();
for ecdh in ecdh {
let mut point_with_dlogs =
Self::point_with_dlogs(&mut tape_pos, 2, generators_to_use).into_iter();
// One proof of the ECDH secret * G for the commitment published
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_G,
);
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(ecdh.0));
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(ecdh.1));
// One proof of the ECDH secret * P for the ECDH
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_generator,
);
// For each point in this pair, add its x coordinate to a lincomb
lincomb = lincomb.term(C::F::ONE, point.x());
}
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
// commitment
circuit.equality(lincomb, &LinComb::from(Variable::V(coefficients + i)));
}
debug_assert_eq!(expected_muls, circuit.muls());
debug_assert!(challenged_generators.next().is_none());
}
/// Prove a point on an elliptic curve had its discrete logarithm generated via an eVRF.
pub(crate) fn prove(
rng: &mut (impl RngCore + CryptoRng),
generators: &Generators<C>,
transcript: [u8; 32],
coefficients: usize,
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
evrf_private_key: &Zeroizing<<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F>,
) -> Result<EvrfProveResult<C>, AcError> {
let curve_spec = CurveSpec {
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
};
// A tape of the discrete logarithm, then [zero, x**i, y x**i, y, x_coord, y_coord]
let mut vector_commitment_tape = vec![];
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
// A function to calculate a divisor and push it onto the tape
// This defines a vec, divisor_points, outside of the fn to reuse its allocation
let mut divisor =
|vector_commitment_tape: &mut Vec<_>,
dlog: &ScalarDecomposition<<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F>,
push_generator: bool,
generator: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
dh: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G| {
if push_generator {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
let mut divisor = dlog.scalar_mul_divisor(generator).normalize_x_coefficient();
vector_commitment_tape.push(divisor.zero_coefficient);
for coefficient in divisor.x_coefficients.iter().skip(1) {
vector_commitment_tape.push(*coefficient);
}
for _ in divisor.x_coefficients.len() ..
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE
{
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
}
for coefficient in divisor.yx_coefficients.first().unwrap_or(&vec![]) {
vector_commitment_tape.push(*coefficient);
}
for _ in divisor.yx_coefficients.first().unwrap_or(&vec![]).len() ..
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE
{
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
}
vector_commitment_tape
.push(divisor.y_coefficients.first().copied().unwrap_or(<C as Ciphersuite>::F::ZERO));
divisor.zeroize();
drop(divisor);
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(dh).unwrap();
vector_commitment_tape.push(x);
vector_commitment_tape.push(y);
(x, y)
};
// Start with the coefficients
let evrf_public_key;
let mut actual_coefficients = Vec::with_capacity(coefficients);
{
// This is checked at a higher level
let dlog =
ScalarDecomposition::<<C::EmbeddedCurve as Ciphersuite>::F>::new(**evrf_private_key)
.expect("eVRF private key was zero");
let points = Self::transcript_to_points(transcript, coefficients);
// Start by pushing the discrete logarithm onto the tape
for coefficient in dlog.decomposition() {
vector_commitment_tape.push(<_>::from(*coefficient));
}
// Push a divisor for proving that we're using the correct scalar
evrf_public_key = divisor(
&mut vector_commitment_tape,
&dlog,
true,
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref(),
);
// Push a divisor for each point we use in the eVRF
for pair in points.chunks(2) {
let mut res = Zeroizing::new(C::F::ZERO);
for point in pair {
let (dh_x, _) = divisor(
&mut vector_commitment_tape,
&dlog,
true,
*point,
*point * evrf_private_key.deref(),
);
*res += dh_x;
}
actual_coefficients.push(res);
}
debug_assert_eq!(actual_coefficients.len(), coefficients);
}
// Now do the ECDHs for the encryption
let mut encryption_masks = Vec::with_capacity(ecdh_public_keys.len());
let mut ecdh_commitments = Vec::with_capacity(2 * ecdh_public_keys.len());
let mut ecdh_commitments_xy = Vec::with_capacity(ecdh_public_keys.len());
for ecdh_public_key in ecdh_public_keys {
ecdh_commitments_xy.push([(C::F::ZERO, C::F::ZERO); 2]);
let mut res = Zeroizing::new(C::F::ZERO);
for j in 0 .. 2 {
let mut ecdh_private_key;
loop {
ecdh_private_key = <C::EmbeddedCurve as Ciphersuite>::F::random(&mut *rng);
// Generate a non-0 ECDH private key, as necessary to not produce an identity output
// Identity isn't representable with the divisors, hence the explicit effort
if bool::from(!ecdh_private_key.is_zero()) {
break;
}
}
let dlog =
ScalarDecomposition::<<C::EmbeddedCurve as Ciphersuite>::F>::new(ecdh_private_key)
.expect("ECDH private key was zero");
let ecdh_commitment = <C::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key;
ecdh_commitments.push(ecdh_commitment);
ecdh_commitments_xy.last_mut().unwrap()[j] =
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_commitment).unwrap();
// Start by pushing the discrete logarithm onto the tape
for coefficient in dlog.decomposition() {
vector_commitment_tape.push(<_>::from(*coefficient));
}
// Push a divisor for proving that we're using the correct scalar for the commitment
divisor(
&mut vector_commitment_tape,
&dlog,
false,
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key,
);
// Push a divisor for the key we're performing the ECDH with
let (dh_x, _) = divisor(
&mut vector_commitment_tape,
&dlog,
j == 0,
*ecdh_public_key,
*ecdh_public_key * ecdh_private_key,
);
*res += dh_x;
ecdh_private_key.zeroize();
}
encryption_masks.push(res);
}
debug_assert_eq!(encryption_masks.len(), ecdh_public_keys.len());
// Now that we have the vector commitment tape, chunk it
let (_, generators_to_use) =
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
let mut vector_commitments =
Vec::with_capacity(vector_commitment_tape.len().div_ceil(generators_to_use));
for chunk in vector_commitment_tape.chunks(generators_to_use) {
let g_values = chunk[.. generators_to_use.min(chunk.len())].to_vec().into();
vector_commitments.push(PedersenVectorCommitment { g_values, mask: C::F::random(&mut *rng) });
}
vector_commitment_tape.zeroize();
drop(vector_commitment_tape);
let mut commitments = Vec::with_capacity(coefficients + ecdh_public_keys.len());
for coefficient in &actual_coefficients {
commitments.push(PedersenCommitment { value: **coefficient, mask: C::F::random(&mut *rng) });
}
for enc_mask in &encryption_masks {
commitments.push(PedersenCommitment { value: **enc_mask, mask: C::F::random(&mut *rng) });
}
let mut transcript = ProverTranscript::new(transcript);
let commited_commitments = transcript.write_commitments(
vector_commitments
.iter()
.map(|commitment| {
commitment
.commit(generators.g_bold_slice(), generators.h())
.ok_or(AcError::NotEnoughGenerators)
})
.collect::<Result<_, _>>()?,
commitments
.iter()
.map(|commitment| commitment.commit(generators.g(), generators.h()))
.collect(),
);
for ecdh_commitment in ecdh_commitments {
transcript.push_point(ecdh_commitment);
}
let mut circuit = Circuit::prove(vector_commitments, commitments.clone());
Self::circuit(
&curve_spec,
evrf_public_key,
coefficients,
&ecdh_commitments_xy,
&generator_tables.iter().collect::<Vec<_>>(),
&mut circuit,
&mut transcript,
);
let (statement, Some(witness)) = circuit
.statement(
generators.reduce(generators_to_use).ok_or(AcError::NotEnoughGenerators)?,
commited_commitments,
)
.unwrap()
else {
panic!("proving yet wasn't yielded the witness");
};
statement.prove(&mut *rng, &mut transcript, witness).unwrap();
// Push the reveal onto the transcript
for commitment in &commitments {
transcript.push_point(generators.g() * commitment.value);
}
// Define a weight to aggregate the commitments with
let mut agg_weights = Vec::with_capacity(commitments.len());
agg_weights.push(C::F::ONE);
while agg_weights.len() < commitments.len() {
agg_weights.push(transcript.challenge::<C>());
}
let mut x = commitments
.iter()
.zip(&agg_weights)
.map(|(commitment, weight)| commitment.mask * *weight)
.sum::<C::F>();
// Do a Schnorr PoK for the randomness of the aggregated Pedersen commitment
let mut r = C::F::random(&mut *rng);
transcript.push_point(generators.h() * r);
let c = transcript.challenge::<C>();
transcript.push_scalar(r + (c * x));
r.zeroize();
x.zeroize();
Ok(EvrfProveResult {
coefficients: actual_coefficients,
encryption_masks,
proof: transcript.complete(),
})
}
/// Verify an eVRF proof, returning the commitments output.
#[allow(clippy::too_many_arguments)]
pub(crate) fn verify(
rng: &mut (impl RngCore + CryptoRng),
generators: &Generators<C>,
verifier: &mut BatchVerifier<C>,
transcript: [u8; 32],
coefficients: usize,
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
evrf_public_key: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
proof: &[u8],
) -> Result<EvrfVerifyResult<C>, ()> {
let curve_spec = CurveSpec {
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
};
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
{
let (x, y) =
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(<C::EmbeddedCurve as Ciphersuite>::generator())
.unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
let points = Self::transcript_to_points(transcript, coefficients);
for generator in points {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
for generator in ecdh_public_keys {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(*generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
let (_, generators_to_use) =
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
let mut transcript = VerifierTranscript::new(transcript, proof);
let dlog_len = <C::EmbeddedCurveParameters as DiscreteLogParameters>::ScalarBits::USIZE;
let divisor_len = 1 +
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE +
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE +
1;
let dlog_proof_len = divisor_len + 2;
let coeffs_vc_variables = dlog_len + ((1 + (2 * coefficients)) * dlog_proof_len);
let ecdhs_vc_variables = ((2 * ecdh_public_keys.len()) * dlog_len) +
((2 * 2 * ecdh_public_keys.len()) * dlog_proof_len);
let vcs = (coeffs_vc_variables + ecdhs_vc_variables).div_ceil(generators_to_use);
let all_commitments =
transcript.read_commitments(vcs, coefficients + ecdh_public_keys.len()).map_err(|_| ())?;
let commitments = all_commitments.V().to_vec();
let mut ecdh_keys = Vec::with_capacity(ecdh_public_keys.len());
let mut ecdh_keys_xy = Vec::with_capacity(ecdh_public_keys.len());
for _ in 0 .. ecdh_public_keys.len() {
let ecdh_keys_i = [
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
];
ecdh_keys.push(ecdh_keys_i);
// This bans zero ECDH keys
ecdh_keys_xy.push([
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[0]).ok_or(())?,
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[1]).ok_or(())?,
]);
}
let mut circuit = Circuit::verify();
Self::circuit(
&curve_spec,
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(evrf_public_key).ok_or(())?,
coefficients,
&ecdh_keys_xy,
&generator_tables.iter().collect::<Vec<_>>(),
&mut circuit,
&mut transcript,
);
let (statement, None) =
circuit.statement(generators.reduce(generators_to_use).ok_or(())?, all_commitments).unwrap()
else {
panic!("verifying yet was yielded a witness");
};
statement.verify(rng, verifier, &mut transcript).map_err(|_| ())?;
// Read the openings for the commitments
let mut openings = Vec::with_capacity(commitments.len());
for _ in 0 .. commitments.len() {
openings.push(transcript.read_point::<C>().map_err(|_| ())?);
}
// Verify the openings of the commitments
let mut agg_weights = Vec::with_capacity(commitments.len());
agg_weights.push(C::F::ONE);
while agg_weights.len() < commitments.len() {
agg_weights.push(transcript.challenge::<C>());
}
let sum_points =
openings.iter().zip(&agg_weights).map(|(point, weight)| *point * *weight).sum::<C::G>();
let sum_commitments =
commitments.into_iter().zip(agg_weights).map(|(point, weight)| point * weight).sum::<C::G>();
#[allow(non_snake_case)]
let A = sum_commitments - sum_points;
#[allow(non_snake_case)]
let R = transcript.read_point::<C>().map_err(|_| ())?;
let c = transcript.challenge::<C>();
let s = transcript.read_scalar::<C>().map_err(|_| ())?;
// Doesn't batch verify this as we can't access the internals of the GBP batch verifier
if (R + (A * c)) != (generators.h() * s) {
Err(())?;
}
if !transcript.complete().is_empty() {
Err(())?
};
let encryption_commitments = openings[coefficients ..].to_vec();
let coefficients = openings[.. coefficients].to_vec();
Ok(EvrfVerifyResult { coefficients, ecdh_keys, encryption_commitments })
}
}

View File

@@ -0,0 +1,79 @@
use std::collections::HashMap;
use zeroize::Zeroizing;
use rand_core::OsRng;
use rand::seq::SliceRandom;
use ciphersuite::{group::ff::Field, Ciphersuite};
use crate::{
Participant,
evrf::*,
tests::{THRESHOLD, PARTICIPANTS, recover_key},
};
mod proof;
use proof::{Pallas, Vesta};
#[test]
fn evrf_dkg() {
let generators = EvrfGenerators::<Pallas>::new(THRESHOLD, PARTICIPANTS);
let context = [0; 32];
let mut priv_keys = vec![];
let mut pub_keys = vec![];
for i in 0 .. PARTICIPANTS {
let priv_key = <Vesta as Ciphersuite>::F::random(&mut OsRng);
pub_keys.push(<Vesta as Ciphersuite>::generator() * priv_key);
priv_keys.push((Participant::new(1 + i).unwrap(), Zeroizing::new(priv_key)));
}
let mut participations = HashMap::new();
// Shuffle the private keys so we iterate over a random subset of them
priv_keys.shuffle(&mut OsRng);
for (i, priv_key) in priv_keys.iter().take(usize::from(THRESHOLD)) {
participations.insert(
*i,
EvrfDkg::<Pallas>::participate(
&mut OsRng,
&generators,
context,
THRESHOLD,
&pub_keys,
priv_key,
)
.unwrap(),
);
}
let VerifyResult::Valid(dkg) = EvrfDkg::<Pallas>::verify(
&mut OsRng,
&generators,
context,
THRESHOLD,
&pub_keys,
&participations,
)
.unwrap() else {
panic!("verify didn't return VerifyResult::Valid")
};
let mut group_key = None;
let mut verification_shares = None;
let mut all_keys = HashMap::new();
for (i, priv_key) in priv_keys {
let keys = dkg.keys(&priv_key).into_iter().next().unwrap();
assert_eq!(keys.params().i(), i);
assert_eq!(keys.params().t(), THRESHOLD);
assert_eq!(keys.params().n(), PARTICIPANTS);
group_key = group_key.or(Some(keys.group_key()));
verification_shares = verification_shares.or(Some(keys.verification_shares()));
assert_eq!(Some(keys.group_key()), group_key);
assert_eq!(Some(keys.verification_shares()), verification_shares);
all_keys.insert(i, keys);
}
// TODO: Test for all possible combinations of keys
assert_eq!(Pallas::generator() * recover_key(&all_keys), group_key.unwrap());
}

View File

@@ -0,0 +1,118 @@
use std::time::Instant;
use rand_core::OsRng;
use zeroize::{Zeroize, Zeroizing};
use generic_array::typenum::{Sum, Diff, Quot, U, U1, U2};
use blake2::{Digest, Blake2b512};
use ciphersuite::{
group::{
ff::{FromUniformBytes, Field, PrimeField},
Group,
},
Ciphersuite, Secp256k1, Ed25519, Ristretto,
};
use pasta_curves::{Ep, Eq, Fp, Fq};
use generalized_bulletproofs::{Generators, tests::generators};
use generalized_bulletproofs_ec_gadgets::DiscreteLogParameters;
use crate::evrf::proof::*;
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub(crate) struct Pallas;
impl Ciphersuite for Pallas {
type F = Fq;
type G = Ep;
type H = Blake2b512;
const ID: &'static [u8] = b"Pallas";
fn generator() -> Ep {
Ep::generator()
}
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
// This naive concat may be insecure in a real world deployment
// This is solely test code so it's fine
Self::F::from_uniform_bytes(&Self::H::digest([dst, msg].concat()).into())
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub(crate) struct Vesta;
impl Ciphersuite for Vesta {
type F = Fp;
type G = Eq;
type H = Blake2b512;
const ID: &'static [u8] = b"Vesta";
fn generator() -> Eq {
Eq::generator()
}
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
// This naive concat may be insecure in a real world deployment
// This is solely test code so it's fine
Self::F::from_uniform_bytes(&Self::H::digest([dst, msg].concat()).into())
}
}
pub struct VestaParams;
impl DiscreteLogParameters for VestaParams {
type ScalarBits = U<{ <<Vesta as Ciphersuite>::F as PrimeField>::NUM_BITS as usize }>;
type XCoefficients = Quot<Sum<Self::ScalarBits, U1>, U2>;
type XCoefficientsMinusOne = Diff<Self::XCoefficients, U1>;
type YxCoefficients = Diff<Quot<Sum<Sum<Self::ScalarBits, U1>, U1>, U2>, U2>;
}
impl EvrfCurve for Pallas {
type EmbeddedCurve = Vesta;
type EmbeddedCurveParameters = VestaParams;
}
fn evrf_proof_test<C: EvrfCurve>() {
let generators = generators(2048);
let vesta_private_key = Zeroizing::new(<C::EmbeddedCurve as Ciphersuite>::F::random(&mut OsRng));
let ecdh_public_keys = [
<C::EmbeddedCurve as Ciphersuite>::G::random(&mut OsRng),
<C::EmbeddedCurve as Ciphersuite>::G::random(&mut OsRng),
];
let time = Instant::now();
let res =
Evrf::<C>::prove(&mut OsRng, &generators, [0; 32], 1, &ecdh_public_keys, &vesta_private_key)
.unwrap();
println!("Proving time: {:?}", time.elapsed());
let time = Instant::now();
let mut verifier = Generators::batch_verifier();
Evrf::<C>::verify(
&mut OsRng,
&generators,
&mut verifier,
[0; 32],
1,
&ecdh_public_keys,
C::EmbeddedCurve::generator() * *vesta_private_key,
&res.proof,
)
.unwrap();
assert!(generators.verify(verifier));
println!("Verifying time: {:?}", time.elapsed());
}
#[test]
fn pallas_evrf_proof_test() {
evrf_proof_test::<Pallas>();
}
#[test]
fn secp256k1_evrf_proof_test() {
evrf_proof_test::<Secp256k1>();
}
#[test]
fn ed25519_evrf_proof_test() {
evrf_proof_test::<Ed25519>();
}
#[test]
fn ristretto_evrf_proof_test() {
evrf_proof_test::<Ristretto>();
}