Monero: support for legacy transactions (#308)

* add mlsag

* fix last commit

* fix miner v1 txs

* fix non-miner v1 txs

* add borromean + fix mlsag

* add block hash calculations

* fix for the jokester that added unreduced scalars

to the borromean signature of
2368d846e671bf79a1f84c6d3af9f0bfe296f043f50cf17ae5e485384a53707b

* Add Borromean range proof verifying functionality

* Add MLSAG verifying functionality

* fmt & clippy :)

* update MLSAG, ss2_elements will always be 2

* Add MgSig proving

* Tidy block.rs

* Tidy Borromean, fix bugs in last commit, replace todo! with unreachable!

* Mark legacy EcdhInfo amount decryption as experimental

* Correct comments

* Write a new impl of the merkle algorithm

This one tries to be understandable.

* Only pull in things only needed for experimental when experimental

* Stop caching the Monero block hash now in processor that we have Block::hash

* Corrections for recent processor commit

* Use a clearer algorithm for the merkle

Should also be more efficient due to not shifting as often.

* Tidy Mlsag

* Remove verify_rct_* from Mlsag

Both methods were ports from Monero, overtly specific without clear
documentation. They need to be added back in, with documentation, or included
in a node which provides the necessary further context for them to be naturally
understandable.

* Move mlsag/mod.rs to mlsag.rs

This should only be a folder if it has multiple files.

* Replace EcdhInfo terminology

The ECDH encrypted the amount, yet this struct contained the encrypted amount,
not some ECDH.

Also corrects the types on the original EcdhInfo struct.

* Correct handling of commitment masks when scanning

* Route read_array through read_raw_vec

* Misc lint

* Make a proper RctType enum

No longer caches RctType in the RctSignatures as well.

* Replace Vec<Bulletproofs> with Bulletproofs

Monero uses aggregated range proofs, so there's only ever one Bulletproof. This
is enforced with a consensus rule as well, making this safe.

As for why Monero uses a vec, it's probably due to the lack of variadic typing
used. Its effectively an Option for them, yet we don't need an Option since we
do have variadic typing (enums).

* Add necessary checks to Eventuality re: supported protocols

* Fix for block 202612 and fix merkel root calculations

* MLSAG (de)serialisation fix

ss_2_elements will not always be 2 as rct type 1 transactions are not enforced to have one input

* Revert "MLSAG (de)serialisation fix"

This reverts commit 5e710e0c96.

here it checks number of MGs == number of inputs:
0a1eaf26f9/src/cryptonote_core/tx_verification_utils.cpp (L60-59)

and here it checks for RctTypeFull number of MGs == 1:
0a1eaf26f9/src/ringct/rctSigs.cpp (L1325)

so number of inputs == 1
so ss_2_elements == 2

* update `MlsagAggregate` comment

* cargo update

Resolves a yanked crate

* Move location of serai-client in Cargo.toml

---------

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
This commit is contained in:
Boog900
2023-07-04 21:18:05 +00:00
committed by GitHub
parent 0f80f6ec7d
commit 89eef95fb3
16 changed files with 702 additions and 117 deletions

View File

@@ -0,0 +1,71 @@
use std_shims::{
vec::Vec,
io::{self, Read, Write},
};
use curve25519_dalek::scalar::Scalar;
#[cfg(feature = "experimental")]
use curve25519_dalek::edwards::EdwardsPoint;
use crate::serialize::*;
#[cfg(feature = "experimental")]
use crate::{hash_to_scalar, ringct::hash_to_point};
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Mlsag {
pub ss: Vec<[Scalar; 2]>,
pub cc: Scalar,
}
impl Mlsag {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
for ss in self.ss.iter() {
write_raw_vec(write_scalar, ss, w)?;
}
write_scalar(&self.cc, w)
}
pub fn read<R: Read>(mixins: usize, r: &mut R) -> io::Result<Mlsag> {
Ok(Mlsag {
ss: (0 .. mixins).map(|_| read_array(read_scalar, r)).collect::<Result<_, _>>()?,
cc: read_scalar(r)?,
})
}
#[cfg(feature = "experimental")]
pub fn verify(
&self,
msg: &[u8; 32],
ring: &[[EdwardsPoint; 2]],
key_image: &EdwardsPoint,
) -> bool {
if ring.is_empty() {
return false;
}
let mut buf = Vec::with_capacity(6 * 32);
let mut ci = self.cc;
for (i, ring_member) in ring.iter().enumerate() {
buf.extend_from_slice(msg);
#[allow(non_snake_case)]
let L =
|r| EdwardsPoint::vartime_double_scalar_mul_basepoint(&ci, &ring_member[r], &self.ss[i][r]);
buf.extend_from_slice(ring_member[0].compress().as_bytes());
buf.extend_from_slice(L(0).compress().as_bytes());
#[allow(non_snake_case)]
let R = (self.ss[i][0] * hash_to_point(ring_member[0])) + (ci * key_image);
buf.extend_from_slice(R.compress().as_bytes());
buf.extend_from_slice(ring_member[1].compress().as_bytes());
buf.extend_from_slice(L(1).compress().as_bytes());
ci = hash_to_scalar(&buf);
buf.clear();
}
ci == self.cc
}
}