Rename sign folder to crypto

Inspired by #3 and #5.
This commit is contained in:
Luke Parker
2022-05-03 00:46:50 -04:00
parent 9ccf683e9d
commit 87f38cafe4
15 changed files with 4 additions and 4 deletions

View File

@@ -0,0 +1,112 @@
use core::convert::TryInto;
use digest::Digest;
use ff::PrimeField;
use group::GroupEncoding;
use sha2::{Sha256, Sha512};
use k256::{
elliptic_curve::{generic_array::GenericArray, bigint::{ArrayEncoding, U512}, ops::Reduce},
Scalar,
ProjectivePoint
};
use frost::{CurveError, Curve, multiexp_vartime, algorithm::Hram};
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Secp256k1;
impl Curve for Secp256k1 {
type F = Scalar;
type G = ProjectivePoint;
type T = ProjectivePoint;
fn id() -> String {
"secp256k1".to_string()
}
fn id_len() -> u8 {
Self::id().len() as u8
}
fn generator() -> Self::G {
Self::G::GENERATOR
}
fn generator_table() -> Self::T {
Self::G::GENERATOR
}
fn multiexp_vartime(scalars: &[Self::F], points: &[Self::G]) -> Self::G {
multiexp_vartime::<Secp256k1>(scalars, points)
}
// The IETF draft doesn't specify a secp256k1 ciphersuite
// This test just uses the simplest ciphersuite which would still be viable to deploy
fn hash_msg(msg: &[u8]) -> Vec<u8> {
(&Sha256::digest(msg)).to_vec()
}
// Use wide reduction for security
fn hash_to_F(data: &[u8]) -> Self::F {
Scalar::from_uint_reduced(
U512::from_be_byte_array(Sha512::new().chain_update("rho").chain_update(data).finalize())
)
}
fn F_len() -> usize {
32
}
fn G_len() -> usize {
33
}
fn F_from_le_slice(slice: &[u8]) -> Result<Self::F, CurveError> {
let mut bytes: [u8; 32] = slice.try_into().map_err(
|_| CurveError::InvalidLength(32, slice.len())
)?;
bytes.reverse();
let scalar = Scalar::from_repr(bytes.into());
if scalar.is_none().unwrap_u8() == 1 {
Err(CurveError::InvalidScalar)?;
}
Ok(scalar.unwrap())
}
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError> {
let point = ProjectivePoint::from_bytes(GenericArray::from_slice(slice));
if point.is_none().unwrap_u8() == 1 {
Err(CurveError::InvalidScalar)?;
}
Ok(point.unwrap())
}
fn F_to_le_bytes(f: &Self::F) -> Vec<u8> {
let mut res: [u8; 32] = f.to_bytes().into();
res.reverse();
res.to_vec()
}
fn G_to_bytes(g: &Self::G) -> Vec<u8> {
(&g.to_bytes()).to_vec()
}
}
#[allow(non_snake_case)]
#[derive(Clone)]
pub struct TestHram {}
impl Hram<Secp256k1> for TestHram {
#[allow(non_snake_case)]
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
Scalar::from_uint_reduced(
U512::from_be_byte_array(
Sha512::new()
.chain_update(Secp256k1::G_to_bytes(R))
.chain_update(Secp256k1::G_to_bytes(A))
.chain_update(m)
.finalize()
)
)
}
}

View File

@@ -0,0 +1,144 @@
use std::rc::Rc;
use rand::{RngCore, rngs::OsRng};
use digest::Digest;
use sha2::Sha256;
use frost::{
Curve,
MultisigParams, MultisigKeys,
key_gen,
algorithm::{Algorithm, Schnorr, SchnorrSignature},
sign::{StateMachine, AlgorithmMachine}
};
mod common;
use common::{Secp256k1, TestHram};
const PARTICIPANTS: usize = 8;
fn sign<C: Curve, A: Algorithm<C, Signature = SchnorrSignature<C>>>(
algorithm: A,
keys: Vec<Rc<MultisigKeys<C>>>
) {
let t = keys[0].params().t();
let mut machines = vec![];
let mut commitments = Vec::with_capacity(PARTICIPANTS + 1);
commitments.resize(PARTICIPANTS + 1, None);
for i in 1 ..= t {
machines.push(
AlgorithmMachine::new(
algorithm.clone(),
keys[i - 1].clone(),
&(1 ..= t).collect::<Vec<usize>>()
).unwrap()
);
commitments[i] = Some(machines[i - 1].preprocess(&mut OsRng).unwrap());
}
let mut shares = Vec::with_capacity(PARTICIPANTS + 1);
shares.resize(PARTICIPANTS + 1, None);
for i in 1 ..= t {
shares[i] = Some(
machines[i - 1].sign(
&commitments
.iter()
.enumerate()
.map(|(idx, value)| if idx == i { None } else { value.to_owned() })
.collect::<Vec<Option<Vec<u8>>>>(),
b"Hello World"
).unwrap()
);
}
let mut signature = None;
for i in 1 ..= t {
let sig = machines[i - 1].complete(
&shares
.iter()
.enumerate()
.map(|(idx, value)| if idx == i { None } else { value.to_owned() })
.collect::<Vec<Option<Vec<u8>>>>()
).unwrap();
if signature.is_none() {
signature = Some(sig);
}
assert_eq!(sig, signature.unwrap());
}
}
#[test]
fn key_gen_and_sign() {
let mut params = vec![];
let mut machines = vec![];
let mut commitments = vec![vec![]];
for i in 1 ..= PARTICIPANTS {
params.push(
MultisigParams::new(
((PARTICIPANTS / 3) * 2) + 1,
PARTICIPANTS,
i
).unwrap()
);
machines.push(
key_gen::StateMachine::<Secp256k1>::new(
params[i - 1],
"FF/Group Rust key_gen test".to_string()
)
);
commitments.push(machines[i - 1].generate_coefficients(&mut OsRng).unwrap());
}
let mut secret_shares = vec![];
for i in 1 ..= PARTICIPANTS {
secret_shares.push(
machines[i - 1].generate_secret_shares(
&mut OsRng,
commitments
.iter()
.enumerate()
.map(|(idx, commitments)| if idx == i { vec![] } else { commitments.to_vec() })
.collect()
).unwrap()
);
}
let mut verification_shares = vec![];
let mut group_key = None;
let mut keys = vec![];
for i in 1 ..= PARTICIPANTS {
let mut our_secret_shares = vec![vec![]];
our_secret_shares.extend(
secret_shares.iter().map(|shares| shares[i].clone()).collect::<Vec<Vec<u8>>>()
);
let these_keys = machines[i - 1].complete(our_secret_shares).unwrap();
assert_eq!(
MultisigKeys::<Secp256k1>::deserialize(&these_keys.serialize()).unwrap(),
these_keys
);
keys.push(Rc::new(these_keys.clone()));
if verification_shares.len() == 0 {
verification_shares = these_keys.verification_shares();
}
assert_eq!(verification_shares, these_keys.verification_shares());
if group_key.is_none() {
group_key = Some(these_keys.group_key());
}
assert_eq!(group_key.unwrap(), these_keys.group_key());
}
sign(Schnorr::<Secp256k1, TestHram>::new(), keys.clone());
let mut randomization = [0; 64];
(&mut OsRng).fill_bytes(&mut randomization);
sign(
Schnorr::<Secp256k1, TestHram>::new(),
keys.iter().map(
|keys| Rc::new(keys.offset(Secp256k1::hash_to_F(&Sha256::digest(&randomization))))
).collect()
);
}