mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-09 04:39:24 +00:00
22
crypto/frost/Cargo.toml
Normal file
22
crypto/frost/Cargo.toml
Normal file
@@ -0,0 +1,22 @@
|
||||
[package]
|
||||
name = "frost"
|
||||
version = "0.1.0"
|
||||
description = "Implementation of FROST over ff/group"
|
||||
license = "MIT"
|
||||
authors = ["kayabaNerve (Luke Parker) <lukeparker5132@gmail.com>"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
digest = "0.10"
|
||||
|
||||
rand_core = "0.6"
|
||||
|
||||
ff = "0.11"
|
||||
group = "0.11"
|
||||
|
||||
thiserror = "1"
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8"
|
||||
sha2 = "0.10"
|
||||
k256 = { version = "0.10", features = ["arithmetic"] }
|
||||
21
crypto/frost/LICENSE
Normal file
21
crypto/frost/LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2021-2022 Luke Parker
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
3
crypto/frost/README.md
Normal file
3
crypto/frost/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# FROST
|
||||
|
||||
Implementation of FROST for any curve with a ff/group API.
|
||||
151
crypto/frost/src/algorithm.rs
Normal file
151
crypto/frost/src/algorithm.rs
Normal file
@@ -0,0 +1,151 @@
|
||||
use core::{marker::PhantomData, fmt::Debug};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use group::Group;
|
||||
|
||||
use crate::{Curve, FrostError, MultisigView};
|
||||
|
||||
/// Algorithm to use FROST with
|
||||
pub trait Algorithm<C: Curve>: Clone {
|
||||
/// The resulting type of the signatures this algorithm will produce
|
||||
type Signature: Clone + Debug;
|
||||
|
||||
/// The amount of bytes from each participant's addendum to commit to
|
||||
fn addendum_commit_len() -> usize;
|
||||
|
||||
/// Generate an addendum to FROST"s preprocessing stage
|
||||
fn preprocess_addendum<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
params: &MultisigView<C>,
|
||||
nonces: &[C::F; 2],
|
||||
) -> Vec<u8>;
|
||||
|
||||
/// Proccess the addendum for the specified participant. Guaranteed to be ordered
|
||||
fn process_addendum(
|
||||
&mut self,
|
||||
params: &MultisigView<C>,
|
||||
l: usize,
|
||||
commitments: &[C::G; 2],
|
||||
serialized: &[u8],
|
||||
) -> Result<(), FrostError>;
|
||||
|
||||
/// Context for this algorithm to be hashed into b, and therefore committed to
|
||||
fn context(&self) -> Vec<u8>;
|
||||
|
||||
/// Sign a share with the given secret/nonce
|
||||
/// The secret will already have been its lagrange coefficient applied so it is the necessary
|
||||
/// key share
|
||||
/// The nonce will already have been processed into the combined form d + (e * p)
|
||||
fn sign_share(
|
||||
&mut self,
|
||||
params: &MultisigView<C>,
|
||||
nonce_sum: C::G,
|
||||
b: C::F,
|
||||
nonce: C::F,
|
||||
msg: &[u8],
|
||||
) -> C::F;
|
||||
|
||||
/// Verify a signature
|
||||
fn verify(&self, group_key: C::G, nonce: C::G, sum: C::F) -> Option<Self::Signature>;
|
||||
|
||||
/// Verify a specific share given as a response. Used to determine blame if signature
|
||||
/// verification fails
|
||||
fn verify_share(
|
||||
&self,
|
||||
verification_share: C::G,
|
||||
nonce: C::G,
|
||||
share: C::F,
|
||||
) -> bool;
|
||||
}
|
||||
|
||||
pub trait Hram<C: Curve>: Clone {
|
||||
/// HRAM function to generate a challenge
|
||||
/// H2 from the IETF draft despite having a different argument set (not pre-formatted)
|
||||
#[allow(non_snake_case)]
|
||||
fn hram(R: &C::G, A: &C::G, m: &[u8]) -> C::F;
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Schnorr<C: Curve, H: Hram<C>> {
|
||||
c: Option<C::F>,
|
||||
_hram: PhantomData<H>,
|
||||
}
|
||||
|
||||
impl<C: Curve, H: Hram<C>> Schnorr<C, H> {
|
||||
pub fn new() -> Schnorr<C, H> {
|
||||
Schnorr {
|
||||
c: None,
|
||||
_hram: PhantomData
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct SchnorrSignature<C: Curve> {
|
||||
pub R: C::G,
|
||||
pub s: C::F,
|
||||
}
|
||||
|
||||
/// Implementation of Schnorr signatures for use with FROST
|
||||
impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
|
||||
type Signature = SchnorrSignature<C>;
|
||||
|
||||
fn addendum_commit_len() -> usize {
|
||||
0
|
||||
}
|
||||
|
||||
fn preprocess_addendum<R: RngCore + CryptoRng>(
|
||||
_: &mut R,
|
||||
_: &MultisigView<C>,
|
||||
_: &[C::F; 2],
|
||||
) -> Vec<u8> {
|
||||
vec![]
|
||||
}
|
||||
|
||||
fn process_addendum(
|
||||
&mut self,
|
||||
_: &MultisigView<C>,
|
||||
_: usize,
|
||||
_: &[C::G; 2],
|
||||
_: &[u8],
|
||||
) -> Result<(), FrostError> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn context(&self) -> Vec<u8> {
|
||||
vec![]
|
||||
}
|
||||
|
||||
fn sign_share(
|
||||
&mut self,
|
||||
params: &MultisigView<C>,
|
||||
nonce_sum: C::G,
|
||||
_: C::F,
|
||||
nonce: C::F,
|
||||
msg: &[u8],
|
||||
) -> C::F {
|
||||
let c = H::hram(&nonce_sum, ¶ms.group_key(), msg);
|
||||
self.c = Some(c);
|
||||
|
||||
nonce + (params.secret_share() * c)
|
||||
}
|
||||
|
||||
fn verify(&self, group_key: C::G, nonce: C::G, sum: C::F) -> Option<Self::Signature> {
|
||||
if (C::generator_table() * sum) + (C::G::identity() - (group_key * self.c.unwrap())) == nonce {
|
||||
Some(SchnorrSignature { R: nonce, s: sum })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_share(
|
||||
&self,
|
||||
verification_share: C::G,
|
||||
nonce: C::G,
|
||||
share: C::F,
|
||||
) -> bool {
|
||||
(C::generator_table() * share) == (nonce + (verification_share * self.c.unwrap()))
|
||||
}
|
||||
}
|
||||
489
crypto/frost/src/key_gen.rs
Normal file
489
crypto/frost/src/key_gen.rs
Normal file
@@ -0,0 +1,489 @@
|
||||
use core::{convert::TryFrom, cmp::min, fmt};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::Group;
|
||||
|
||||
use crate::{Curve, MultisigParams, MultisigKeys, FrostError};
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn challenge<C: Curve>(l: usize, context: &str, R: &[u8], Am: &[u8]) -> C::F {
|
||||
let mut c = Vec::with_capacity(8 + context.len() + R.len() + Am.len());
|
||||
c.extend(&u64::try_from(l).unwrap().to_le_bytes());
|
||||
c.extend(context.as_bytes());
|
||||
c.extend(R); // R
|
||||
c.extend(Am); // A of the first commitment, which is what we're proving we have the private key
|
||||
// for
|
||||
// m of the rest of the commitments, authenticating them
|
||||
C::hash_to_F(&c)
|
||||
}
|
||||
|
||||
// Implements steps 1 through 3 of round 1 of FROST DKG. Returns the coefficients, commitments, and
|
||||
// the serialized commitments to be broadcasted over an authenticated channel to all parties
|
||||
// TODO: This potentially could return a much more robust serialized message, including a signature
|
||||
// of its entirety. The issue is it can't use its own key as it has no chain of custody behind it.
|
||||
// While we could ask for a key to be passed in, explicitly declaring the needed for authenticated
|
||||
// communications in the API itself, systems will likely already provide a authenticated
|
||||
// communication method making this redundant. It also doesn't guarantee the system which passed
|
||||
// the key is correctly using it, meaning we can only minimize risk so much
|
||||
// One notable improvement would be to include the index in the message. While the system must
|
||||
// still track this to determine if it's ready for the next step, and to remove duplicates, it
|
||||
// would ensure no counterparties presume the same index and this system didn't mislabel a
|
||||
// counterparty
|
||||
fn generate_key_r1<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R,
|
||||
params: &MultisigParams,
|
||||
context: &str,
|
||||
) -> (Vec<C::F>, Vec<C::G>, Vec<u8>) {
|
||||
let mut coefficients = Vec::with_capacity(params.t);
|
||||
let mut commitments = Vec::with_capacity(params.t);
|
||||
let mut serialized = Vec::with_capacity((C::G_len() * params.t) + C::G_len() + C::F_len());
|
||||
for j in 0 .. params.t {
|
||||
// Step 1: Generate t random values to form a polynomial with
|
||||
coefficients.push(C::F::random(&mut *rng));
|
||||
// Step 3: Generate public commitments
|
||||
commitments.push(C::generator_table() * coefficients[j]);
|
||||
// Serialize them for publication
|
||||
serialized.extend(&C::G_to_bytes(&commitments[j]));
|
||||
}
|
||||
|
||||
// Step 2: Provide a proof of knowledge
|
||||
// This can be deterministic as the PoK is a singleton never opened up to cooperative discussion
|
||||
// There's also no reason to spend the time and effort to make this deterministic besides a
|
||||
// general obsession with canonicity and determinism
|
||||
let k = C::F::random(rng);
|
||||
#[allow(non_snake_case)]
|
||||
let R = C::generator_table() * k;
|
||||
let c = challenge::<C>(params.i, context, &C::G_to_bytes(&R), &serialized);
|
||||
let s = k + (coefficients[0] * c);
|
||||
|
||||
serialized.extend(&C::G_to_bytes(&R));
|
||||
serialized.extend(&C::F_to_le_bytes(&s));
|
||||
|
||||
// Step 4: Broadcast
|
||||
(coefficients, commitments, serialized)
|
||||
}
|
||||
|
||||
// Verify the received data from the first round of key generation
|
||||
fn verify_r1<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R,
|
||||
params: &MultisigParams,
|
||||
context: &str,
|
||||
our_commitments: Vec<C::G>,
|
||||
serialized: &[Vec<u8>],
|
||||
) -> Result<Vec<Vec<C::G>>, FrostError> {
|
||||
// Deserialize all of the commitments, validating the input buffers as needed
|
||||
if serialized.len() != (params.n + 1) {
|
||||
Err(
|
||||
// Prevents a panic if serialized.len() == 0
|
||||
FrostError::InvalidParticipantQuantity(params.n, serialized.len() - min(1, serialized.len()))
|
||||
)?;
|
||||
}
|
||||
|
||||
// Expect a null set of commitments for index 0 so the vector is guaranteed to line up with
|
||||
// actual indexes. Even if we did the offset internally, the system would need to write the vec
|
||||
// with the same offset in mind. Therefore, this trick which is probably slightly less efficient
|
||||
// yet keeps everything simple is preferred
|
||||
if serialized[0] != vec![] {
|
||||
Err(FrostError::NonEmptyParticipantZero)?;
|
||||
}
|
||||
|
||||
let commitments_len = params.t * C::G_len();
|
||||
let mut commitments = Vec::with_capacity(params.n + 1);
|
||||
commitments.push(vec![]);
|
||||
|
||||
let signature_len = C::G_len() + C::F_len();
|
||||
let mut first = true;
|
||||
let mut scalars = Vec::with_capacity((params.n - 1) * 3);
|
||||
let mut points = Vec::with_capacity((params.n - 1) * 3);
|
||||
for l in 1 ..= params.n {
|
||||
if l == params.i {
|
||||
if serialized[l].len() != 0 {
|
||||
Err(FrostError::DuplicatedIndex(l))?;
|
||||
}
|
||||
commitments.push(vec![]);
|
||||
continue;
|
||||
}
|
||||
|
||||
if serialized[l].len() != (commitments_len + signature_len) {
|
||||
// Return an error with an approximation for how many commitments were included
|
||||
// Prevents errors if not even the signature was included
|
||||
if serialized[l].len() < signature_len {
|
||||
Err(FrostError::InvalidCommitmentQuantity(l, params.t, 0))?;
|
||||
}
|
||||
|
||||
Err(
|
||||
FrostError::InvalidCommitmentQuantity(
|
||||
l,
|
||||
params.t,
|
||||
// Could technically be x.y despite this returning x, yet any y is negligible
|
||||
// It could help with debugging to know a partial piece of data was read but this error
|
||||
// alone should be enough
|
||||
(serialized[l].len() - signature_len) / C::G_len()
|
||||
)
|
||||
)?;
|
||||
}
|
||||
|
||||
commitments.push(Vec::with_capacity(params.t));
|
||||
for o in 0 .. params.t {
|
||||
commitments[l].push(
|
||||
C::G_from_slice(
|
||||
&serialized[l][(o * C::G_len()) .. ((o + 1) * C::G_len())]
|
||||
).map_err(|_| FrostError::InvalidCommitment(l))?
|
||||
);
|
||||
}
|
||||
|
||||
// Step 5: Validate each proof of knowledge (prep)
|
||||
let mut u = C::F::one();
|
||||
if !first {
|
||||
u = C::F::random(&mut *rng);
|
||||
}
|
||||
|
||||
scalars.push(u);
|
||||
points.push(
|
||||
C::G_from_slice(
|
||||
&serialized[l][commitments_len .. commitments_len + C::G_len()]
|
||||
).map_err(|_| FrostError::InvalidProofOfKnowledge(l))?
|
||||
);
|
||||
|
||||
scalars.push(
|
||||
-C::F_from_le_slice(
|
||||
&serialized[l][commitments_len + C::G_len() .. serialized[l].len()]
|
||||
).map_err(|_| FrostError::InvalidProofOfKnowledge(l))? * u
|
||||
);
|
||||
points.push(C::generator());
|
||||
|
||||
let c = challenge::<C>(
|
||||
l,
|
||||
context,
|
||||
&serialized[l][commitments_len .. commitments_len + C::G_len()],
|
||||
&serialized[l][0 .. commitments_len]
|
||||
);
|
||||
|
||||
if first {
|
||||
scalars.push(c);
|
||||
first = false;
|
||||
} else {
|
||||
scalars.push(c * u);
|
||||
}
|
||||
points.push(commitments[l][0]);
|
||||
}
|
||||
|
||||
// Step 5: Implementation
|
||||
// Uses batch verification to optimize the success case dramatically
|
||||
// On failure, the cost is now this + blame, yet that should happen infrequently
|
||||
if C::multiexp_vartime(&scalars, &points) != C::G::identity() {
|
||||
for l in 1 ..= params.n {
|
||||
if l == params.i {
|
||||
continue;
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
let R = C::G_from_slice(
|
||||
&serialized[l][commitments_len .. commitments_len + C::G_len()]
|
||||
).map_err(|_| FrostError::InvalidProofOfKnowledge(l))?;
|
||||
|
||||
let s = C::F_from_le_slice(
|
||||
&serialized[l][commitments_len + C::G_len() .. serialized[l].len()]
|
||||
).map_err(|_| FrostError::InvalidProofOfKnowledge(l))?;
|
||||
|
||||
let c = challenge::<C>(
|
||||
l,
|
||||
context,
|
||||
&serialized[l][commitments_len .. commitments_len + C::G_len()],
|
||||
&serialized[l][0 .. commitments_len]
|
||||
);
|
||||
|
||||
if R != ((C::generator_table() * s) + (commitments[l][0] * (C::F::zero() - &c))) {
|
||||
Err(FrostError::InvalidProofOfKnowledge(l))?;
|
||||
}
|
||||
}
|
||||
|
||||
Err(FrostError::InternalError("batch validation is broken".to_string()))?;
|
||||
}
|
||||
|
||||
// Write in our own commitments
|
||||
commitments[params.i] = our_commitments;
|
||||
|
||||
Ok(commitments)
|
||||
}
|
||||
|
||||
fn polynomial<F: PrimeField>(
|
||||
coefficients: &[F],
|
||||
i: usize
|
||||
) -> F {
|
||||
let i = F::from(u64::try_from(i).unwrap());
|
||||
let mut share = F::zero();
|
||||
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
|
||||
share += coefficient;
|
||||
if idx != (coefficients.len() - 1) {
|
||||
share *= i;
|
||||
}
|
||||
}
|
||||
share
|
||||
}
|
||||
|
||||
// Implements round 1, step 5 and round 2, step 1 of FROST key generation
|
||||
// Returns our secret share part, commitments for the next step, and a vector for each
|
||||
// counterparty to receive
|
||||
fn generate_key_r2<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R,
|
||||
params: &MultisigParams,
|
||||
context: &str,
|
||||
coefficients: Vec<C::F>,
|
||||
our_commitments: Vec<C::G>,
|
||||
commitments: &[Vec<u8>],
|
||||
) -> Result<(C::F, Vec<Vec<C::G>>, Vec<Vec<u8>>), FrostError> {
|
||||
let commitments = verify_r1::<R, C>(rng, params, context, our_commitments, commitments)?;
|
||||
|
||||
// Step 1: Generate secret shares for all other parties
|
||||
let mut res = Vec::with_capacity(params.n + 1);
|
||||
res.push(vec![]);
|
||||
for i in 1 ..= params.n {
|
||||
// Don't push our own to the byte buffer which is meant to be sent around
|
||||
// An app developer could accidentally send it. Best to keep this black boxed
|
||||
if i == params.i {
|
||||
res.push(vec![]);
|
||||
continue
|
||||
}
|
||||
|
||||
res.push(C::F_to_le_bytes(&polynomial(&coefficients, i)));
|
||||
}
|
||||
|
||||
// Calculate our own share
|
||||
let share = polynomial(&coefficients, params.i);
|
||||
|
||||
// The secret shares are discarded here, not cleared. While any system which leaves its memory
|
||||
// accessible is likely totally lost already, making the distinction meaningless when the key gen
|
||||
// system acts as the signer system and therefore actively holds the signing key anyways, it
|
||||
// should be overwritten with /dev/urandom in the name of security (which still doesn't meet
|
||||
// requirements for secure data deletion yet those requirements expect hardware access which is
|
||||
// far past what this library can reasonably counter)
|
||||
// TODO: Zero out the coefficients
|
||||
|
||||
Ok((share, commitments, res))
|
||||
}
|
||||
|
||||
/// Finishes round 2 and returns both the secret share and the serialized public key.
|
||||
/// This key is not usable until all parties confirm they have completed the protocol without
|
||||
/// issue, yet simply confirming protocol completion without issue is enough to confirm the same
|
||||
/// key was generated as long as a lack of duplicated commitments was also confirmed when they were
|
||||
/// broadcasted initially
|
||||
fn complete_r2<C: Curve>(
|
||||
params: MultisigParams,
|
||||
share: C::F,
|
||||
commitments: &[Vec<C::G>],
|
||||
// Vec to preserve ownership
|
||||
serialized: Vec<Vec<u8>>,
|
||||
) -> Result<MultisigKeys<C>, FrostError> {
|
||||
// Step 2. Verify each share
|
||||
if serialized.len() != (params.n + 1) {
|
||||
Err(
|
||||
FrostError::InvalidParticipantQuantity(params.n, serialized.len() - min(1, serialized.len()))
|
||||
)?;
|
||||
}
|
||||
|
||||
if (commitments[0].len() != 0) || (serialized[0].len() != 0) {
|
||||
Err(FrostError::NonEmptyParticipantZero)?;
|
||||
}
|
||||
|
||||
// Deserialize them
|
||||
let mut shares: Vec<C::F> = vec![C::F::zero()];
|
||||
for i in 1 .. serialized.len() {
|
||||
if i == params.i {
|
||||
if serialized[i].len() != 0 {
|
||||
Err(FrostError::DuplicatedIndex(i))?;
|
||||
}
|
||||
shares.push(C::F::zero());
|
||||
continue;
|
||||
}
|
||||
shares.push(C::F_from_le_slice(&serialized[i]).map_err(|_| FrostError::InvalidShare(i))?);
|
||||
}
|
||||
|
||||
|
||||
for l in 1 ..= params.n {
|
||||
if l == params.i {
|
||||
continue;
|
||||
}
|
||||
|
||||
let i_scalar = C::F::from(u64::try_from(params.i).unwrap());
|
||||
let mut exp = C::F::one();
|
||||
let mut exps = Vec::with_capacity(params.t);
|
||||
for _ in 0 .. params.t {
|
||||
exps.push(exp);
|
||||
exp *= i_scalar;
|
||||
}
|
||||
|
||||
// Doesn't use multiexp_vartime with -shares[l] due to not being able to push to commitments
|
||||
if C::multiexp_vartime(&exps, &commitments[l]) != (C::generator_table() * shares[l]) {
|
||||
Err(FrostError::InvalidCommitment(l))?;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Clear the original share
|
||||
|
||||
let mut secret_share = share;
|
||||
for remote_share in shares {
|
||||
secret_share += remote_share;
|
||||
}
|
||||
|
||||
let mut verification_shares = vec![C::G::identity()];
|
||||
for i in 1 ..= params.n {
|
||||
let mut exps = vec![];
|
||||
let mut cs = vec![];
|
||||
for j in 1 ..= params.n {
|
||||
for k in 0 .. params.t {
|
||||
let mut exp = C::F::one();
|
||||
for _ in 0 .. k {
|
||||
exp *= C::F::from(u64::try_from(i).unwrap());
|
||||
}
|
||||
exps.push(exp);
|
||||
cs.push(commitments[j][k]);
|
||||
}
|
||||
}
|
||||
verification_shares.push(C::multiexp_vartime(&exps, &cs));
|
||||
}
|
||||
|
||||
debug_assert_eq!(
|
||||
C::generator_table() * secret_share,
|
||||
verification_shares[params.i]
|
||||
);
|
||||
|
||||
let mut group_key = C::G::identity();
|
||||
for j in 1 ..= params.n {
|
||||
group_key += commitments[j][0];
|
||||
}
|
||||
|
||||
// TODO: Clear serialized and shares
|
||||
|
||||
Ok(MultisigKeys { params, secret_share, group_key, verification_shares, offset: None } )
|
||||
}
|
||||
|
||||
/// State of a Key Generation machine
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub enum State {
|
||||
Fresh,
|
||||
GeneratedCoefficients,
|
||||
GeneratedSecretShares,
|
||||
Complete,
|
||||
}
|
||||
|
||||
impl fmt::Display for State {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "{:?}", self)
|
||||
}
|
||||
}
|
||||
|
||||
/// State machine which manages key generation
|
||||
#[allow(non_snake_case)]
|
||||
pub struct StateMachine<C: Curve> {
|
||||
params: MultisigParams,
|
||||
context: String,
|
||||
state: State,
|
||||
coefficients: Option<Vec<C::F>>,
|
||||
our_commitments: Option<Vec<C::G>>,
|
||||
secret: Option<C::F>,
|
||||
commitments: Option<Vec<Vec<C::G>>>
|
||||
}
|
||||
|
||||
impl<C: Curve> StateMachine<C> {
|
||||
/// Creates a new machine to generate a key for the specified curve in the specified multisig
|
||||
// The context string must be unique among multisigs
|
||||
pub fn new(params: MultisigParams, context: String) -> StateMachine<C> {
|
||||
StateMachine {
|
||||
params,
|
||||
context,
|
||||
state: State::Fresh,
|
||||
coefficients: None,
|
||||
our_commitments: None,
|
||||
secret: None,
|
||||
commitments: None
|
||||
}
|
||||
}
|
||||
|
||||
/// Start generating a key according to the FROST DKG spec
|
||||
/// Returns a serialized list of commitments to be sent to all parties over an authenticated
|
||||
/// channel. If any party submits multiple sets of commitments, they MUST be treated as malicious
|
||||
pub fn generate_coefficients<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
rng: &mut R
|
||||
) -> Result<Vec<u8>, FrostError> {
|
||||
if self.state != State::Fresh {
|
||||
Err(FrostError::InvalidKeyGenTransition(State::Fresh, self.state))?;
|
||||
}
|
||||
|
||||
let (coefficients, commitments, serialized) = generate_key_r1::<R, C>(
|
||||
rng,
|
||||
&self.params,
|
||||
&self.context,
|
||||
);
|
||||
|
||||
self.coefficients = Some(coefficients);
|
||||
self.our_commitments = Some(commitments);
|
||||
self.state = State::GeneratedCoefficients;
|
||||
Ok(serialized)
|
||||
}
|
||||
|
||||
/// Continue generating a key
|
||||
/// Takes in everyone else's commitments, which are expected to be in a Vec where participant
|
||||
/// index = Vec index. An empty vector is expected at index 0 to allow for this. An empty vector
|
||||
/// is also expected at index i which is locally handled. Returns a byte vector representing a
|
||||
/// secret share for each other participant which should be encrypted before sending
|
||||
pub fn generate_secret_shares<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
rng: &mut R,
|
||||
commitments: Vec<Vec<u8>>,
|
||||
) -> Result<Vec<Vec<u8>>, FrostError> {
|
||||
if self.state != State::GeneratedCoefficients {
|
||||
Err(FrostError::InvalidKeyGenTransition(State::GeneratedCoefficients, self.state))?;
|
||||
}
|
||||
|
||||
let (secret, commitments, shares) = generate_key_r2::<R, C>(
|
||||
rng,
|
||||
&self.params,
|
||||
&self.context,
|
||||
self.coefficients.take().unwrap(),
|
||||
self.our_commitments.take().unwrap(),
|
||||
&commitments,
|
||||
)?;
|
||||
|
||||
self.secret = Some(secret);
|
||||
self.commitments = Some(commitments);
|
||||
self.state = State::GeneratedSecretShares;
|
||||
Ok(shares)
|
||||
}
|
||||
|
||||
/// Complete key generation
|
||||
/// Takes in everyone elses' shares submitted to us as a Vec, expecting participant index =
|
||||
/// Vec index with an empty vector at index 0 and index i. Returns a byte vector representing the
|
||||
/// group's public key, while setting a valid secret share inside the machine. > t participants
|
||||
/// must report completion without issue before this key can be considered usable, yet you should
|
||||
/// wait for all participants to report as such
|
||||
pub fn complete(
|
||||
&mut self,
|
||||
shares: Vec<Vec<u8>>,
|
||||
) -> Result<MultisigKeys<C>, FrostError> {
|
||||
if self.state != State::GeneratedSecretShares {
|
||||
Err(FrostError::InvalidKeyGenTransition(State::GeneratedSecretShares, self.state))?;
|
||||
}
|
||||
|
||||
let keys = complete_r2(
|
||||
self.params,
|
||||
self.secret.take().unwrap(),
|
||||
&self.commitments.take().unwrap(),
|
||||
shares,
|
||||
)?;
|
||||
|
||||
self.state = State::Complete;
|
||||
Ok(keys)
|
||||
}
|
||||
|
||||
pub fn params(&self) -> MultisigParams {
|
||||
self.params.clone()
|
||||
}
|
||||
|
||||
pub fn state(&self) -> State {
|
||||
self.state
|
||||
}
|
||||
}
|
||||
439
crypto/frost/src/lib.rs
Normal file
439
crypto/frost/src/lib.rs
Normal file
@@ -0,0 +1,439 @@
|
||||
use core::{ops::Mul, fmt::Debug};
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::{Group, GroupOps, ScalarMul};
|
||||
|
||||
use thiserror::Error;
|
||||
|
||||
pub mod key_gen;
|
||||
pub mod algorithm;
|
||||
pub mod sign;
|
||||
use sign::lagrange;
|
||||
|
||||
/// Set of errors for curve-related operations, namely encoding and decoding
|
||||
#[derive(Error, Debug)]
|
||||
pub enum CurveError {
|
||||
#[error("invalid length for data (expected {0}, got {0})")]
|
||||
InvalidLength(usize, usize),
|
||||
#[error("invalid scalar")]
|
||||
InvalidScalar,
|
||||
#[error("invalid point")]
|
||||
InvalidPoint,
|
||||
}
|
||||
|
||||
/// Unified trait to manage a field/group
|
||||
// This should be moved into its own crate if the need for generic cryptography over ff/group
|
||||
// continues, which is the exact reason ff/group exists (to provide a generic interface)
|
||||
// elliptic-curve exists, yet it doesn't really serve the same role, nor does it use &[u8]/Vec<u8>
|
||||
// It uses GenericArray which will hopefully be deprecated as Rust evolves and doesn't offer enough
|
||||
// advantages in the modern day to be worth the hassle -- Kayaba
|
||||
pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
|
||||
/// Field element type
|
||||
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
|
||||
type F: PrimeField;
|
||||
/// Group element type
|
||||
type G: Group + GroupOps + ScalarMul<Self::F>;
|
||||
/// Precomputed table type
|
||||
type T: Mul<Self::F, Output = Self::G>;
|
||||
|
||||
/// ID for this curve
|
||||
fn id() -> String;
|
||||
/// Byte length of the curve ID
|
||||
// While curve.id().len() is trivial, this bounds it to u8 and lets us ignore the possibility it
|
||||
// contains Unicode, therefore having a String length which is different from its byte length
|
||||
fn id_len() -> u8;
|
||||
|
||||
/// Generator for the group
|
||||
// While group does provide this in its API, Jubjub users will want to use a custom basepoint
|
||||
fn generator() -> Self::G;
|
||||
|
||||
/// Table for the generator for the group
|
||||
/// If there isn't a precomputed table available, the generator itself should be used
|
||||
fn generator_table() -> Self::T;
|
||||
|
||||
/// Multiexponentation function, presumably Straus or Pippenger
|
||||
/// This library does provide an implementation of Straus which should increase key generation
|
||||
/// performance by around 4x, also named multiexp_vartime, with the same API. However, if a more
|
||||
/// performant implementation is available, that should be used instead
|
||||
// This could also be written as -> Option<C::G> with None for not implemented
|
||||
fn multiexp_vartime(scalars: &[Self::F], points: &[Self::G]) -> Self::G;
|
||||
|
||||
/// Hash the message as needed to calculate the binding factor
|
||||
/// H3 from the IETF draft
|
||||
// This doesn't actually need to be part of Curve as it does nothing with the curve
|
||||
// This also solely relates to FROST and with a proper Algorithm/HRAM, all projects using
|
||||
// aggregatable signatures over this curve will work without issue, albeit potentially with
|
||||
// incompatibilities between FROST implementations
|
||||
// It is kept here as Curve + HRAM is effectively a ciphersuite according to the IETF draft
|
||||
// and moving it to Schnorr would force all of them into being ciphersuite-specific
|
||||
fn hash_msg(msg: &[u8]) -> Vec<u8>;
|
||||
|
||||
/// Field element from hash, used in key generation and to calculate the binding factor
|
||||
/// H1 from the IETF draft
|
||||
/// Key generation uses it as if it's H2 to generate a challenge for a Proof of Knowledge
|
||||
#[allow(non_snake_case)]
|
||||
fn hash_to_F(data: &[u8]) -> Self::F;
|
||||
|
||||
// The following methods would optimally be F:: and G:: yet developers can't control F/G
|
||||
// They can control a trait they pass into this library
|
||||
|
||||
/// Constant size of a serialized field element
|
||||
// The alternative way to grab this would be either serializing a junk element and getting its
|
||||
// length or doing a naive division of its BITS property by 8 and assuming a lack of padding
|
||||
#[allow(non_snake_case)]
|
||||
fn F_len() -> usize;
|
||||
|
||||
/// Constant size of a serialized group element
|
||||
// We could grab the serialization as described above yet a naive developer may use a
|
||||
// non-constant size encoding, proving yet another reason to force this to be a provided constant
|
||||
// A naive developer could still provide a constant for a variable length encoding, yet at least
|
||||
// that is on them
|
||||
#[allow(non_snake_case)]
|
||||
fn G_len() -> usize;
|
||||
|
||||
/// Field element from slice. Should be canonical
|
||||
// Required due to the lack of standardized encoding functions provided by ff/group
|
||||
// While they do technically exist, their usage of Self::Repr breaks all potential library usage
|
||||
// without helper functions like this
|
||||
#[allow(non_snake_case)]
|
||||
fn F_from_le_slice(slice: &[u8]) -> Result<Self::F, CurveError>;
|
||||
|
||||
/// Group element from slice. Should be canonical
|
||||
#[allow(non_snake_case)]
|
||||
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError>;
|
||||
|
||||
/// Obtain a vector of the byte encoding of F
|
||||
#[allow(non_snake_case)]
|
||||
fn F_to_le_bytes(f: &Self::F) -> Vec<u8>;
|
||||
|
||||
/// Obtain a vector of the byte encoding of G
|
||||
#[allow(non_snake_case)]
|
||||
fn G_to_bytes(g: &Self::G) -> Vec<u8>;
|
||||
}
|
||||
|
||||
/// Parameters for a multisig
|
||||
// These fields can not be made public as they should be static
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct MultisigParams {
|
||||
/// Participants needed to sign on behalf of the group
|
||||
t: usize,
|
||||
/// Amount of participants
|
||||
n: usize,
|
||||
/// Index of the participant being acted for
|
||||
i: usize,
|
||||
}
|
||||
|
||||
impl MultisigParams {
|
||||
pub fn new(
|
||||
t: usize,
|
||||
n: usize,
|
||||
i: usize
|
||||
) -> Result<MultisigParams, FrostError> {
|
||||
if (t == 0) || (n == 0) {
|
||||
Err(FrostError::ZeroParameter(t, n))?;
|
||||
}
|
||||
|
||||
if u64::try_from(n).is_err() {
|
||||
Err(FrostError::TooManyParticipants(n, u64::MAX))?;
|
||||
}
|
||||
|
||||
// When t == n, this shouldn't be used (MuSig2 and other variants of MuSig exist for a reason),
|
||||
// but it's not invalid to do so
|
||||
if t > n {
|
||||
Err(FrostError::InvalidRequiredQuantity(t, n))?;
|
||||
}
|
||||
if (i == 0) || (i > n) {
|
||||
Err(FrostError::InvalidParticipantIndex(n, i))?;
|
||||
}
|
||||
|
||||
Ok(MultisigParams{ t, n, i })
|
||||
}
|
||||
|
||||
pub fn t(&self) -> usize { self.t }
|
||||
pub fn n(&self) -> usize { self.n }
|
||||
pub fn i(&self) -> usize { self.i }
|
||||
}
|
||||
|
||||
#[derive(Error, Debug)]
|
||||
pub enum FrostError {
|
||||
#[error("a parameter was 0 (required {0}, participants {1})")]
|
||||
ZeroParameter(usize, usize),
|
||||
#[error("too many participants (max {1}, got {0})")]
|
||||
TooManyParticipants(usize, u64),
|
||||
#[error("invalid amount of required participants (max {1}, got {0})")]
|
||||
InvalidRequiredQuantity(usize, usize),
|
||||
#[error("invalid participant index (0 < index <= {0}, yet index is {1})")]
|
||||
InvalidParticipantIndex(usize, usize),
|
||||
|
||||
#[error("invalid signing set ({0})")]
|
||||
InvalidSigningSet(String),
|
||||
#[error("invalid participant quantity (expected {0}, got {1})")]
|
||||
InvalidParticipantQuantity(usize, usize),
|
||||
#[error("duplicated participant index ({0})")]
|
||||
DuplicatedIndex(usize),
|
||||
#[error("participant 0 provided data despite not existing")]
|
||||
NonEmptyParticipantZero,
|
||||
#[error("invalid commitment quantity (participant {0}, expected {1}, got {2})")]
|
||||
InvalidCommitmentQuantity(usize, usize, usize),
|
||||
#[error("invalid commitment (participant {0})")]
|
||||
InvalidCommitment(usize),
|
||||
#[error("invalid proof of knowledge (participant {0})")]
|
||||
InvalidProofOfKnowledge(usize),
|
||||
#[error("invalid share (participant {0})")]
|
||||
InvalidShare(usize),
|
||||
#[error("invalid key generation state machine transition (expected {0}, was {1})")]
|
||||
InvalidKeyGenTransition(key_gen::State, key_gen::State),
|
||||
|
||||
#[error("invalid sign state machine transition (expected {0}, was {1})")]
|
||||
InvalidSignTransition(sign::State, sign::State),
|
||||
|
||||
#[error("internal error ({0})")]
|
||||
InternalError(String),
|
||||
}
|
||||
|
||||
// View of keys passable to algorithm implementations
|
||||
#[derive(Clone)]
|
||||
pub struct MultisigView<C: Curve> {
|
||||
group_key: C::G,
|
||||
included: Vec<usize>,
|
||||
secret_share: C::F,
|
||||
verification_shares: Vec<C::G>,
|
||||
}
|
||||
|
||||
impl<C: Curve> MultisigView<C> {
|
||||
pub fn group_key(&self) -> C::G {
|
||||
self.group_key
|
||||
}
|
||||
|
||||
pub fn included(&self) -> Vec<usize> {
|
||||
self.included.clone()
|
||||
}
|
||||
|
||||
pub fn secret_share(&self) -> C::F {
|
||||
self.secret_share
|
||||
}
|
||||
|
||||
pub fn verification_share(&self, l: usize) -> C::G {
|
||||
self.verification_shares[l]
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct MultisigKeys<C: Curve> {
|
||||
/// Multisig Parameters
|
||||
params: MultisigParams,
|
||||
|
||||
/// Secret share key
|
||||
secret_share: C::F,
|
||||
/// Group key
|
||||
group_key: C::G,
|
||||
/// Verification shares
|
||||
verification_shares: Vec<C::G>,
|
||||
|
||||
/// Offset applied to these keys
|
||||
offset: Option<C::F>,
|
||||
}
|
||||
|
||||
impl<C: Curve> MultisigKeys<C> {
|
||||
pub fn offset(&self, offset: C::F) -> MultisigKeys<C> {
|
||||
let mut res = self.clone();
|
||||
res.offset = Some(offset);
|
||||
res
|
||||
}
|
||||
|
||||
pub fn params(&self) -> MultisigParams {
|
||||
self.params
|
||||
}
|
||||
|
||||
pub fn secret_share(&self) -> C::F {
|
||||
self.secret_share
|
||||
}
|
||||
|
||||
pub fn group_key(&self) -> C::G {
|
||||
self.group_key
|
||||
}
|
||||
|
||||
pub fn verification_shares(&self) -> Vec<C::G> {
|
||||
self.verification_shares.clone()
|
||||
}
|
||||
|
||||
pub fn view(&self, included: &[usize]) -> Result<MultisigView<C>, FrostError> {
|
||||
if (included.len() < self.params.t) || (self.params.n < included.len()) {
|
||||
Err(FrostError::InvalidSigningSet("invalid amount of participants included".to_string()))?;
|
||||
}
|
||||
|
||||
let secret_share = self.secret_share * lagrange::<C::F>(self.params.i, &included);
|
||||
let (offset, offset_share) = if self.offset.is_some() {
|
||||
let offset = self.offset.unwrap();
|
||||
(offset, offset * C::F::from(included.len().try_into().unwrap()).invert().unwrap())
|
||||
} else {
|
||||
(C::F::zero(), C::F::zero())
|
||||
};
|
||||
|
||||
Ok(MultisigView {
|
||||
group_key: self.group_key + (C::generator_table() * offset),
|
||||
secret_share: secret_share + offset_share,
|
||||
verification_shares: self.verification_shares.clone().iter().enumerate().map(
|
||||
|(l, share)| (*share * lagrange::<C::F>(l, &included)) +
|
||||
(C::generator_table() * offset_share)
|
||||
).collect(),
|
||||
included: included.to_vec(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn serialized_len(n: usize) -> usize {
|
||||
1 + usize::from(C::id_len()) + (3 * 8) + C::F_len() + C::G_len() + (n * C::G_len())
|
||||
}
|
||||
|
||||
pub fn serialize(&self) -> Vec<u8> {
|
||||
let mut serialized = Vec::with_capacity(
|
||||
1 + usize::from(C::id_len()) + MultisigKeys::<C>::serialized_len(self.params.n)
|
||||
);
|
||||
serialized.push(C::id_len());
|
||||
serialized.extend(C::id().as_bytes());
|
||||
serialized.extend(&(self.params.n as u64).to_le_bytes());
|
||||
serialized.extend(&(self.params.t as u64).to_le_bytes());
|
||||
serialized.extend(&(self.params.i as u64).to_le_bytes());
|
||||
serialized.extend(&C::F_to_le_bytes(&self.secret_share));
|
||||
serialized.extend(&C::G_to_bytes(&self.group_key));
|
||||
for i in 1 ..= self.params.n {
|
||||
serialized.extend(&C::G_to_bytes(&self.verification_shares[i]));
|
||||
}
|
||||
|
||||
serialized
|
||||
}
|
||||
|
||||
pub fn deserialize(serialized: &[u8]) -> Result<MultisigKeys<C>, FrostError> {
|
||||
if serialized.len() < 1 {
|
||||
Err(FrostError::InternalError("MultisigKeys serialization is empty".to_string()))?;
|
||||
}
|
||||
|
||||
let id_len: usize = serialized[0].into();
|
||||
let mut cursor = 1;
|
||||
|
||||
if serialized.len() < (cursor + id_len) {
|
||||
Err(FrostError::InternalError("ID wasn't included".to_string()))?;
|
||||
}
|
||||
|
||||
let id = &serialized[cursor .. (cursor + id_len)];
|
||||
if C::id().as_bytes() != id {
|
||||
Err(
|
||||
FrostError::InternalError(
|
||||
"curve is distinct between serialization and deserialization".to_string()
|
||||
)
|
||||
)?;
|
||||
}
|
||||
cursor += id_len;
|
||||
|
||||
if serialized.len() < (cursor + 8) {
|
||||
Err(FrostError::InternalError("participant quantity wasn't included".to_string()))?;
|
||||
}
|
||||
|
||||
let n = u64::from_le_bytes(serialized[cursor .. (cursor + 8)].try_into().unwrap()).try_into()
|
||||
.map_err(|_| FrostError::InternalError("parameter doesn't fit into usize".to_string()))?;
|
||||
cursor += 8;
|
||||
if serialized.len() != MultisigKeys::<C>::serialized_len(n) {
|
||||
Err(FrostError::InternalError("incorrect serialization length".to_string()))?;
|
||||
}
|
||||
|
||||
let t = u64::from_le_bytes(serialized[cursor .. (cursor + 8)].try_into().unwrap()).try_into()
|
||||
.map_err(|_| FrostError::InternalError("parameter doesn't fit into usize".to_string()))?;
|
||||
cursor += 8;
|
||||
let i = u64::from_le_bytes(serialized[cursor .. (cursor + 8)].try_into().unwrap()).try_into()
|
||||
.map_err(|_| FrostError::InternalError("parameter doesn't fit into usize".to_string()))?;
|
||||
cursor += 8;
|
||||
|
||||
let secret_share = C::F_from_le_slice(&serialized[cursor .. (cursor + C::F_len())])
|
||||
.map_err(|_| FrostError::InternalError("invalid secret share".to_string()))?;
|
||||
cursor += C::F_len();
|
||||
let group_key = C::G_from_slice(&serialized[cursor .. (cursor + C::G_len())])
|
||||
.map_err(|_| FrostError::InternalError("invalid group key".to_string()))?;
|
||||
cursor += C::G_len();
|
||||
|
||||
let mut verification_shares = vec![C::G::identity()];
|
||||
verification_shares.reserve_exact(n + 1);
|
||||
for _ in 0 .. n {
|
||||
verification_shares.push(
|
||||
C::G_from_slice(&serialized[cursor .. (cursor + C::G_len())])
|
||||
.map_err(|_| FrostError::InternalError("invalid verification share".to_string()))?
|
||||
);
|
||||
cursor += C::G_len();
|
||||
}
|
||||
|
||||
Ok(
|
||||
MultisigKeys {
|
||||
params: MultisigParams::new(t, n, i)
|
||||
.map_err(|_| FrostError::InternalError("invalid parameters".to_string()))?,
|
||||
secret_share,
|
||||
group_key,
|
||||
verification_shares,
|
||||
offset: None
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
An implementation of Straus, which should be more efficient than Pippenger for the expected amount
|
||||
of points
|
||||
|
||||
Completing key generation from the round 2 messages takes:
|
||||
- Naive
|
||||
Completed 33-of-50 in 2.66s
|
||||
Completed 5-of-8 in 11.05ms
|
||||
|
||||
- crate Straus
|
||||
Completed 33-of-50 in 730-833ms (extremely notable effects from taking variable time)
|
||||
Completed 5-of-8 in 2.8ms
|
||||
|
||||
- dalek VartimeMultiscalarMul
|
||||
Completed 33-of-50 in 266ms
|
||||
Completed 5-of-8 in 1.6ms
|
||||
|
||||
This does show this algorithm isn't appropriately tuned (and potentially isn't even the right
|
||||
choice), at least with that quantity. Unfortunately, we can't use dalek's multiexp implementation
|
||||
everywhere, and this does work
|
||||
*/
|
||||
pub fn multiexp_vartime<C: Curve>(scalars: &[C::F], points: &[C::G]) -> C::G {
|
||||
let mut tables = vec![];
|
||||
// dalek uses 8 in their impl, along with a carry scheme where values are [-8, 8)
|
||||
// Moving to a similar system here did save a marginal amount, yet not one significant enough for
|
||||
// its pain (as some fields do have scalars which can have their top bit set, a scenario dalek
|
||||
// assumes is never true)
|
||||
tables.resize(points.len(), Vec::with_capacity(15));
|
||||
for p in 0 .. points.len() {
|
||||
let mut accum = C::G::identity();
|
||||
tables[p].push(accum);
|
||||
for _ in 0 .. 15 {
|
||||
accum += points[p];
|
||||
tables[p].push(accum);
|
||||
}
|
||||
}
|
||||
|
||||
let mut nibbles = vec![];
|
||||
nibbles.resize(scalars.len(), vec![]);
|
||||
for s in 0 .. scalars.len() {
|
||||
let bytes = C::F_to_le_bytes(&scalars[s]);
|
||||
nibbles[s].resize(C::F_len() * 2, 0);
|
||||
for i in 0 .. bytes.len() {
|
||||
nibbles[s][i * 2] = bytes[i] & 0b1111;
|
||||
nibbles[s][(i * 2) + 1] = (bytes[i] >> 4) & 0b1111;
|
||||
}
|
||||
}
|
||||
|
||||
let mut res = C::G::identity();
|
||||
for b in (0 .. (C::F_len() * 2)).rev() {
|
||||
for _ in 0 .. 4 {
|
||||
res = res.double();
|
||||
}
|
||||
|
||||
for s in 0 .. scalars.len() {
|
||||
// This creates a 250% performance increase on key gen, which uses a bunch of very low
|
||||
// scalars. This is why this function is now committed to being vartime
|
||||
if nibbles[s][b] != 0 {
|
||||
res += tables[s][nibbles[s][b] as usize];
|
||||
}
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
475
crypto/frost/src/sign.rs
Normal file
475
crypto/frost/src/sign.rs
Normal file
@@ -0,0 +1,475 @@
|
||||
use core::{convert::TryFrom, cmp::min, fmt};
|
||||
use std::rc::Rc;
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::Group;
|
||||
|
||||
use crate::{Curve, FrostError, MultisigParams, MultisigKeys, MultisigView, algorithm::Algorithm};
|
||||
|
||||
/// Calculate the lagrange coefficient
|
||||
pub fn lagrange<F: PrimeField>(
|
||||
i: usize,
|
||||
included: &[usize],
|
||||
) -> F {
|
||||
let mut num = F::one();
|
||||
let mut denom = F::one();
|
||||
for l in included {
|
||||
if i == *l {
|
||||
continue;
|
||||
}
|
||||
|
||||
let share = F::from(u64::try_from(*l).unwrap());
|
||||
num *= share;
|
||||
denom *= share - F::from(u64::try_from(i).unwrap());
|
||||
}
|
||||
|
||||
// Safe as this will only be 0 if we're part of the above loop
|
||||
// (which we have an if case to avoid)
|
||||
num * denom.invert().unwrap()
|
||||
}
|
||||
|
||||
/// Pairing of an Algorithm with a MultisigKeys instance and this specific signing set
|
||||
#[derive(Clone)]
|
||||
pub struct Params<C: Curve, A: Algorithm<C>> {
|
||||
algorithm: A,
|
||||
keys: Rc<MultisigKeys<C>>,
|
||||
view: MultisigView<C>,
|
||||
}
|
||||
|
||||
// Currently public to enable more complex operations as desired, yet solely used in testing
|
||||
impl<C: Curve, A: Algorithm<C>> Params<C, A> {
|
||||
pub fn new(
|
||||
algorithm: A,
|
||||
keys: Rc<MultisigKeys<C>>,
|
||||
included: &[usize],
|
||||
) -> Result<Params<C, A>, FrostError> {
|
||||
let mut included = included.to_vec();
|
||||
(&mut included).sort_unstable();
|
||||
|
||||
// Included < threshold
|
||||
if included.len() < keys.params.t {
|
||||
Err(FrostError::InvalidSigningSet("not enough signers".to_string()))?;
|
||||
}
|
||||
// Invalid index
|
||||
if included[0] == 0 {
|
||||
Err(FrostError::InvalidParticipantIndex(included[0], keys.params.n))?;
|
||||
}
|
||||
// OOB index
|
||||
if included[included.len() - 1] > keys.params.n {
|
||||
Err(FrostError::InvalidParticipantIndex(included[included.len() - 1], keys.params.n))?;
|
||||
}
|
||||
// Same signer included multiple times
|
||||
for i in 0 .. included.len() - 1 {
|
||||
if included[i] == included[i + 1] {
|
||||
Err(FrostError::DuplicatedIndex(included[i]))?;
|
||||
}
|
||||
}
|
||||
// Not included
|
||||
if !included.contains(&keys.params.i) {
|
||||
Err(FrostError::InvalidSigningSet("signing despite not being included".to_string()))?;
|
||||
}
|
||||
|
||||
// Out of order arguments to prevent additional cloning
|
||||
Ok(Params { algorithm, view: keys.view(&included).unwrap(), keys })
|
||||
}
|
||||
|
||||
pub fn multisig_params(&self) -> MultisigParams {
|
||||
self.keys.params
|
||||
}
|
||||
|
||||
pub fn view(&self) -> MultisigView<C> {
|
||||
self.view.clone()
|
||||
}
|
||||
}
|
||||
|
||||
struct PreprocessPackage<C: Curve> {
|
||||
nonces: [C::F; 2],
|
||||
commitments: [C::G; 2],
|
||||
serialized: Vec<u8>,
|
||||
}
|
||||
|
||||
// This library unifies the preprocessing step with signing due to security concerns and to provide
|
||||
// a simpler UX
|
||||
fn preprocess<R: RngCore + CryptoRng, C: Curve, A: Algorithm<C>>(
|
||||
rng: &mut R,
|
||||
params: &mut Params<C, A>,
|
||||
) -> PreprocessPackage<C> {
|
||||
let nonces = [C::F::random(&mut *rng), C::F::random(&mut *rng)];
|
||||
let commitments = [C::generator_table() * nonces[0], C::generator_table() * nonces[1]];
|
||||
let mut serialized = C::G_to_bytes(&commitments[0]);
|
||||
serialized.extend(&C::G_to_bytes(&commitments[1]));
|
||||
|
||||
serialized.extend(
|
||||
&A::preprocess_addendum(
|
||||
rng,
|
||||
¶ms.view,
|
||||
&nonces
|
||||
)
|
||||
);
|
||||
|
||||
PreprocessPackage { nonces, commitments, serialized }
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
struct Package<C: Curve> {
|
||||
Ris: Vec<C::G>,
|
||||
R: C::G,
|
||||
share: C::F
|
||||
}
|
||||
|
||||
// Has every signer perform the role of the signature aggregator
|
||||
// Step 1 was already deprecated by performing nonce generation as needed
|
||||
// Step 2 is simply the broadcast round from step 1
|
||||
fn sign_with_share<C: Curve, A: Algorithm<C>>(
|
||||
params: &mut Params<C, A>,
|
||||
our_preprocess: PreprocessPackage<C>,
|
||||
commitments: &[Option<Vec<u8>>],
|
||||
msg: &[u8],
|
||||
) -> Result<(Package<C>, Vec<u8>), FrostError> {
|
||||
let multisig_params = params.multisig_params();
|
||||
if commitments.len() != (multisig_params.n + 1) {
|
||||
Err(
|
||||
FrostError::InvalidParticipantQuantity(
|
||||
multisig_params.n,
|
||||
commitments.len() - min(1, commitments.len())
|
||||
)
|
||||
)?;
|
||||
}
|
||||
|
||||
if commitments[0].is_some() {
|
||||
Err(FrostError::NonEmptyParticipantZero)?;
|
||||
}
|
||||
|
||||
let commitments_len = C::G_len() * 2;
|
||||
// Allow algorithms to commit to more data than just the included nonces
|
||||
// Not IETF draft compliant yet it doesn't prevent a compliant Schnorr algorithm from being used
|
||||
// with this library, which does ship one
|
||||
let commit_len = commitments_len + A::addendum_commit_len();
|
||||
#[allow(non_snake_case)]
|
||||
let mut B = Vec::with_capacity(multisig_params.n + 1);
|
||||
B.push(None);
|
||||
|
||||
// Commitments + a presumed 32-byte hash of the message
|
||||
let mut b: Vec<u8> = Vec::with_capacity((multisig_params.t * 2 * C::G_len()) + 32);
|
||||
|
||||
// Parse the commitments and prepare the binding factor
|
||||
for l in 1 ..= multisig_params.n {
|
||||
if l == multisig_params.i {
|
||||
if commitments[l].is_some() {
|
||||
Err(FrostError::DuplicatedIndex(l))?;
|
||||
}
|
||||
|
||||
B.push(Some(our_preprocess.commitments));
|
||||
b.extend(&u16::try_from(l).unwrap().to_le_bytes());
|
||||
b.extend(&our_preprocess.serialized[0 .. commit_len]);
|
||||
continue;
|
||||
}
|
||||
|
||||
let included = params.view.included.contains(&l);
|
||||
if commitments[l].is_some() && (!included) {
|
||||
Err(FrostError::InvalidCommitmentQuantity(l, 0, commitments.len() / C::G_len()))?;
|
||||
}
|
||||
|
||||
if commitments[l].is_none() {
|
||||
if included {
|
||||
Err(FrostError::InvalidCommitmentQuantity(l, 2, 0))?;
|
||||
}
|
||||
B.push(None);
|
||||
continue;
|
||||
}
|
||||
|
||||
let commitments = commitments[l].as_ref().unwrap();
|
||||
if commitments.len() < commitments_len {
|
||||
Err(FrostError::InvalidCommitmentQuantity(l, 2, commitments.len() / C::G_len()))?;
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
let D = C::G_from_slice(&commitments[0 .. C::G_len()])
|
||||
.map_err(|_| FrostError::InvalidCommitment(l))?;
|
||||
#[allow(non_snake_case)]
|
||||
let E = C::G_from_slice(&commitments[C::G_len() .. commitments_len])
|
||||
.map_err(|_| FrostError::InvalidCommitment(l))?;
|
||||
B.push(Some([D, E]));
|
||||
b.extend(&u16::try_from(l).unwrap().to_le_bytes());
|
||||
b.extend(&commitments[0 .. commit_len]);
|
||||
}
|
||||
|
||||
// Process the commitments and addendums
|
||||
let view = ¶ms.view;
|
||||
for l in ¶ms.view.included {
|
||||
params.algorithm.process_addendum(
|
||||
view,
|
||||
*l,
|
||||
B[*l].as_ref().unwrap(),
|
||||
if *l == multisig_params.i {
|
||||
&our_preprocess.serialized[commitments_len .. our_preprocess.serialized.len()]
|
||||
} else {
|
||||
&commitments[*l].as_ref().unwrap()[
|
||||
commitments_len .. commitments[*l].as_ref().unwrap().len()
|
||||
]
|
||||
}
|
||||
)?;
|
||||
}
|
||||
|
||||
// Finish the binding factor
|
||||
b.extend(&C::hash_msg(&msg));
|
||||
|
||||
// If the following are used with certain lengths, it is possible to craft distinct
|
||||
// commitments/messages/contexts with the same binding factor. While we can't length prefix the
|
||||
// commitments, unfortunately, we can tag and length prefix the following
|
||||
|
||||
// If the offset functionality provided by this library is in use, include it in the binding
|
||||
// factor. Not compliant with the IETF spec which doesn't have a concept of offsets
|
||||
if params.keys.offset.is_some() {
|
||||
b.extend(b"offset");
|
||||
b.extend(u64::try_from(C::F_len()).unwrap().to_le_bytes());
|
||||
b.extend(&C::F_to_le_bytes(¶ms.keys.offset.unwrap()));
|
||||
}
|
||||
|
||||
// Also include any context the algorithm may want to specify. Again not compliant with the IETF
|
||||
// spec which doesn't considered there may be signatures other than Schnorr being generated with
|
||||
// FROST
|
||||
let context = params.algorithm.context();
|
||||
if context.len() != 0 {
|
||||
b.extend(b"context");
|
||||
b.extend(u64::try_from(context.len()).unwrap().to_le_bytes());
|
||||
b.extend(&context);
|
||||
}
|
||||
|
||||
let b = C::hash_to_F(&b);
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
let mut Ris = vec![];
|
||||
#[allow(non_snake_case)]
|
||||
let mut R = C::G::identity();
|
||||
for i in 0 .. params.view.included.len() {
|
||||
let commitments = B[params.view.included[i]].unwrap();
|
||||
#[allow(non_snake_case)]
|
||||
let this_R = commitments[0] + (commitments[1] * b);
|
||||
Ris.push(this_R);
|
||||
R += this_R;
|
||||
}
|
||||
|
||||
let view = ¶ms.view;
|
||||
let share = params.algorithm.sign_share(
|
||||
view,
|
||||
R,
|
||||
b,
|
||||
our_preprocess.nonces[0] + (our_preprocess.nonces[1] * b),
|
||||
msg
|
||||
);
|
||||
Ok((Package { Ris, R, share }, C::F_to_le_bytes(&share)))
|
||||
}
|
||||
|
||||
// This doesn't check the signing set is as expected and unexpected changes can cause false blames
|
||||
// if legitimate participants are still using the original, expected, signing set. This library
|
||||
// could be made more robust in that regard
|
||||
fn complete<C: Curve, A: Algorithm<C>>(
|
||||
sign_params: &Params<C, A>,
|
||||
sign: Package<C>,
|
||||
serialized: &[Option<Vec<u8>>],
|
||||
) -> Result<A::Signature, FrostError> {
|
||||
let params = sign_params.multisig_params();
|
||||
if serialized.len() != (params.n + 1) {
|
||||
Err(
|
||||
FrostError::InvalidParticipantQuantity(params.n, serialized.len() - min(1, serialized.len()))
|
||||
)?;
|
||||
}
|
||||
|
||||
if serialized[0].is_some() {
|
||||
Err(FrostError::NonEmptyParticipantZero)?;
|
||||
}
|
||||
|
||||
let mut responses = Vec::with_capacity(params.t);
|
||||
let mut sum = sign.share;
|
||||
for i in 0 .. sign_params.view.included.len() {
|
||||
let l = sign_params.view.included[i];
|
||||
if l == params.i {
|
||||
responses.push(None);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Make sure they actually provided a share
|
||||
if serialized[l].is_none() {
|
||||
Err(FrostError::InvalidShare(l))?;
|
||||
}
|
||||
|
||||
let part = C::F_from_le_slice(serialized[l].as_ref().unwrap())
|
||||
.map_err(|_| FrostError::InvalidShare(l))?;
|
||||
sum += part;
|
||||
responses.push(Some(part));
|
||||
}
|
||||
|
||||
// Perform signature validation instead of individual share validation
|
||||
// For the success route, which should be much more frequent, this should be faster
|
||||
// It also acts as an integrity check of this library's signing function
|
||||
let res = sign_params.algorithm.verify(sign_params.view.group_key, sign.R, sum);
|
||||
if res.is_some() {
|
||||
return Ok(res.unwrap());
|
||||
}
|
||||
|
||||
// Find out who misbehaved
|
||||
for i in 0 .. sign_params.view.included.len() {
|
||||
match responses[i] {
|
||||
Some(part) => {
|
||||
let l = sign_params.view.included[i];
|
||||
if !sign_params.algorithm.verify_share(
|
||||
sign_params.view.verification_share(l),
|
||||
sign.Ris[i],
|
||||
part
|
||||
) {
|
||||
Err(FrostError::InvalidShare(l))?;
|
||||
}
|
||||
},
|
||||
|
||||
// Happens when l == i
|
||||
None => {}
|
||||
}
|
||||
}
|
||||
|
||||
// If everyone has a valid share and there were enough participants, this should've worked
|
||||
Err(
|
||||
FrostError::InternalError(
|
||||
"everyone had a valid share yet the signature was still invalid".to_string()
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
/// State of a Sign machine
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub enum State {
|
||||
Fresh,
|
||||
Preprocessed,
|
||||
Signed,
|
||||
Complete,
|
||||
}
|
||||
|
||||
impl fmt::Display for State {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "{:?}", self)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait StateMachine {
|
||||
type Signature;
|
||||
|
||||
/// Perform the preprocessing round required in order to sign
|
||||
/// Returns a byte vector which must be transmitted to all parties selected for this signing
|
||||
/// process, over an authenticated channel
|
||||
fn preprocess<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
rng: &mut R
|
||||
) -> Result<Vec<u8>, FrostError>;
|
||||
|
||||
/// Sign a message
|
||||
/// Takes in the participant's commitments, which are expected to be in a Vec where participant
|
||||
/// index = Vec index. None is expected at index 0 to allow for this. None is also expected at
|
||||
/// index i which is locally handled. Returns a byte vector representing a share of the signature
|
||||
/// for every other participant to receive, over an authenticated channel
|
||||
fn sign(
|
||||
&mut self,
|
||||
commitments: &[Option<Vec<u8>>],
|
||||
msg: &[u8],
|
||||
) -> Result<Vec<u8>, FrostError>;
|
||||
|
||||
/// Complete signing
|
||||
/// Takes in everyone elses' shares submitted to us as a Vec, expecting participant index =
|
||||
/// Vec index with None at index 0 and index i. Returns a byte vector representing the serialized
|
||||
/// signature
|
||||
fn complete(&mut self, shares: &[Option<Vec<u8>>]) -> Result<Self::Signature, FrostError>;
|
||||
|
||||
fn multisig_params(&self) -> MultisigParams;
|
||||
|
||||
fn state(&self) -> State;
|
||||
}
|
||||
|
||||
/// State machine which manages signing for an arbitrary signature algorithm
|
||||
#[allow(non_snake_case)]
|
||||
pub struct AlgorithmMachine<C: Curve, A: Algorithm<C>> {
|
||||
params: Params<C, A>,
|
||||
state: State,
|
||||
preprocess: Option<PreprocessPackage<C>>,
|
||||
sign: Option<Package<C>>,
|
||||
}
|
||||
|
||||
impl<C: Curve, A: Algorithm<C>> AlgorithmMachine<C, A> {
|
||||
/// Creates a new machine to generate a key for the specified curve in the specified multisig
|
||||
pub fn new(
|
||||
algorithm: A,
|
||||
keys: Rc<MultisigKeys<C>>,
|
||||
included: &[usize],
|
||||
) -> Result<AlgorithmMachine<C, A>, FrostError> {
|
||||
Ok(
|
||||
AlgorithmMachine {
|
||||
params: Params::new(algorithm, keys, included)?,
|
||||
state: State::Fresh,
|
||||
preprocess: None,
|
||||
sign: None,
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<C: Curve, A: Algorithm<C>> StateMachine for AlgorithmMachine<C, A> {
|
||||
type Signature = A::Signature;
|
||||
|
||||
fn preprocess<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
rng: &mut R
|
||||
) -> Result<Vec<u8>, FrostError> {
|
||||
if self.state != State::Fresh {
|
||||
Err(FrostError::InvalidSignTransition(State::Fresh, self.state))?;
|
||||
}
|
||||
let preprocess = preprocess::<R, C, A>(rng, &mut self.params);
|
||||
let serialized = preprocess.serialized.clone();
|
||||
self.preprocess = Some(preprocess);
|
||||
self.state = State::Preprocessed;
|
||||
Ok(serialized)
|
||||
}
|
||||
|
||||
fn sign(
|
||||
&mut self,
|
||||
commitments: &[Option<Vec<u8>>],
|
||||
msg: &[u8],
|
||||
) -> Result<Vec<u8>, FrostError> {
|
||||
if self.state != State::Preprocessed {
|
||||
Err(FrostError::InvalidSignTransition(State::Preprocessed, self.state))?;
|
||||
}
|
||||
|
||||
let (sign, serialized) = sign_with_share(
|
||||
&mut self.params,
|
||||
self.preprocess.take().unwrap(),
|
||||
commitments,
|
||||
msg,
|
||||
)?;
|
||||
|
||||
self.sign = Some(sign);
|
||||
self.state = State::Signed;
|
||||
Ok(serialized)
|
||||
}
|
||||
|
||||
fn complete(&mut self, shares: &[Option<Vec<u8>>]) -> Result<A::Signature, FrostError> {
|
||||
if self.state != State::Signed {
|
||||
Err(FrostError::InvalidSignTransition(State::Signed, self.state))?;
|
||||
}
|
||||
|
||||
let signature = complete(
|
||||
&self.params,
|
||||
self.sign.take().unwrap(),
|
||||
shares,
|
||||
)?;
|
||||
|
||||
self.state = State::Complete;
|
||||
Ok(signature)
|
||||
}
|
||||
|
||||
fn multisig_params(&self) -> MultisigParams {
|
||||
self.params.multisig_params().clone()
|
||||
}
|
||||
|
||||
fn state(&self) -> State {
|
||||
self.state
|
||||
}
|
||||
}
|
||||
112
crypto/frost/tests/common.rs
Normal file
112
crypto/frost/tests/common.rs
Normal file
@@ -0,0 +1,112 @@
|
||||
use core::convert::TryInto;
|
||||
|
||||
use digest::Digest;
|
||||
use ff::PrimeField;
|
||||
use group::GroupEncoding;
|
||||
|
||||
use sha2::{Sha256, Sha512};
|
||||
|
||||
use k256::{
|
||||
elliptic_curve::{generic_array::GenericArray, bigint::{ArrayEncoding, U512}, ops::Reduce},
|
||||
Scalar,
|
||||
ProjectivePoint
|
||||
};
|
||||
|
||||
use frost::{CurveError, Curve, multiexp_vartime, algorithm::Hram};
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct Secp256k1;
|
||||
impl Curve for Secp256k1 {
|
||||
type F = Scalar;
|
||||
type G = ProjectivePoint;
|
||||
type T = ProjectivePoint;
|
||||
|
||||
fn id() -> String {
|
||||
"secp256k1".to_string()
|
||||
}
|
||||
|
||||
fn id_len() -> u8 {
|
||||
Self::id().len() as u8
|
||||
}
|
||||
|
||||
fn generator() -> Self::G {
|
||||
Self::G::GENERATOR
|
||||
}
|
||||
|
||||
fn generator_table() -> Self::T {
|
||||
Self::G::GENERATOR
|
||||
}
|
||||
|
||||
fn multiexp_vartime(scalars: &[Self::F], points: &[Self::G]) -> Self::G {
|
||||
multiexp_vartime::<Secp256k1>(scalars, points)
|
||||
}
|
||||
|
||||
// The IETF draft doesn't specify a secp256k1 ciphersuite
|
||||
// This test just uses the simplest ciphersuite which would still be viable to deploy
|
||||
fn hash_msg(msg: &[u8]) -> Vec<u8> {
|
||||
(&Sha256::digest(msg)).to_vec()
|
||||
}
|
||||
|
||||
// Use wide reduction for security
|
||||
fn hash_to_F(data: &[u8]) -> Self::F {
|
||||
Scalar::from_uint_reduced(
|
||||
U512::from_be_byte_array(Sha512::new().chain_update("rho").chain_update(data).finalize())
|
||||
)
|
||||
}
|
||||
|
||||
fn F_len() -> usize {
|
||||
32
|
||||
}
|
||||
|
||||
fn G_len() -> usize {
|
||||
33
|
||||
}
|
||||
|
||||
fn F_from_le_slice(slice: &[u8]) -> Result<Self::F, CurveError> {
|
||||
let mut bytes: [u8; 32] = slice.try_into().map_err(
|
||||
|_| CurveError::InvalidLength(32, slice.len())
|
||||
)?;
|
||||
bytes.reverse();
|
||||
let scalar = Scalar::from_repr(bytes.into());
|
||||
if scalar.is_none().unwrap_u8() == 1 {
|
||||
Err(CurveError::InvalidScalar)?;
|
||||
}
|
||||
Ok(scalar.unwrap())
|
||||
}
|
||||
|
||||
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError> {
|
||||
let point = ProjectivePoint::from_bytes(GenericArray::from_slice(slice));
|
||||
if point.is_none().unwrap_u8() == 1 {
|
||||
Err(CurveError::InvalidScalar)?;
|
||||
}
|
||||
Ok(point.unwrap())
|
||||
}
|
||||
|
||||
fn F_to_le_bytes(f: &Self::F) -> Vec<u8> {
|
||||
let mut res: [u8; 32] = f.to_bytes().into();
|
||||
res.reverse();
|
||||
res.to_vec()
|
||||
}
|
||||
|
||||
fn G_to_bytes(g: &Self::G) -> Vec<u8> {
|
||||
(&g.to_bytes()).to_vec()
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone)]
|
||||
pub struct TestHram {}
|
||||
impl Hram<Secp256k1> for TestHram {
|
||||
#[allow(non_snake_case)]
|
||||
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
|
||||
Scalar::from_uint_reduced(
|
||||
U512::from_be_byte_array(
|
||||
Sha512::new()
|
||||
.chain_update(Secp256k1::G_to_bytes(R))
|
||||
.chain_update(Secp256k1::G_to_bytes(A))
|
||||
.chain_update(m)
|
||||
.finalize()
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
144
crypto/frost/tests/key_gen_and_sign.rs
Normal file
144
crypto/frost/tests/key_gen_and_sign.rs
Normal file
@@ -0,0 +1,144 @@
|
||||
use std::rc::Rc;
|
||||
|
||||
use rand::{RngCore, rngs::OsRng};
|
||||
|
||||
use digest::Digest;
|
||||
use sha2::Sha256;
|
||||
|
||||
use frost::{
|
||||
Curve,
|
||||
MultisigParams, MultisigKeys,
|
||||
key_gen,
|
||||
algorithm::{Algorithm, Schnorr, SchnorrSignature},
|
||||
sign::{StateMachine, AlgorithmMachine}
|
||||
};
|
||||
|
||||
mod common;
|
||||
use common::{Secp256k1, TestHram};
|
||||
|
||||
const PARTICIPANTS: usize = 8;
|
||||
|
||||
fn sign<C: Curve, A: Algorithm<C, Signature = SchnorrSignature<C>>>(
|
||||
algorithm: A,
|
||||
keys: Vec<Rc<MultisigKeys<C>>>
|
||||
) {
|
||||
let t = keys[0].params().t();
|
||||
let mut machines = vec![];
|
||||
let mut commitments = Vec::with_capacity(PARTICIPANTS + 1);
|
||||
commitments.resize(PARTICIPANTS + 1, None);
|
||||
for i in 1 ..= t {
|
||||
machines.push(
|
||||
AlgorithmMachine::new(
|
||||
algorithm.clone(),
|
||||
keys[i - 1].clone(),
|
||||
&(1 ..= t).collect::<Vec<usize>>()
|
||||
).unwrap()
|
||||
);
|
||||
commitments[i] = Some(machines[i - 1].preprocess(&mut OsRng).unwrap());
|
||||
}
|
||||
|
||||
let mut shares = Vec::with_capacity(PARTICIPANTS + 1);
|
||||
shares.resize(PARTICIPANTS + 1, None);
|
||||
for i in 1 ..= t {
|
||||
shares[i] = Some(
|
||||
machines[i - 1].sign(
|
||||
&commitments
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, value)| if idx == i { None } else { value.to_owned() })
|
||||
.collect::<Vec<Option<Vec<u8>>>>(),
|
||||
b"Hello World"
|
||||
).unwrap()
|
||||
);
|
||||
}
|
||||
|
||||
let mut signature = None;
|
||||
for i in 1 ..= t {
|
||||
let sig = machines[i - 1].complete(
|
||||
&shares
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, value)| if idx == i { None } else { value.to_owned() })
|
||||
.collect::<Vec<Option<Vec<u8>>>>()
|
||||
).unwrap();
|
||||
if signature.is_none() {
|
||||
signature = Some(sig);
|
||||
}
|
||||
assert_eq!(sig, signature.unwrap());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn key_gen_and_sign() {
|
||||
let mut params = vec![];
|
||||
let mut machines = vec![];
|
||||
let mut commitments = vec![vec![]];
|
||||
for i in 1 ..= PARTICIPANTS {
|
||||
params.push(
|
||||
MultisigParams::new(
|
||||
((PARTICIPANTS / 3) * 2) + 1,
|
||||
PARTICIPANTS,
|
||||
i
|
||||
).unwrap()
|
||||
);
|
||||
machines.push(
|
||||
key_gen::StateMachine::<Secp256k1>::new(
|
||||
params[i - 1],
|
||||
"FF/Group Rust key_gen test".to_string()
|
||||
)
|
||||
);
|
||||
commitments.push(machines[i - 1].generate_coefficients(&mut OsRng).unwrap());
|
||||
}
|
||||
|
||||
let mut secret_shares = vec![];
|
||||
for i in 1 ..= PARTICIPANTS {
|
||||
secret_shares.push(
|
||||
machines[i - 1].generate_secret_shares(
|
||||
&mut OsRng,
|
||||
commitments
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, commitments)| if idx == i { vec![] } else { commitments.to_vec() })
|
||||
.collect()
|
||||
).unwrap()
|
||||
);
|
||||
}
|
||||
|
||||
let mut verification_shares = vec![];
|
||||
let mut group_key = None;
|
||||
let mut keys = vec![];
|
||||
for i in 1 ..= PARTICIPANTS {
|
||||
let mut our_secret_shares = vec![vec![]];
|
||||
our_secret_shares.extend(
|
||||
secret_shares.iter().map(|shares| shares[i].clone()).collect::<Vec<Vec<u8>>>()
|
||||
);
|
||||
|
||||
let these_keys = machines[i - 1].complete(our_secret_shares).unwrap();
|
||||
assert_eq!(
|
||||
MultisigKeys::<Secp256k1>::deserialize(&these_keys.serialize()).unwrap(),
|
||||
these_keys
|
||||
);
|
||||
keys.push(Rc::new(these_keys.clone()));
|
||||
|
||||
if verification_shares.len() == 0 {
|
||||
verification_shares = these_keys.verification_shares();
|
||||
}
|
||||
assert_eq!(verification_shares, these_keys.verification_shares());
|
||||
|
||||
if group_key.is_none() {
|
||||
group_key = Some(these_keys.group_key());
|
||||
}
|
||||
assert_eq!(group_key.unwrap(), these_keys.group_key());
|
||||
}
|
||||
|
||||
sign(Schnorr::<Secp256k1, TestHram>::new(), keys.clone());
|
||||
|
||||
let mut randomization = [0; 64];
|
||||
(&mut OsRng).fill_bytes(&mut randomization);
|
||||
sign(
|
||||
Schnorr::<Secp256k1, TestHram>::new(),
|
||||
keys.iter().map(
|
||||
|keys| Rc::new(keys.offset(Secp256k1::hash_to_F(&Sha256::digest(&randomization))))
|
||||
).collect()
|
||||
);
|
||||
}
|
||||
Reference in New Issue
Block a user