mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 20:29:23 +00:00
Start modularizing FROST tests as per https://github.com/serai-dex/serai/issues/9
This commit is contained in:
@@ -14,6 +14,8 @@ pub mod key_gen;
|
||||
pub mod algorithm;
|
||||
pub mod sign;
|
||||
|
||||
pub mod tests;
|
||||
|
||||
/// Set of errors for curve-related operations, namely encoding and decoding
|
||||
#[derive(Error, Debug)]
|
||||
pub enum CurveError {
|
||||
|
||||
32
crypto/frost/src/tests/curve.rs
Normal file
32
crypto/frost/src/tests/curve.rs
Normal file
@@ -0,0 +1,32 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use crate::{
|
||||
Curve, MultisigKeys,
|
||||
tests::{schnorr::{sign, verify, batch_verify}, key_gen}
|
||||
};
|
||||
|
||||
// Test generation of FROST keys
|
||||
fn key_generation<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
// This alone verifies the verification shares and group key are agreed upon as expected
|
||||
key_gen::<_, C>(rng);
|
||||
}
|
||||
|
||||
// Test serialization of generated keys
|
||||
fn keys_serialization<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
for (_, keys) in key_gen::<_, C>(rng) {
|
||||
assert_eq!(&MultisigKeys::<C>::deserialize(&keys.serialize()).unwrap(), &*keys);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn test_curve<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
// TODO: Test the Curve functions themselves
|
||||
|
||||
// Test Schnorr signatures work as expected
|
||||
sign::<_, C>(rng);
|
||||
verify::<_, C>(rng);
|
||||
batch_verify::<_, C>(rng);
|
||||
|
||||
// Test FROST key generation and serialization of MultisigKeys works as expected
|
||||
key_generation::<_, C>(rng);
|
||||
keys_serialization::<_, C>(rng);
|
||||
}
|
||||
2
crypto/frost/src/tests/literal/mod.rs
Normal file
2
crypto/frost/src/tests/literal/mod.rs
Normal file
@@ -0,0 +1,2 @@
|
||||
mod secp256k1;
|
||||
mod schnorr;
|
||||
42
crypto/frost/src/tests/literal/schnorr.rs
Normal file
42
crypto/frost/src/tests/literal/schnorr.rs
Normal file
@@ -0,0 +1,42 @@
|
||||
use std::rc::Rc;
|
||||
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
use crate::{
|
||||
Curve, schnorr, algorithm::{Hram, Schnorr},
|
||||
tests::{key_gen, algorithm_machines, sign as sign_test, actual::secp256k1::{Secp256k1, TestHram}}
|
||||
};
|
||||
|
||||
const MESSAGE: &[u8] = b"Hello World";
|
||||
|
||||
#[test]
|
||||
fn sign() {
|
||||
sign_test(
|
||||
&mut OsRng,
|
||||
algorithm_machines(
|
||||
&mut OsRng,
|
||||
Schnorr::<Secp256k1, TestHram>::new(),
|
||||
&key_gen::<_, Secp256k1>(&mut OsRng)
|
||||
),
|
||||
MESSAGE
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sign_with_offset() {
|
||||
let mut keys = key_gen::<_, Secp256k1>(&mut OsRng);
|
||||
let group_key = keys[&1].group_key();
|
||||
|
||||
let offset = Secp256k1::hash_to_F(b"offset");
|
||||
for i in 1 ..= u16::try_from(keys.len()).unwrap() {
|
||||
keys.insert(i, Rc::new(keys[&i].offset(offset)));
|
||||
}
|
||||
let offset_key = group_key + (Secp256k1::generator_table() * offset);
|
||||
|
||||
let sig = sign_test(
|
||||
&mut OsRng,
|
||||
algorithm_machines(&mut OsRng, Schnorr::<Secp256k1, TestHram>::new(), &keys),
|
||||
MESSAGE
|
||||
);
|
||||
assert!(schnorr::verify(offset_key, TestHram::hram(&sig.R, &offset_key, MESSAGE), &sig));
|
||||
}
|
||||
114
crypto/frost/src/tests/literal/secp256k1.rs
Normal file
114
crypto/frost/src/tests/literal/secp256k1.rs
Normal file
@@ -0,0 +1,114 @@
|
||||
use core::convert::TryInto;
|
||||
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
use ff::PrimeField;
|
||||
use group::GroupEncoding;
|
||||
|
||||
use sha2::{Digest, Sha256, Sha512};
|
||||
|
||||
use k256::{
|
||||
elliptic_curve::{generic_array::GenericArray, bigint::{ArrayEncoding, U512}, ops::Reduce},
|
||||
Scalar,
|
||||
ProjectivePoint
|
||||
};
|
||||
|
||||
use crate::{CurveError, Curve, multiexp_vartime, algorithm::Hram, tests::curve::test_curve};
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub struct Secp256k1;
|
||||
impl Curve for Secp256k1 {
|
||||
type F = Scalar;
|
||||
type G = ProjectivePoint;
|
||||
type T = ProjectivePoint;
|
||||
|
||||
fn id() -> String {
|
||||
"secp256k1".to_string()
|
||||
}
|
||||
|
||||
fn id_len() -> u8 {
|
||||
Self::id().len() as u8
|
||||
}
|
||||
|
||||
fn generator() -> Self::G {
|
||||
Self::G::GENERATOR
|
||||
}
|
||||
|
||||
fn generator_table() -> Self::T {
|
||||
Self::G::GENERATOR
|
||||
}
|
||||
|
||||
fn multiexp_vartime(scalars: &[Self::F], points: &[Self::G]) -> Self::G {
|
||||
multiexp_vartime(scalars, points, false)
|
||||
}
|
||||
|
||||
// The IETF draft doesn't specify a secp256k1 ciphersuite
|
||||
// This test just uses the simplest ciphersuite which would still be viable to deploy
|
||||
fn hash_msg(msg: &[u8]) -> Vec<u8> {
|
||||
(&Sha256::digest(msg)).to_vec()
|
||||
}
|
||||
|
||||
// Use wide reduction for security
|
||||
fn hash_to_F(data: &[u8]) -> Self::F {
|
||||
Scalar::from_uint_reduced(
|
||||
U512::from_be_byte_array(Sha512::new().chain_update("rho").chain_update(data).finalize())
|
||||
)
|
||||
}
|
||||
|
||||
fn F_len() -> usize {
|
||||
32
|
||||
}
|
||||
|
||||
fn G_len() -> usize {
|
||||
33
|
||||
}
|
||||
|
||||
fn F_from_slice(slice: &[u8]) -> Result<Self::F, CurveError> {
|
||||
let bytes: [u8; 32] = slice.try_into()
|
||||
.map_err(|_| CurveError::InvalidLength(32, slice.len()))?;
|
||||
let scalar = Scalar::from_repr(bytes.into());
|
||||
if scalar.is_none().unwrap_u8() == 1 {
|
||||
Err(CurveError::InvalidScalar)?;
|
||||
}
|
||||
Ok(scalar.unwrap())
|
||||
}
|
||||
|
||||
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError> {
|
||||
let point = ProjectivePoint::from_bytes(GenericArray::from_slice(slice));
|
||||
if point.is_none().unwrap_u8() == 1 {
|
||||
Err(CurveError::InvalidScalar)?;
|
||||
}
|
||||
Ok(point.unwrap())
|
||||
}
|
||||
|
||||
fn F_to_bytes(f: &Self::F) -> Vec<u8> {
|
||||
(&f.to_bytes()).to_vec()
|
||||
}
|
||||
|
||||
fn G_to_bytes(g: &Self::G) -> Vec<u8> {
|
||||
(&g.to_bytes()).to_vec()
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone)]
|
||||
pub struct TestHram {}
|
||||
impl Hram<Secp256k1> for TestHram {
|
||||
#[allow(non_snake_case)]
|
||||
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
|
||||
Scalar::from_uint_reduced(
|
||||
U512::from_be_byte_array(
|
||||
Sha512::new()
|
||||
.chain_update(Secp256k1::G_to_bytes(R))
|
||||
.chain_update(Secp256k1::G_to_bytes(A))
|
||||
.chain_update(m)
|
||||
.finalize()
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn secp256k1_curve() {
|
||||
test_curve::<_, Secp256k1>(&mut OsRng);
|
||||
}
|
||||
160
crypto/frost/src/tests/mod.rs
Normal file
160
crypto/frost/src/tests/mod.rs
Normal file
@@ -0,0 +1,160 @@
|
||||
use std::{rc::Rc, collections::HashMap};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use crate::{
|
||||
Curve,
|
||||
MultisigParams, MultisigKeys,
|
||||
key_gen,
|
||||
algorithm::Algorithm,
|
||||
sign::{StateMachine, AlgorithmMachine}
|
||||
};
|
||||
|
||||
// Internal tests
|
||||
mod schnorr;
|
||||
|
||||
// Test suites for public usage
|
||||
pub mod curve;
|
||||
|
||||
// Literal test definitions to run during `cargo test`
|
||||
#[cfg(test)]
|
||||
mod literal;
|
||||
|
||||
pub const PARTICIPANTS: u16 = 5;
|
||||
pub const THRESHOLD: u16 = ((PARTICIPANTS / 3) * 2) + 1;
|
||||
|
||||
pub fn clone_without<K: Clone + std::cmp::Eq + std::hash::Hash, V: Clone>(
|
||||
map: &HashMap<K, V>,
|
||||
without: &K
|
||||
) -> HashMap<K, V> {
|
||||
let mut res = map.clone();
|
||||
res.remove(without).unwrap();
|
||||
res
|
||||
}
|
||||
|
||||
pub fn key_gen<R: RngCore + CryptoRng, C: Curve>(
|
||||
rng: &mut R
|
||||
) -> HashMap<u16, Rc<MultisigKeys<C>>> {
|
||||
let mut params = HashMap::new();
|
||||
let mut machines = HashMap::new();
|
||||
|
||||
let mut commitments = HashMap::new();
|
||||
for i in 1 ..= PARTICIPANTS {
|
||||
params.insert(
|
||||
i,
|
||||
MultisigParams::new(
|
||||
THRESHOLD,
|
||||
PARTICIPANTS,
|
||||
i
|
||||
).unwrap()
|
||||
);
|
||||
machines.insert(
|
||||
i,
|
||||
key_gen::StateMachine::<C>::new(
|
||||
params[&i],
|
||||
"FROST test key_gen".to_string()
|
||||
)
|
||||
);
|
||||
commitments.insert(
|
||||
i,
|
||||
machines.get_mut(&i).unwrap().generate_coefficients(rng).unwrap()
|
||||
);
|
||||
}
|
||||
|
||||
let mut secret_shares = HashMap::new();
|
||||
for (l, machine) in machines.iter_mut() {
|
||||
secret_shares.insert(
|
||||
*l,
|
||||
machine.generate_secret_shares(rng, clone_without(&commitments, l)).unwrap()
|
||||
);
|
||||
}
|
||||
|
||||
let mut verification_shares = None;
|
||||
let mut group_key = None;
|
||||
let mut keys = HashMap::new();
|
||||
for (i, machine) in machines.iter_mut() {
|
||||
let mut our_secret_shares = HashMap::new();
|
||||
for (l, shares) in &secret_shares {
|
||||
if i == l {
|
||||
continue;
|
||||
}
|
||||
our_secret_shares.insert(*l, shares[&i].clone());
|
||||
}
|
||||
let these_keys = machine.complete(our_secret_shares).unwrap();
|
||||
|
||||
// Verify the verification_shares are agreed upon
|
||||
if verification_shares.is_none() {
|
||||
verification_shares = Some(these_keys.verification_shares());
|
||||
}
|
||||
assert_eq!(verification_shares.as_ref().unwrap(), &these_keys.verification_shares());
|
||||
|
||||
// Verify the group keys are agreed upon
|
||||
if group_key.is_none() {
|
||||
group_key = Some(these_keys.group_key());
|
||||
}
|
||||
assert_eq!(group_key.unwrap(), these_keys.group_key());
|
||||
|
||||
keys.insert(*i, Rc::new(these_keys));
|
||||
}
|
||||
|
||||
keys
|
||||
}
|
||||
|
||||
pub fn algorithm_machines<R: RngCore, C: Curve, A: Algorithm<C>>(
|
||||
rng: &mut R,
|
||||
algorithm: A,
|
||||
keys: &HashMap<u16, Rc<MultisigKeys<C>>>,
|
||||
) -> HashMap<u16, AlgorithmMachine<C, A>> {
|
||||
let mut included = vec![];
|
||||
while included.len() < usize::from(keys[&1].params().t()) {
|
||||
let n = u16::try_from((rng.next_u64() % u64::try_from(keys.len()).unwrap()) + 1).unwrap();
|
||||
if included.contains(&n) {
|
||||
continue;
|
||||
}
|
||||
included.push(n);
|
||||
}
|
||||
|
||||
keys.iter().filter_map(
|
||||
|(i, keys)| if included.contains(&i) {
|
||||
Some((
|
||||
*i,
|
||||
AlgorithmMachine::new(
|
||||
algorithm.clone(),
|
||||
keys.clone(),
|
||||
&included.clone()
|
||||
).unwrap()
|
||||
))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
).collect()
|
||||
}
|
||||
|
||||
pub fn sign<R: RngCore + CryptoRng, M: StateMachine>(
|
||||
rng: &mut R,
|
||||
mut machines: HashMap<u16, M>,
|
||||
msg: &[u8]
|
||||
) -> M::Signature {
|
||||
let mut commitments = HashMap::new();
|
||||
for (i, machine) in machines.iter_mut() {
|
||||
commitments.insert(*i, machine.preprocess(rng).unwrap());
|
||||
}
|
||||
|
||||
let mut shares = HashMap::new();
|
||||
for (i, machine) in machines.iter_mut() {
|
||||
shares.insert(
|
||||
*i,
|
||||
machine.sign(clone_without(&commitments, i), msg).unwrap()
|
||||
);
|
||||
}
|
||||
|
||||
let mut signature = None;
|
||||
for (i, machine) in machines.iter_mut() {
|
||||
let sig = machine.complete(clone_without(&shares, i)).unwrap();
|
||||
if signature.is_none() {
|
||||
signature = Some(sig.clone());
|
||||
}
|
||||
assert_eq!(&sig, signature.as_ref().unwrap());
|
||||
}
|
||||
signature.unwrap()
|
||||
}
|
||||
32
crypto/frost/src/tests/schnorr.rs
Normal file
32
crypto/frost/src/tests/schnorr.rs
Normal file
@@ -0,0 +1,32 @@
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use ff::Field;
|
||||
|
||||
use crate::{Curve, schnorr, algorithm::SchnorrSignature};
|
||||
|
||||
pub(crate) fn sign<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
let private_key = C::F::random(&mut *rng);
|
||||
let nonce = C::F::random(&mut *rng);
|
||||
let challenge = C::F::random(rng); // Doesn't bother to craft an HRAM
|
||||
assert!(
|
||||
schnorr::verify::<C>(
|
||||
C::generator_table() * private_key,
|
||||
challenge,
|
||||
&schnorr::sign(private_key, nonce, challenge)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// The above sign function verifies signing works
|
||||
// This verifies invalid signatures don't pass, using zero signatures, which should effectively be
|
||||
// random
|
||||
pub(crate) fn verify<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
||||
assert!(
|
||||
!schnorr::verify::<C>(
|
||||
C::generator_table() * C::F::random(&mut *rng),
|
||||
C::F::random(rng),
|
||||
&SchnorrSignature { R: C::generator_table() * C::F::zero(), s: C::F::zero() }
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user