Luke Parker
2022-11-10 22:35:09 -05:00
parent d714f2202d
commit 84de427d72
32 changed files with 313 additions and 278 deletions

View File

@@ -1,12 +1,13 @@
use std::{
marker::PhantomData,
ops::Deref,
io::{self, Read, Write},
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use digest::Digest;
use hkdf::{Hkdf, hmac::SimpleHmac};
@@ -48,12 +49,6 @@ pub struct Commitments<C: Ciphersuite> {
cached_msg: Vec<u8>,
sig: SchnorrSignature<C>,
}
impl<C: Ciphersuite> Drop for Commitments<C> {
fn drop(&mut self) {
self.zeroize();
}
}
impl<C: Ciphersuite> ZeroizeOnDrop for Commitments<C> {}
impl<C: Ciphersuite> Commitments<C> {
pub fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
@@ -117,9 +112,9 @@ impl<C: Ciphersuite> KeyGenMachine<C> {
for i in 0 .. t {
// Step 1: Generate t random values to form a polynomial with
coefficients.push(C::random_nonzero_F(&mut *rng));
coefficients.push(Zeroizing::new(C::random_nonzero_F(&mut *rng)));
// Step 3: Generate public commitments
commitments.push(C::generator() * coefficients[i]);
commitments.push(C::generator() * coefficients[i].deref());
cached_msg.extend(commitments[i].to_bytes().as_ref());
}
@@ -127,27 +122,22 @@ impl<C: Ciphersuite> KeyGenMachine<C> {
// It would probably be perfectly fine to use one of our polynomial elements, yet doing so
// puts the integrity of FROST at risk. While there's almost no way it could, as it's used in
// an ECDH with validated group elemnents, better to avoid any questions on it
let enc_key = C::random_nonzero_F(&mut *rng);
let pub_enc_key = C::generator() * enc_key;
let enc_key = Zeroizing::new(C::random_nonzero_F(&mut *rng));
let pub_enc_key = C::generator() * enc_key.deref();
cached_msg.extend(pub_enc_key.to_bytes().as_ref());
// Step 2: Provide a proof of knowledge
let mut r = C::random_nonzero_F(rng);
let r = Zeroizing::new(C::random_nonzero_F(rng));
let nonce = C::generator() * r.deref();
let sig = SchnorrSignature::<C>::sign(
coefficients[0],
&coefficients[0],
// This could be deterministic as the PoK is a singleton never opened up to cooperative
// discussion
// There's no reason to spend the time and effort to make this deterministic besides a
// general obsession with canonicity and determinism though
r,
challenge::<C>(
&self.context,
self.params.i(),
(C::generator() * r).to_bytes().as_ref(),
&cached_msg,
),
challenge::<C>(&self.context, self.params.i(), nonce.to_bytes().as_ref(), &cached_msg),
);
r.zeroize();
// Step 4: Broadcast
(
@@ -157,19 +147,20 @@ impl<C: Ciphersuite> KeyGenMachine<C> {
coefficients,
our_commitments: commitments.clone(),
enc_key,
pub_enc_key,
},
Commitments { commitments, enc_key: pub_enc_key, cached_msg, sig },
)
}
}
fn polynomial<F: PrimeField>(coefficients: &[F], l: u16) -> F {
fn polynomial<F: PrimeField + Zeroize>(coefficients: &[Zeroizing<F>], l: u16) -> Zeroizing<F> {
let l = F::from(u64::from(l));
let mut share = F::zero();
let mut share = Zeroizing::new(F::zero());
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
share += coefficient;
*share += coefficient.deref();
if idx != (coefficients.len() - 1) {
share *= l;
*share *= l;
}
}
share
@@ -250,16 +241,11 @@ fn create_ciphers<C: Ciphersuite>(
pub struct SecretShareMachine<C: Ciphersuite> {
params: ThresholdParams,
context: String,
coefficients: Vec<C::F>,
coefficients: Vec<Zeroizing<C::F>>,
our_commitments: Vec<C::G>,
enc_key: C::F,
enc_key: Zeroizing<C::F>,
pub_enc_key: C::G,
}
impl<C: Ciphersuite> Drop for SecretShareMachine<C> {
fn drop(&mut self) {
self.zeroize()
}
}
impl<C: Ciphersuite> ZeroizeOnDrop for SecretShareMachine<C> {}
impl<C: Ciphersuite> SecretShareMachine<C> {
/// Verify the data from the previous round (canonicity, PoKs, message authenticity)
@@ -276,7 +262,6 @@ impl<C: Ciphersuite> SecretShareMachine<C> {
.drain()
.map(|(l, mut msg)| {
enc_keys.insert(l, msg.enc_key);
msg.enc_key.zeroize();
// Step 5: Validate each proof of knowledge
// This is solely the prep step for the latter batch verification
@@ -309,7 +294,7 @@ impl<C: Ciphersuite> SecretShareMachine<C> {
let (commitments, mut enc_keys) = self.verify_r1(&mut *rng, commitments)?;
// Step 1: Generate secret shares for all other parties
let mut sender = (C::generator() * self.enc_key).to_bytes();
let sender = self.pub_enc_key.to_bytes();
let mut ciphers = HashMap::new();
let mut res = HashMap::new();
for l in 1 ..= self.params.n() {
@@ -321,7 +306,7 @@ impl<C: Ciphersuite> SecretShareMachine<C> {
let (mut cipher_send, cipher_recv) = {
let receiver = enc_keys.get_mut(&l).unwrap();
let mut ecdh = (*receiver * self.enc_key).to_bytes();
let mut ecdh = (*receiver * self.enc_key.deref()).to_bytes();
create_ciphers::<C>(sender, &mut receiver.to_bytes(), &mut ecdh)
};
@@ -338,11 +323,9 @@ impl<C: Ciphersuite> SecretShareMachine<C> {
share_bytes.as_mut().zeroize();
}
self.enc_key.zeroize();
sender.as_mut().zeroize();
// Calculate our own share
let share = polynomial(&self.coefficients, self.params.i());
self.coefficients.zeroize();
Ok((KeyMachine { params: self.params, secret: share, commitments, ciphers }, res))
@@ -352,7 +335,7 @@ impl<C: Ciphersuite> SecretShareMachine<C> {
/// Final step of the key generation protocol.
pub struct KeyMachine<C: Ciphersuite> {
params: ThresholdParams,
secret: C::F,
secret: Zeroizing<C::F>,
ciphers: HashMap<u16, ChaCha20>,
commitments: HashMap<u16, Vec<C::G>>,
}
@@ -390,9 +373,6 @@ impl<C: Ciphersuite> KeyMachine<C> {
rng: &mut R,
mut shares: HashMap<u16, SecretShare<C::F>>,
) -> Result<ThresholdCore<C>, DkgError> {
let mut secret_share = self.secret;
self.secret.zeroize();
validate_map(&shares, &(1 ..= self.params.n()).collect::<Vec<_>>(), self.params.i())?;
// Calculate the exponent for a given participant and apply it to a series of commitments
@@ -414,17 +394,19 @@ impl<C: Ciphersuite> KeyMachine<C> {
cipher.apply_keystream(share_bytes.0.as_mut());
drop(cipher);
let mut share: C::F =
Option::from(C::F::from_repr(share_bytes.0)).ok_or(DkgError::InvalidShare(l))?;
let mut share = Zeroizing::new(
Option::<C::F>::from(C::F::from_repr(share_bytes.0)).ok_or(DkgError::InvalidShare(l))?,
);
share_bytes.zeroize();
secret_share += share;
*self.secret += share.deref();
// This can be insecurely linearized from n * t to just n using the below sums for a given
// stripe. Doing so uses naive addition which is subject to malleability. The only way to
// ensure that malleability isn't present is to use this n * t algorithm, which runs
// per sender and not as an aggregate of all senders, which also enables blame
let mut values = exponential(self.params.i, &self.commitments[&l]);
values.push((-share, C::generator()));
// multiexp will Zeroize this when it's done with it
values.push((-*share.deref(), C::generator()));
share.zeroize();
batch.queue(rng, l, values);
@@ -443,14 +425,19 @@ impl<C: Ciphersuite> KeyMachine<C> {
// Calculate each user's verification share
let mut verification_shares = HashMap::new();
for i in 1 ..= self.params.n() {
verification_shares.insert(i, multiexp_vartime(&exponential(i, &stripes)));
verification_shares.insert(
i,
if i == self.params.i() {
C::generator() * self.secret.deref()
} else {
multiexp_vartime(&exponential(i, &stripes))
},
);
}
// Removing this check would enable optimizing the above from t + (n * t) to t + ((n - 1) * t)
debug_assert_eq!(C::generator() * secret_share, verification_shares[&self.params.i()]);
Ok(ThresholdCore {
params: self.params,
secret_share,
secret_share: self.secret.clone(),
group_key: stripes[0],
verification_shares,
})