Remove Output::amount and move Payment from Amount to Balance

This code is still largely designed around the idea a payment for a network is
fungible with any other, which isn't true. This starts moving past that.

Asserts are added to ensure the integrity of coin to the scheduler (which is
now per key per coin, not per key alone) and in Bitcoin/Monero prepare_send.
This commit is contained in:
Luke Parker
2023-11-08 23:33:25 -05:00
parent ffedba7a05
commit 7d72e224f0
10 changed files with 201 additions and 87 deletions

View File

@@ -5,10 +5,9 @@ use ciphersuite::Ciphersuite;
pub use serai_db::*;
use scale::{Encode, Decode};
#[rustfmt::skip]
use serai_client::{
primitives::ExternalAddress,
in_instructions::primitives::InInstructionWithBalance
primitives::{Balance, ExternalAddress},
in_instructions::primitives::InInstructionWithBalance,
};
use crate::{
@@ -172,23 +171,23 @@ impl<N: Network, D: Db> MultisigsDb<N, D> {
res
}
fn forwarded_output_key(amount: u64) -> Vec<u8> {
Self::multisigs_key(b"forwarded_output", amount.to_le_bytes())
fn forwarded_output_key(balance: Balance) -> Vec<u8> {
Self::multisigs_key(b"forwarded_output", balance.encode())
}
pub fn save_forwarded_output(
txn: &mut D::Transaction<'_>,
instruction: InInstructionWithBalance,
) {
let key = Self::forwarded_output_key(instruction.balance.amount.0);
let key = Self::forwarded_output_key(instruction.balance);
let mut existing = txn.get(&key).unwrap_or(vec![]);
existing.extend(instruction.encode());
txn.put(key, existing);
}
pub fn take_forwarded_output(
txn: &mut D::Transaction<'_>,
amount: u64,
balance: Balance,
) -> Option<InInstructionWithBalance> {
let key = Self::forwarded_output_key(amount);
let key = Self::forwarded_output_key(balance);
let outputs = txn.get(&key)?;
let mut outputs_ref = outputs.as_slice();

View File

@@ -7,7 +7,7 @@ use scale::{Encode, Decode};
use messages::SubstrateContext;
use serai_client::{
primitives::{MAX_DATA_LEN, ExternalAddress, BlockHash},
primitives::{MAX_DATA_LEN, NetworkId, Coin, ExternalAddress, BlockHash},
in_instructions::primitives::{
InInstructionWithBalance, Batch, RefundableInInstruction, Shorthand, MAX_BATCH_SIZE,
},
@@ -157,7 +157,20 @@ impl<D: Db, N: Network> MultisigManager<D, N> {
assert!(current_keys.len() <= 2);
let mut actively_signing = vec![];
for (_, key) in &current_keys {
schedulers.push(Scheduler::from_db(raw_db, *key).unwrap());
schedulers.push(
Scheduler::from_db(
raw_db,
*key,
match N::NETWORK {
NetworkId::Serai => panic!("adding a key for Serai"),
NetworkId::Bitcoin => Coin::Bitcoin,
// TODO: This is incomplete to DAI
NetworkId::Ethereum => Coin::Ether,
NetworkId::Monero => Coin::Monero,
},
)
.unwrap(),
);
// Load any TXs being actively signed
let key = key.to_bytes();
@@ -234,7 +247,17 @@ impl<D: Db, N: Network> MultisigManager<D, N> {
let viewer = Some(MultisigViewer {
activation_block,
key: external_key,
scheduler: Scheduler::<N>::new::<D>(txn, external_key),
scheduler: Scheduler::<N>::new::<D>(
txn,
external_key,
match N::NETWORK {
NetworkId::Serai => panic!("adding a key for Serai"),
NetworkId::Bitcoin => Coin::Bitcoin,
// TODO: This is incomplete to DAI
NetworkId::Ethereum => Coin::Ether,
NetworkId::Monero => Coin::Monero,
},
),
});
if self.existing.is_none() {
@@ -295,12 +318,7 @@ impl<D: Db, N: Network> MultisigManager<D, N> {
assert_eq!(balance.coin.network(), N::NETWORK);
if let Ok(address) = N::Address::try_from(address.consume()) {
// TODO: Add coin to payment
payments.push(Payment {
address,
data: data.map(|data| data.consume()),
amount: balance.amount.0,
});
payments.push(Payment { address, data: data.map(|data| data.consume()), balance });
}
}
@@ -344,7 +362,7 @@ impl<D: Db, N: Network> MultisigManager<D, N> {
inputs: vec![output.clone()],
// Uses a payment as this will still be successfully sent due to fee amortization,
// and because change is currently always a Serai key
payments: vec![Payment { address: refund_to, data: None, amount: output.balance().amount.0 }],
payments: vec![Payment { address: refund_to, data: None, balance: output.balance() }],
change: None,
}
}
@@ -542,7 +560,7 @@ impl<D: Db, N: Network> MultisigManager<D, N> {
//
// This is unnecessary, due to the current flow around Eventuality resolutions and the
// current bounds naturally found being sufficiently amenable, yet notable for the future
if scheduler.can_use_branch(output.amount()) {
if scheduler.can_use_branch(output.balance()) {
// We could simply call can_use_branch, yet it'd have an edge case where if we receive
// two outputs for 100, and we could use one such output, we'd handle both.
//
@@ -852,7 +870,7 @@ impl<D: Db, N: Network> MultisigManager<D, N> {
}
if let Some(instruction) =
MultisigsDb::<N, D>::take_forwarded_output(txn, output.amount())
MultisigsDb::<N, D>::take_forwarded_output(txn, output.balance())
{
instruction
} else {

View File

@@ -553,7 +553,7 @@ impl<N: Network, D: Db> Scanner<N, D> {
// TODO: These lines are the ones which will cause a really long-lived lock acquisiton
for output in network.get_outputs(&block, key).await {
assert_eq!(output.key(), key);
if output.amount() >= N::DUST {
if output.balance().amount.0 >= N::DUST {
outputs.push(output);
}
}
@@ -580,10 +580,10 @@ impl<N: Network, D: Db> Scanner<N, D> {
for output in &outputs {
let id = output.id();
info!(
"block {} had output {} worth {}",
"block {} had output {} worth {:?}",
hex::encode(&block_id),
hex::encode(&id),
output.amount(),
output.balance(),
);
// On Bitcoin, the output ID should be unique for a given chain

View File

@@ -5,6 +5,8 @@ use std::{
use ciphersuite::{group::GroupEncoding, Ciphersuite};
use serai_client::primitives::{Coin, Amount, Balance};
use crate::{
networks::{OutputType, Output, Network},
DbTxn, Db, Payment, Plan,
@@ -14,6 +16,7 @@ use crate::{
#[derive(PartialEq, Eq, Debug)]
pub struct Scheduler<N: Network> {
key: <N::Curve as Ciphersuite>::G,
coin: Coin,
// Serai, when it has more outputs expected than it can handle in a single tranaction, will
// schedule the outputs to be handled later. Immediately, it just creates additional outputs
@@ -51,7 +54,11 @@ impl<N: Network> Scheduler<N> {
self.payments.is_empty()
}
fn read<R: Read>(key: <N::Curve as Ciphersuite>::G, reader: &mut R) -> io::Result<Self> {
fn read<R: Read>(
key: <N::Curve as Ciphersuite>::G,
coin: Coin,
reader: &mut R,
) -> io::Result<Self> {
let mut read_plans = || -> io::Result<_> {
let mut all_plans = HashMap::new();
let mut all_plans_len = [0; 4];
@@ -95,7 +102,7 @@ impl<N: Network> Scheduler<N> {
payments.push_back(Payment::read(reader)?);
}
Ok(Scheduler { key, queued_plans, plans, utxos, payments })
Ok(Scheduler { key, coin, queued_plans, plans, utxos, payments })
}
// TODO2: Get rid of this
@@ -130,13 +137,18 @@ impl<N: Network> Scheduler<N> {
payment.write(&mut res).unwrap();
}
debug_assert_eq!(&Self::read(self.key, &mut res.as_slice()).unwrap(), self);
debug_assert_eq!(&Self::read(self.key, self.coin, &mut res.as_slice()).unwrap(), self);
res
}
pub fn new<D: Db>(txn: &mut D::Transaction<'_>, key: <N::Curve as Ciphersuite>::G) -> Self {
pub fn new<D: Db>(
txn: &mut D::Transaction<'_>,
key: <N::Curve as Ciphersuite>::G,
coin: Coin,
) -> Self {
let res = Scheduler {
key,
coin,
queued_plans: HashMap::new(),
plans: HashMap::new(),
utxos: vec![],
@@ -147,18 +159,19 @@ impl<N: Network> Scheduler<N> {
res
}
pub fn from_db<D: Db>(db: &D, key: <N::Curve as Ciphersuite>::G) -> io::Result<Self> {
pub fn from_db<D: Db>(db: &D, key: <N::Curve as Ciphersuite>::G, coin: Coin) -> io::Result<Self> {
let scheduler = db.get(scheduler_key::<D, _>(&key)).unwrap_or_else(|| {
panic!("loading scheduler from DB without scheduler for {}", hex::encode(key.to_bytes()))
});
let mut reader_slice = scheduler.as_slice();
let reader = &mut reader_slice;
Self::read(key, reader)
Self::read(key, coin, reader)
}
pub fn can_use_branch(&self, amount: u64) -> bool {
self.plans.contains_key(&amount)
pub fn can_use_branch(&self, balance: Balance) -> bool {
assert_eq!(balance.coin, self.coin);
self.plans.contains_key(&balance.amount.0)
}
fn execute(
@@ -170,11 +183,14 @@ impl<N: Network> Scheduler<N> {
let mut change = false;
let mut max = N::MAX_OUTPUTS;
let payment_amounts =
|payments: &Vec<Payment<N>>| payments.iter().map(|payment| payment.amount).sum::<u64>();
let payment_amounts = |payments: &Vec<Payment<N>>| {
payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>()
};
// Requires a change output
if inputs.iter().map(Output::amount).sum::<u64>() != payment_amounts(&payments) {
if inputs.iter().map(|output| output.balance().amount.0).sum::<u64>() !=
payment_amounts(&payments)
{
change = true;
max -= 1;
}
@@ -208,7 +224,14 @@ impl<N: Network> Scheduler<N> {
// Create the payment for the plan
// Push it to the front so it's not moved into a branch until all lower-depth items are
payments.insert(0, Payment { address: branch_address.clone(), data: None, amount });
payments.insert(
0,
Payment {
address: branch_address.clone(),
data: None,
balance: Balance { coin: self.coin, amount: Amount(amount) },
},
);
}
Plan {
@@ -230,12 +253,12 @@ impl<N: Network> Scheduler<N> {
for utxo in utxos.drain(..) {
if utxo.kind() == OutputType::Branch {
let amount = utxo.amount();
let amount = utxo.balance().amount.0;
if let Some(plans) = self.plans.get_mut(&amount) {
// Execute the first set of payments possible with an output of this amount
let payments = plans.pop_front().unwrap();
// They won't be equal if we dropped payments due to being dust
assert!(amount >= payments.iter().map(|payment| payment.amount).sum::<u64>());
assert!(amount >= payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>());
// If we've grabbed the last plan for this output amount, remove it from the map
if plans.is_empty() {
@@ -264,6 +287,13 @@ impl<N: Network> Scheduler<N> {
key_for_any_change: <N::Curve as Ciphersuite>::G,
force_spend: bool,
) -> Vec<Plan<N>> {
for utxo in &utxos {
assert_eq!(utxo.balance().coin, self.coin);
}
for payment in &payments {
assert_eq!(payment.balance.coin, self.coin);
}
// Drop payments to our own branch address
/*
created_output will be called any time we send to a branch address. If it's called, and it
@@ -297,7 +327,7 @@ impl<N: Network> Scheduler<N> {
}
// Sort UTXOs so the highest valued ones are first
self.utxos.sort_by(|a, b| a.amount().cmp(&b.amount()).reverse());
self.utxos.sort_by(|a, b| a.balance().amount.0.cmp(&b.balance().amount.0).reverse());
// We always want to aggregate our UTXOs into a single UTXO in the name of simplicity
// We may have more UTXOs than will fit into a TX though
@@ -333,7 +363,7 @@ impl<N: Network> Scheduler<N> {
}
// We want to use all possible UTXOs for all possible payments
let mut balance = utxos.iter().map(Output::amount).sum::<u64>();
let mut balance = utxos.iter().map(|output| output.balance().amount.0).sum::<u64>();
// If we can't fulfill the next payment, we have encountered an instance of the UTXO
// availability problem
@@ -345,7 +375,7 @@ impl<N: Network> Scheduler<N> {
// granting us access to our full balance
let mut executing = vec![];
while !self.payments.is_empty() {
let amount = self.payments[0].amount;
let amount = self.payments[0].balance.amount.0;
if balance.checked_sub(amount).is_some() {
balance -= amount;
executing.push(self.payments.pop_front().unwrap());
@@ -420,7 +450,7 @@ impl<N: Network> Scheduler<N> {
// Get the payments this output is expected to handle
let queued = self.queued_plans.get_mut(&expected).unwrap();
let mut payments = queued.pop_front().unwrap();
assert_eq!(expected, payments.iter().map(|payment| payment.amount).sum::<u64>());
assert_eq!(expected, payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>());
// If this was the last set of payments at this amount, remove it
if queued.is_empty() {
self.queued_plans.remove(&expected);
@@ -436,7 +466,7 @@ impl<N: Network> Scheduler<N> {
{
let mut to_amortize = actual - expected;
// If the payments are worth less than this fee we need to amortize, return, dropping them
if payments.iter().map(|payment| payment.amount).sum::<u64>() < to_amortize {
if payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>() < to_amortize {
return;
}
while to_amortize != 0 {
@@ -449,18 +479,20 @@ impl<N: Network> Scheduler<N> {
// Only subtract the overage once
overage = 0;
let subtractable = payment.amount.min(to_subtract);
let subtractable = payment.balance.amount.0.min(to_subtract);
to_amortize -= subtractable;
payment.amount -= subtractable;
payment.balance.amount.0 -= subtractable;
}
}
}
// Drop payments now below the dust threshold
let payments =
payments.into_iter().filter(|payment| payment.amount >= N::DUST).collect::<Vec<_>>();
let payments = payments
.into_iter()
.filter(|payment| payment.balance.amount.0 >= N::DUST)
.collect::<Vec<_>>();
// Sanity check this was done properly
assert!(actual >= payments.iter().map(|payment| payment.amount).sum::<u64>());
assert!(actual >= payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>());
// If there's no payments left, return
if payments.is_empty() {