mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 12:19:24 +00:00
Rename the coins folder to networks (#583)
* Rename the coins folder to networks Ethereum isn't a coin. It's a network. Resolves #357. * More renames of coins -> networks in orchestration * Correct paths in tests/ * cargo fmt
This commit is contained in:
400
networks/monero/ringct/clsag/src/lib.rs
Normal file
400
networks/monero/ringct/clsag/src/lib.rs
Normal file
@@ -0,0 +1,400 @@
|
||||
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
|
||||
#![doc = include_str!("../README.md")]
|
||||
#![deny(missing_docs)]
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
#![allow(non_snake_case)]
|
||||
|
||||
use core::ops::Deref;
|
||||
use std_shims::{
|
||||
vec,
|
||||
vec::Vec,
|
||||
io::{self, Read, Write},
|
||||
};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
|
||||
use subtle::{ConstantTimeEq, ConditionallySelectable};
|
||||
|
||||
use curve25519_dalek::{
|
||||
constants::{ED25519_BASEPOINT_TABLE, ED25519_BASEPOINT_POINT},
|
||||
scalar::Scalar,
|
||||
traits::{IsIdentity, MultiscalarMul, VartimePrecomputedMultiscalarMul},
|
||||
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation},
|
||||
};
|
||||
|
||||
use monero_io::*;
|
||||
use monero_generators::hash_to_point;
|
||||
use monero_primitives::{INV_EIGHT, G_PRECOMP, Commitment, Decoys, keccak256_to_scalar};
|
||||
|
||||
#[cfg(feature = "multisig")]
|
||||
mod multisig;
|
||||
#[cfg(feature = "multisig")]
|
||||
pub use multisig::{ClsagMultisigMaskSender, ClsagAddendum, ClsagMultisig};
|
||||
|
||||
#[cfg(all(feature = "std", test))]
|
||||
mod tests;
|
||||
|
||||
/// Errors when working with CLSAGs.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
#[cfg_attr(feature = "std", derive(thiserror::Error))]
|
||||
pub enum ClsagError {
|
||||
/// The ring was invalid (such as being too small or too large).
|
||||
#[cfg_attr(feature = "std", error("invalid ring"))]
|
||||
InvalidRing,
|
||||
/// The discrete logarithm of the key, scaling G, wasn't equivalent to the signing ring member.
|
||||
#[cfg_attr(feature = "std", error("invalid commitment"))]
|
||||
InvalidKey,
|
||||
/// The commitment opening provided did not match the ring member's.
|
||||
#[cfg_attr(feature = "std", error("invalid commitment"))]
|
||||
InvalidCommitment,
|
||||
/// The key image was invalid (such as being identity or torsioned)
|
||||
#[cfg_attr(feature = "std", error("invalid key image"))]
|
||||
InvalidImage,
|
||||
/// The `D` component was invalid.
|
||||
#[cfg_attr(feature = "std", error("invalid D"))]
|
||||
InvalidD,
|
||||
/// The `s` vector was invalid.
|
||||
#[cfg_attr(feature = "std", error("invalid s"))]
|
||||
InvalidS,
|
||||
/// The `c1` variable was invalid.
|
||||
#[cfg_attr(feature = "std", error("invalid c1"))]
|
||||
InvalidC1,
|
||||
}
|
||||
|
||||
/// Context on the input being signed for.
|
||||
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
|
||||
pub struct ClsagContext {
|
||||
// The opening for the commitment of the signing ring member
|
||||
commitment: Commitment,
|
||||
// Selected ring members' positions, signer index, and ring
|
||||
decoys: Decoys,
|
||||
}
|
||||
|
||||
impl ClsagContext {
|
||||
/// Create a new context, as necessary for signing.
|
||||
pub fn new(decoys: Decoys, commitment: Commitment) -> Result<ClsagContext, ClsagError> {
|
||||
if decoys.len() > u8::MAX.into() {
|
||||
Err(ClsagError::InvalidRing)?;
|
||||
}
|
||||
|
||||
// Validate the commitment matches
|
||||
if decoys.signer_ring_members()[1] != commitment.calculate() {
|
||||
Err(ClsagError::InvalidCommitment)?;
|
||||
}
|
||||
|
||||
Ok(ClsagContext { commitment, decoys })
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::large_enum_variant)]
|
||||
enum Mode {
|
||||
Sign(usize, EdwardsPoint, EdwardsPoint),
|
||||
Verify(Scalar),
|
||||
}
|
||||
|
||||
// Core of the CLSAG algorithm, applicable to both sign and verify with minimal differences
|
||||
//
|
||||
// Said differences are covered via the above Mode
|
||||
fn core(
|
||||
ring: &[[EdwardsPoint; 2]],
|
||||
I: &EdwardsPoint,
|
||||
pseudo_out: &EdwardsPoint,
|
||||
msg: &[u8; 32],
|
||||
D: &EdwardsPoint,
|
||||
s: &[Scalar],
|
||||
A_c1: &Mode,
|
||||
) -> ((EdwardsPoint, Scalar, Scalar), Scalar) {
|
||||
let n = ring.len();
|
||||
|
||||
let images_precomp = match A_c1 {
|
||||
Mode::Sign(..) => None,
|
||||
Mode::Verify(..) => Some(VartimeEdwardsPrecomputation::new([I, D])),
|
||||
};
|
||||
let D_INV_EIGHT = D * INV_EIGHT();
|
||||
|
||||
// Generate the transcript
|
||||
// Instead of generating multiple, a single transcript is created and then edited as needed
|
||||
const PREFIX: &[u8] = b"CLSAG_";
|
||||
#[rustfmt::skip]
|
||||
const AGG_0: &[u8] = b"agg_0";
|
||||
#[rustfmt::skip]
|
||||
const ROUND: &[u8] = b"round";
|
||||
const PREFIX_AGG_0_LEN: usize = PREFIX.len() + AGG_0.len();
|
||||
|
||||
let mut to_hash = Vec::with_capacity(((2 * n) + 5) * 32);
|
||||
to_hash.extend(PREFIX);
|
||||
to_hash.extend(AGG_0);
|
||||
to_hash.extend([0; 32 - PREFIX_AGG_0_LEN]);
|
||||
|
||||
let mut P = Vec::with_capacity(n);
|
||||
for member in ring {
|
||||
P.push(member[0]);
|
||||
to_hash.extend(member[0].compress().to_bytes());
|
||||
}
|
||||
|
||||
let mut C = Vec::with_capacity(n);
|
||||
for member in ring {
|
||||
C.push(member[1] - pseudo_out);
|
||||
to_hash.extend(member[1].compress().to_bytes());
|
||||
}
|
||||
|
||||
to_hash.extend(I.compress().to_bytes());
|
||||
to_hash.extend(D_INV_EIGHT.compress().to_bytes());
|
||||
to_hash.extend(pseudo_out.compress().to_bytes());
|
||||
// mu_P with agg_0
|
||||
let mu_P = keccak256_to_scalar(&to_hash);
|
||||
// mu_C with agg_1
|
||||
to_hash[PREFIX_AGG_0_LEN - 1] = b'1';
|
||||
let mu_C = keccak256_to_scalar(&to_hash);
|
||||
|
||||
// Truncate it for the round transcript, altering the DST as needed
|
||||
to_hash.truncate(((2 * n) + 1) * 32);
|
||||
for i in 0 .. ROUND.len() {
|
||||
to_hash[PREFIX.len() + i] = ROUND[i];
|
||||
}
|
||||
// Unfortunately, it's I D pseudo_out instead of pseudo_out I D, meaning this needs to be
|
||||
// truncated just to add it back
|
||||
to_hash.extend(pseudo_out.compress().to_bytes());
|
||||
to_hash.extend(msg);
|
||||
|
||||
// Configure the loop based on if we're signing or verifying
|
||||
let start;
|
||||
let end;
|
||||
let mut c;
|
||||
match A_c1 {
|
||||
Mode::Sign(r, A, AH) => {
|
||||
start = r + 1;
|
||||
end = r + n;
|
||||
to_hash.extend(A.compress().to_bytes());
|
||||
to_hash.extend(AH.compress().to_bytes());
|
||||
c = keccak256_to_scalar(&to_hash);
|
||||
}
|
||||
|
||||
Mode::Verify(c1) => {
|
||||
start = 0;
|
||||
end = n;
|
||||
c = *c1;
|
||||
}
|
||||
}
|
||||
|
||||
// Perform the core loop
|
||||
let mut c1 = c;
|
||||
for i in (start .. end).map(|i| i % n) {
|
||||
let c_p = mu_P * c;
|
||||
let c_c = mu_C * c;
|
||||
|
||||
// (s_i * G) + (c_p * P_i) + (c_c * C_i)
|
||||
let L = match A_c1 {
|
||||
Mode::Sign(..) => {
|
||||
EdwardsPoint::multiscalar_mul([s[i], c_p, c_c], [ED25519_BASEPOINT_POINT, P[i], C[i]])
|
||||
}
|
||||
Mode::Verify(..) => {
|
||||
G_PRECOMP().vartime_mixed_multiscalar_mul([s[i]], [c_p, c_c], [P[i], C[i]])
|
||||
}
|
||||
};
|
||||
|
||||
let PH = hash_to_point(P[i].compress().0);
|
||||
|
||||
// (c_p * I) + (c_c * D) + (s_i * PH)
|
||||
let R = match A_c1 {
|
||||
Mode::Sign(..) => EdwardsPoint::multiscalar_mul([c_p, c_c, s[i]], [I, D, &PH]),
|
||||
Mode::Verify(..) => {
|
||||
images_precomp.as_ref().unwrap().vartime_mixed_multiscalar_mul([c_p, c_c], [s[i]], [PH])
|
||||
}
|
||||
};
|
||||
|
||||
to_hash.truncate(((2 * n) + 3) * 32);
|
||||
to_hash.extend(L.compress().to_bytes());
|
||||
to_hash.extend(R.compress().to_bytes());
|
||||
c = keccak256_to_scalar(&to_hash);
|
||||
|
||||
// This will only execute once and shouldn't need to be constant time. Making it constant time
|
||||
// removes the risk of branch prediction creating timing differences depending on ring index
|
||||
// however
|
||||
c1.conditional_assign(&c, i.ct_eq(&(n - 1)));
|
||||
}
|
||||
|
||||
// This first tuple is needed to continue signing, the latter is the c to be tested/worked with
|
||||
((D_INV_EIGHT, c * mu_P, c * mu_C), c1)
|
||||
}
|
||||
|
||||
/// The CLSAG signature, as used in Monero.
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct Clsag {
|
||||
/// The difference of the commitment randomnesses, scaling the key image generator.
|
||||
pub D: EdwardsPoint,
|
||||
/// The responses for each ring member.
|
||||
pub s: Vec<Scalar>,
|
||||
/// The first challenge in the ring.
|
||||
pub c1: Scalar,
|
||||
}
|
||||
|
||||
struct ClsagSignCore {
|
||||
incomplete_clsag: Clsag,
|
||||
pseudo_out: EdwardsPoint,
|
||||
key_challenge: Scalar,
|
||||
challenged_mask: Scalar,
|
||||
}
|
||||
|
||||
impl Clsag {
|
||||
// Sign core is the extension of core as needed for signing, yet is shared between single signer
|
||||
// and multisig, hence why it's still core
|
||||
fn sign_core<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
I: &EdwardsPoint,
|
||||
input: &ClsagContext,
|
||||
mask: Scalar,
|
||||
msg: &[u8; 32],
|
||||
A: EdwardsPoint,
|
||||
AH: EdwardsPoint,
|
||||
) -> ClsagSignCore {
|
||||
let r: usize = input.decoys.signer_index().into();
|
||||
|
||||
let pseudo_out = Commitment::new(mask, input.commitment.amount).calculate();
|
||||
let mask_delta = input.commitment.mask - mask;
|
||||
|
||||
let H = hash_to_point(input.decoys.ring()[r][0].compress().0);
|
||||
let D = H * mask_delta;
|
||||
let mut s = Vec::with_capacity(input.decoys.ring().len());
|
||||
for _ in 0 .. input.decoys.ring().len() {
|
||||
s.push(Scalar::random(rng));
|
||||
}
|
||||
let ((D, c_p, c_c), c1) =
|
||||
core(input.decoys.ring(), I, &pseudo_out, msg, &D, &s, &Mode::Sign(r, A, AH));
|
||||
|
||||
ClsagSignCore {
|
||||
incomplete_clsag: Clsag { D, s, c1 },
|
||||
pseudo_out,
|
||||
key_challenge: c_p,
|
||||
challenged_mask: c_c * mask_delta,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sign CLSAG signatures for the provided inputs.
|
||||
///
|
||||
/// Monero ensures the rerandomized input commitments have the same value as the outputs by
|
||||
/// checking `sum(rerandomized_input_commitments) - sum(output_commitments) == 0`. This requires
|
||||
/// not only the amounts balance, yet also
|
||||
/// `sum(input_commitment_masks) - sum(output_commitment_masks)`.
|
||||
///
|
||||
/// Monero solves this by following the wallet protocol to determine each output commitment's
|
||||
/// randomness, then using random masks for all but the last input. The last input is
|
||||
/// rerandomized to the necessary mask for the equation to balance.
|
||||
///
|
||||
/// Due to Monero having this behavior, it only makes sense to sign CLSAGs as a list, hence this
|
||||
/// API being the way it is.
|
||||
///
|
||||
/// `inputs` is of the form (discrete logarithm of the key, context).
|
||||
///
|
||||
/// `sum_outputs` is for the sum of the output commitments' masks.
|
||||
pub fn sign<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
mut inputs: Vec<(Zeroizing<Scalar>, ClsagContext)>,
|
||||
sum_outputs: Scalar,
|
||||
msg: [u8; 32],
|
||||
) -> Result<Vec<(Clsag, EdwardsPoint)>, ClsagError> {
|
||||
// Create the key images
|
||||
let mut key_image_generators = vec![];
|
||||
let mut key_images = vec![];
|
||||
for input in &inputs {
|
||||
let key = input.1.decoys.signer_ring_members()[0];
|
||||
|
||||
// Check the key is consistent
|
||||
if (ED25519_BASEPOINT_TABLE * input.0.deref()) != key {
|
||||
Err(ClsagError::InvalidKey)?;
|
||||
}
|
||||
|
||||
let key_image_generator = hash_to_point(key.compress().0);
|
||||
key_image_generators.push(key_image_generator);
|
||||
key_images.push(key_image_generator * input.0.deref());
|
||||
}
|
||||
|
||||
let mut res = Vec::with_capacity(inputs.len());
|
||||
let mut sum_pseudo_outs = Scalar::ZERO;
|
||||
for i in 0 .. inputs.len() {
|
||||
let mask;
|
||||
// If this is the last input, set the mask as described above
|
||||
if i == (inputs.len() - 1) {
|
||||
mask = sum_outputs - sum_pseudo_outs;
|
||||
} else {
|
||||
mask = Scalar::random(rng);
|
||||
sum_pseudo_outs += mask;
|
||||
}
|
||||
|
||||
let mut nonce = Zeroizing::new(Scalar::random(rng));
|
||||
let ClsagSignCore { mut incomplete_clsag, pseudo_out, key_challenge, challenged_mask } =
|
||||
Clsag::sign_core(
|
||||
rng,
|
||||
&key_images[i],
|
||||
&inputs[i].1,
|
||||
mask,
|
||||
&msg,
|
||||
nonce.deref() * ED25519_BASEPOINT_TABLE,
|
||||
nonce.deref() * key_image_generators[i],
|
||||
);
|
||||
// Effectively r - c x, except c x is (c_p x) + (c_c z), where z is the delta between the
|
||||
// ring member's commitment and our pseudo-out commitment (which will only have a known
|
||||
// discrete log over G if the amounts cancel out)
|
||||
incomplete_clsag.s[usize::from(inputs[i].1.decoys.signer_index())] =
|
||||
nonce.deref() - ((key_challenge * inputs[i].0.deref()) + challenged_mask);
|
||||
let clsag = incomplete_clsag;
|
||||
|
||||
// Zeroize private keys and nonces.
|
||||
inputs[i].0.zeroize();
|
||||
nonce.zeroize();
|
||||
|
||||
debug_assert!(clsag
|
||||
.verify(inputs[i].1.decoys.ring(), &key_images[i], &pseudo_out, &msg)
|
||||
.is_ok());
|
||||
|
||||
res.push((clsag, pseudo_out));
|
||||
}
|
||||
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
/// Verify a CLSAG signature for the provided context.
|
||||
pub fn verify(
|
||||
&self,
|
||||
ring: &[[EdwardsPoint; 2]],
|
||||
I: &EdwardsPoint,
|
||||
pseudo_out: &EdwardsPoint,
|
||||
msg: &[u8; 32],
|
||||
) -> Result<(), ClsagError> {
|
||||
// Preliminary checks
|
||||
// s, c1, and points must also be encoded canonically, which is checked at time of decode
|
||||
if ring.is_empty() {
|
||||
Err(ClsagError::InvalidRing)?;
|
||||
}
|
||||
if ring.len() != self.s.len() {
|
||||
Err(ClsagError::InvalidS)?;
|
||||
}
|
||||
if I.is_identity() || (!I.is_torsion_free()) {
|
||||
Err(ClsagError::InvalidImage)?;
|
||||
}
|
||||
|
||||
let D = self.D.mul_by_cofactor();
|
||||
if D.is_identity() {
|
||||
Err(ClsagError::InvalidD)?;
|
||||
}
|
||||
|
||||
let (_, c1) = core(ring, I, pseudo_out, msg, &D, &self.s, &Mode::Verify(self.c1));
|
||||
if c1 != self.c1 {
|
||||
Err(ClsagError::InvalidC1)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Write a CLSAG.
|
||||
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
|
||||
write_raw_vec(write_scalar, &self.s, w)?;
|
||||
w.write_all(&self.c1.to_bytes())?;
|
||||
write_point(&self.D, w)
|
||||
}
|
||||
|
||||
/// Read a CLSAG.
|
||||
pub fn read<R: Read>(decoys: usize, r: &mut R) -> io::Result<Clsag> {
|
||||
Ok(Clsag { s: read_raw_vec(read_scalar, decoys, r)?, c1: read_scalar(r)?, D: read_point(r)? })
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user