Rename the coins folder to networks (#583)

* Rename the coins folder to networks

Ethereum isn't a coin. It's a network.

Resolves #357.

* More renames of coins -> networks in orchestration

* Correct paths in tests/

* cargo fmt
This commit is contained in:
Luke Parker
2024-07-18 12:16:45 -07:00
committed by GitHub
parent 40cc180853
commit 7d2d739042
244 changed files with 102 additions and 99 deletions

View File

@@ -0,0 +1,400 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
#![allow(non_snake_case)]
use core::ops::Deref;
use std_shims::{
vec,
vec::Vec,
io::{self, Read, Write},
};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use subtle::{ConstantTimeEq, ConditionallySelectable};
use curve25519_dalek::{
constants::{ED25519_BASEPOINT_TABLE, ED25519_BASEPOINT_POINT},
scalar::Scalar,
traits::{IsIdentity, MultiscalarMul, VartimePrecomputedMultiscalarMul},
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation},
};
use monero_io::*;
use monero_generators::hash_to_point;
use monero_primitives::{INV_EIGHT, G_PRECOMP, Commitment, Decoys, keccak256_to_scalar};
#[cfg(feature = "multisig")]
mod multisig;
#[cfg(feature = "multisig")]
pub use multisig::{ClsagMultisigMaskSender, ClsagAddendum, ClsagMultisig};
#[cfg(all(feature = "std", test))]
mod tests;
/// Errors when working with CLSAGs.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "std", derive(thiserror::Error))]
pub enum ClsagError {
/// The ring was invalid (such as being too small or too large).
#[cfg_attr(feature = "std", error("invalid ring"))]
InvalidRing,
/// The discrete logarithm of the key, scaling G, wasn't equivalent to the signing ring member.
#[cfg_attr(feature = "std", error("invalid commitment"))]
InvalidKey,
/// The commitment opening provided did not match the ring member's.
#[cfg_attr(feature = "std", error("invalid commitment"))]
InvalidCommitment,
/// The key image was invalid (such as being identity or torsioned)
#[cfg_attr(feature = "std", error("invalid key image"))]
InvalidImage,
/// The `D` component was invalid.
#[cfg_attr(feature = "std", error("invalid D"))]
InvalidD,
/// The `s` vector was invalid.
#[cfg_attr(feature = "std", error("invalid s"))]
InvalidS,
/// The `c1` variable was invalid.
#[cfg_attr(feature = "std", error("invalid c1"))]
InvalidC1,
}
/// Context on the input being signed for.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct ClsagContext {
// The opening for the commitment of the signing ring member
commitment: Commitment,
// Selected ring members' positions, signer index, and ring
decoys: Decoys,
}
impl ClsagContext {
/// Create a new context, as necessary for signing.
pub fn new(decoys: Decoys, commitment: Commitment) -> Result<ClsagContext, ClsagError> {
if decoys.len() > u8::MAX.into() {
Err(ClsagError::InvalidRing)?;
}
// Validate the commitment matches
if decoys.signer_ring_members()[1] != commitment.calculate() {
Err(ClsagError::InvalidCommitment)?;
}
Ok(ClsagContext { commitment, decoys })
}
}
#[allow(clippy::large_enum_variant)]
enum Mode {
Sign(usize, EdwardsPoint, EdwardsPoint),
Verify(Scalar),
}
// Core of the CLSAG algorithm, applicable to both sign and verify with minimal differences
//
// Said differences are covered via the above Mode
fn core(
ring: &[[EdwardsPoint; 2]],
I: &EdwardsPoint,
pseudo_out: &EdwardsPoint,
msg: &[u8; 32],
D: &EdwardsPoint,
s: &[Scalar],
A_c1: &Mode,
) -> ((EdwardsPoint, Scalar, Scalar), Scalar) {
let n = ring.len();
let images_precomp = match A_c1 {
Mode::Sign(..) => None,
Mode::Verify(..) => Some(VartimeEdwardsPrecomputation::new([I, D])),
};
let D_INV_EIGHT = D * INV_EIGHT();
// Generate the transcript
// Instead of generating multiple, a single transcript is created and then edited as needed
const PREFIX: &[u8] = b"CLSAG_";
#[rustfmt::skip]
const AGG_0: &[u8] = b"agg_0";
#[rustfmt::skip]
const ROUND: &[u8] = b"round";
const PREFIX_AGG_0_LEN: usize = PREFIX.len() + AGG_0.len();
let mut to_hash = Vec::with_capacity(((2 * n) + 5) * 32);
to_hash.extend(PREFIX);
to_hash.extend(AGG_0);
to_hash.extend([0; 32 - PREFIX_AGG_0_LEN]);
let mut P = Vec::with_capacity(n);
for member in ring {
P.push(member[0]);
to_hash.extend(member[0].compress().to_bytes());
}
let mut C = Vec::with_capacity(n);
for member in ring {
C.push(member[1] - pseudo_out);
to_hash.extend(member[1].compress().to_bytes());
}
to_hash.extend(I.compress().to_bytes());
to_hash.extend(D_INV_EIGHT.compress().to_bytes());
to_hash.extend(pseudo_out.compress().to_bytes());
// mu_P with agg_0
let mu_P = keccak256_to_scalar(&to_hash);
// mu_C with agg_1
to_hash[PREFIX_AGG_0_LEN - 1] = b'1';
let mu_C = keccak256_to_scalar(&to_hash);
// Truncate it for the round transcript, altering the DST as needed
to_hash.truncate(((2 * n) + 1) * 32);
for i in 0 .. ROUND.len() {
to_hash[PREFIX.len() + i] = ROUND[i];
}
// Unfortunately, it's I D pseudo_out instead of pseudo_out I D, meaning this needs to be
// truncated just to add it back
to_hash.extend(pseudo_out.compress().to_bytes());
to_hash.extend(msg);
// Configure the loop based on if we're signing or verifying
let start;
let end;
let mut c;
match A_c1 {
Mode::Sign(r, A, AH) => {
start = r + 1;
end = r + n;
to_hash.extend(A.compress().to_bytes());
to_hash.extend(AH.compress().to_bytes());
c = keccak256_to_scalar(&to_hash);
}
Mode::Verify(c1) => {
start = 0;
end = n;
c = *c1;
}
}
// Perform the core loop
let mut c1 = c;
for i in (start .. end).map(|i| i % n) {
let c_p = mu_P * c;
let c_c = mu_C * c;
// (s_i * G) + (c_p * P_i) + (c_c * C_i)
let L = match A_c1 {
Mode::Sign(..) => {
EdwardsPoint::multiscalar_mul([s[i], c_p, c_c], [ED25519_BASEPOINT_POINT, P[i], C[i]])
}
Mode::Verify(..) => {
G_PRECOMP().vartime_mixed_multiscalar_mul([s[i]], [c_p, c_c], [P[i], C[i]])
}
};
let PH = hash_to_point(P[i].compress().0);
// (c_p * I) + (c_c * D) + (s_i * PH)
let R = match A_c1 {
Mode::Sign(..) => EdwardsPoint::multiscalar_mul([c_p, c_c, s[i]], [I, D, &PH]),
Mode::Verify(..) => {
images_precomp.as_ref().unwrap().vartime_mixed_multiscalar_mul([c_p, c_c], [s[i]], [PH])
}
};
to_hash.truncate(((2 * n) + 3) * 32);
to_hash.extend(L.compress().to_bytes());
to_hash.extend(R.compress().to_bytes());
c = keccak256_to_scalar(&to_hash);
// This will only execute once and shouldn't need to be constant time. Making it constant time
// removes the risk of branch prediction creating timing differences depending on ring index
// however
c1.conditional_assign(&c, i.ct_eq(&(n - 1)));
}
// This first tuple is needed to continue signing, the latter is the c to be tested/worked with
((D_INV_EIGHT, c * mu_P, c * mu_C), c1)
}
/// The CLSAG signature, as used in Monero.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Clsag {
/// The difference of the commitment randomnesses, scaling the key image generator.
pub D: EdwardsPoint,
/// The responses for each ring member.
pub s: Vec<Scalar>,
/// The first challenge in the ring.
pub c1: Scalar,
}
struct ClsagSignCore {
incomplete_clsag: Clsag,
pseudo_out: EdwardsPoint,
key_challenge: Scalar,
challenged_mask: Scalar,
}
impl Clsag {
// Sign core is the extension of core as needed for signing, yet is shared between single signer
// and multisig, hence why it's still core
fn sign_core<R: RngCore + CryptoRng>(
rng: &mut R,
I: &EdwardsPoint,
input: &ClsagContext,
mask: Scalar,
msg: &[u8; 32],
A: EdwardsPoint,
AH: EdwardsPoint,
) -> ClsagSignCore {
let r: usize = input.decoys.signer_index().into();
let pseudo_out = Commitment::new(mask, input.commitment.amount).calculate();
let mask_delta = input.commitment.mask - mask;
let H = hash_to_point(input.decoys.ring()[r][0].compress().0);
let D = H * mask_delta;
let mut s = Vec::with_capacity(input.decoys.ring().len());
for _ in 0 .. input.decoys.ring().len() {
s.push(Scalar::random(rng));
}
let ((D, c_p, c_c), c1) =
core(input.decoys.ring(), I, &pseudo_out, msg, &D, &s, &Mode::Sign(r, A, AH));
ClsagSignCore {
incomplete_clsag: Clsag { D, s, c1 },
pseudo_out,
key_challenge: c_p,
challenged_mask: c_c * mask_delta,
}
}
/// Sign CLSAG signatures for the provided inputs.
///
/// Monero ensures the rerandomized input commitments have the same value as the outputs by
/// checking `sum(rerandomized_input_commitments) - sum(output_commitments) == 0`. This requires
/// not only the amounts balance, yet also
/// `sum(input_commitment_masks) - sum(output_commitment_masks)`.
///
/// Monero solves this by following the wallet protocol to determine each output commitment's
/// randomness, then using random masks for all but the last input. The last input is
/// rerandomized to the necessary mask for the equation to balance.
///
/// Due to Monero having this behavior, it only makes sense to sign CLSAGs as a list, hence this
/// API being the way it is.
///
/// `inputs` is of the form (discrete logarithm of the key, context).
///
/// `sum_outputs` is for the sum of the output commitments' masks.
pub fn sign<R: RngCore + CryptoRng>(
rng: &mut R,
mut inputs: Vec<(Zeroizing<Scalar>, ClsagContext)>,
sum_outputs: Scalar,
msg: [u8; 32],
) -> Result<Vec<(Clsag, EdwardsPoint)>, ClsagError> {
// Create the key images
let mut key_image_generators = vec![];
let mut key_images = vec![];
for input in &inputs {
let key = input.1.decoys.signer_ring_members()[0];
// Check the key is consistent
if (ED25519_BASEPOINT_TABLE * input.0.deref()) != key {
Err(ClsagError::InvalidKey)?;
}
let key_image_generator = hash_to_point(key.compress().0);
key_image_generators.push(key_image_generator);
key_images.push(key_image_generator * input.0.deref());
}
let mut res = Vec::with_capacity(inputs.len());
let mut sum_pseudo_outs = Scalar::ZERO;
for i in 0 .. inputs.len() {
let mask;
// If this is the last input, set the mask as described above
if i == (inputs.len() - 1) {
mask = sum_outputs - sum_pseudo_outs;
} else {
mask = Scalar::random(rng);
sum_pseudo_outs += mask;
}
let mut nonce = Zeroizing::new(Scalar::random(rng));
let ClsagSignCore { mut incomplete_clsag, pseudo_out, key_challenge, challenged_mask } =
Clsag::sign_core(
rng,
&key_images[i],
&inputs[i].1,
mask,
&msg,
nonce.deref() * ED25519_BASEPOINT_TABLE,
nonce.deref() * key_image_generators[i],
);
// Effectively r - c x, except c x is (c_p x) + (c_c z), where z is the delta between the
// ring member's commitment and our pseudo-out commitment (which will only have a known
// discrete log over G if the amounts cancel out)
incomplete_clsag.s[usize::from(inputs[i].1.decoys.signer_index())] =
nonce.deref() - ((key_challenge * inputs[i].0.deref()) + challenged_mask);
let clsag = incomplete_clsag;
// Zeroize private keys and nonces.
inputs[i].0.zeroize();
nonce.zeroize();
debug_assert!(clsag
.verify(inputs[i].1.decoys.ring(), &key_images[i], &pseudo_out, &msg)
.is_ok());
res.push((clsag, pseudo_out));
}
Ok(res)
}
/// Verify a CLSAG signature for the provided context.
pub fn verify(
&self,
ring: &[[EdwardsPoint; 2]],
I: &EdwardsPoint,
pseudo_out: &EdwardsPoint,
msg: &[u8; 32],
) -> Result<(), ClsagError> {
// Preliminary checks
// s, c1, and points must also be encoded canonically, which is checked at time of decode
if ring.is_empty() {
Err(ClsagError::InvalidRing)?;
}
if ring.len() != self.s.len() {
Err(ClsagError::InvalidS)?;
}
if I.is_identity() || (!I.is_torsion_free()) {
Err(ClsagError::InvalidImage)?;
}
let D = self.D.mul_by_cofactor();
if D.is_identity() {
Err(ClsagError::InvalidD)?;
}
let (_, c1) = core(ring, I, pseudo_out, msg, &D, &self.s, &Mode::Verify(self.c1));
if c1 != self.c1 {
Err(ClsagError::InvalidC1)?;
}
Ok(())
}
/// Write a CLSAG.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_raw_vec(write_scalar, &self.s, w)?;
w.write_all(&self.c1.to_bytes())?;
write_point(&self.D, w)
}
/// Read a CLSAG.
pub fn read<R: Read>(decoys: usize, r: &mut R) -> io::Result<Clsag> {
Ok(Clsag { s: read_raw_vec(read_scalar, decoys, r)?, c1: read_scalar(r)?, D: read_point(r)? })
}
}

View File

@@ -0,0 +1,379 @@
use core::{ops::Deref, fmt::Debug};
use std_shims::{
sync::{Arc, Mutex},
io::{self, Read, Write},
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use zeroize::{Zeroize, Zeroizing};
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use transcript::{Transcript, RecommendedTranscript};
use dalek_ff_group as dfg;
use frost::{
dkg::lagrange,
curve::Ed25519,
Participant, FrostError, ThresholdKeys, ThresholdView,
algorithm::{WriteAddendum, Algorithm},
};
use monero_generators::hash_to_point;
use crate::{ClsagContext, Clsag};
impl ClsagContext {
fn transcript<T: Transcript>(&self, transcript: &mut T) {
// Doesn't domain separate as this is considered part of the larger CLSAG proof
// Ring index
transcript.append_message(b"signer_index", [self.decoys.signer_index()]);
// Ring
for (i, pair) in self.decoys.ring().iter().enumerate() {
// Doesn't include global output indexes as CLSAG doesn't care/won't be affected by it
// They're just a unreliable reference to this data which will be included in the message
// if somehow relevant
transcript.append_message(b"member", [u8::try_from(i).expect("ring size exceeded 255")]);
// This also transcripts the key image generator since it's derived from this key
transcript.append_message(b"key", pair[0].compress().to_bytes());
transcript.append_message(b"commitment", pair[1].compress().to_bytes())
}
// Doesn't include the commitment's parts as the above ring + index includes the commitment
// The only potential malleability would be if the G/H relationship is known, breaking the
// discrete log problem, which breaks everything already
}
}
/// A channel to send the mask to use for the pseudo-out (rerandomized commitment) with.
///
/// A mask must be sent along this channel before any preprocess addendums are handled. Breaking
/// this rule will cause a panic.
#[derive(Clone, Debug)]
pub struct ClsagMultisigMaskSender {
buf: Arc<Mutex<Option<Scalar>>>,
}
#[derive(Clone, Debug)]
struct ClsagMultisigMaskReceiver {
buf: Arc<Mutex<Option<Scalar>>>,
}
impl ClsagMultisigMaskSender {
fn new() -> (ClsagMultisigMaskSender, ClsagMultisigMaskReceiver) {
let buf = Arc::new(Mutex::new(None));
(ClsagMultisigMaskSender { buf: buf.clone() }, ClsagMultisigMaskReceiver { buf })
}
/// Send a mask to a CLSAG multisig instance.
pub fn send(self, mask: Scalar) {
*self.buf.lock() = Some(mask);
}
}
impl ClsagMultisigMaskReceiver {
fn recv(self) -> Scalar {
self.buf.lock().unwrap()
}
}
/// Addendum produced during the signing process.
#[derive(Clone, PartialEq, Eq, Zeroize, Debug)]
pub struct ClsagAddendum {
key_image_share: dfg::EdwardsPoint,
}
impl ClsagAddendum {
/// The key image share within this addendum.
pub fn key_image_share(&self) -> dfg::EdwardsPoint {
self.key_image_share
}
}
impl WriteAddendum for ClsagAddendum {
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.key_image_share.compress().to_bytes().as_ref())
}
}
#[allow(non_snake_case)]
#[derive(Clone, PartialEq, Eq, Debug)]
struct Interim {
p: Scalar,
c: Scalar,
clsag: Clsag,
pseudo_out: EdwardsPoint,
}
/// FROST-inspired algorithm for producing a CLSAG signature.
///
/// Before this has its `process_addendum` called, a mask must be set. Else this will panic.
///
/// The message signed is expected to be a 32-byte value. Per Monero, it's the keccak256 hash of
/// the transaction data which is signed. This will panic if the message is not a 32-byte value.
#[allow(non_snake_case)]
#[derive(Clone, Debug)]
pub struct ClsagMultisig {
transcript: RecommendedTranscript,
key_image_generator: EdwardsPoint,
key_image_shares: HashMap<[u8; 32], dfg::EdwardsPoint>,
image: Option<dfg::EdwardsPoint>,
context: ClsagContext,
mask_recv: Option<ClsagMultisigMaskReceiver>,
mask: Option<Scalar>,
msg: Option<[u8; 32]>,
interim: Option<Interim>,
}
impl ClsagMultisig {
/// Construct a new instance of multisignature CLSAG signing.
pub fn new(
transcript: RecommendedTranscript,
context: ClsagContext,
) -> (ClsagMultisig, ClsagMultisigMaskSender) {
let (mask_send, mask_recv) = ClsagMultisigMaskSender::new();
(
ClsagMultisig {
transcript,
key_image_generator: hash_to_point(context.decoys.signer_ring_members()[0].compress().0),
key_image_shares: HashMap::new(),
image: None,
context,
mask_recv: Some(mask_recv),
mask: None,
msg: None,
interim: None,
},
mask_send,
)
}
/// The key image generator used by the signer.
pub fn key_image_generator(&self) -> EdwardsPoint {
self.key_image_generator
}
}
impl Algorithm<Ed25519> for ClsagMultisig {
type Transcript = RecommendedTranscript;
type Addendum = ClsagAddendum;
// We output the CLSAG and the key image, which requires an interactive protocol to obtain
type Signature = (Clsag, EdwardsPoint);
// We need the nonce represented against both G and the key image generator
fn nonces(&self) -> Vec<Vec<dfg::EdwardsPoint>> {
vec![vec![dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.key_image_generator)]]
}
// We also publish our share of the key image
fn preprocess_addendum<R: RngCore + CryptoRng>(
&mut self,
_rng: &mut R,
keys: &ThresholdKeys<Ed25519>,
) -> ClsagAddendum {
ClsagAddendum {
key_image_share: dfg::EdwardsPoint(self.key_image_generator) * keys.secret_share().deref(),
}
}
fn read_addendum<R: Read>(&self, reader: &mut R) -> io::Result<ClsagAddendum> {
let mut bytes = [0; 32];
reader.read_exact(&mut bytes)?;
// dfg ensures the point is torsion free
let xH = Option::<dfg::EdwardsPoint>::from(dfg::EdwardsPoint::from_bytes(&bytes))
.ok_or_else(|| io::Error::other("invalid key image"))?;
// Ensure this is a canonical point
if xH.to_bytes() != bytes {
Err(io::Error::other("non-canonical key image"))?;
}
Ok(ClsagAddendum { key_image_share: xH })
}
fn process_addendum(
&mut self,
view: &ThresholdView<Ed25519>,
l: Participant,
addendum: ClsagAddendum,
) -> Result<(), FrostError> {
if self.image.is_none() {
self.transcript.domain_separate(b"CLSAG");
// Transcript the ring
self.context.transcript(&mut self.transcript);
// Fetch the mask from the Mutex
// We set it to a variable to ensure our view of it is consistent
// It was this or a mpsc channel... std doesn't have oneshot :/
self.mask = Some(self.mask_recv.take().unwrap().recv());
// Transcript the mask
self.transcript.append_message(b"mask", self.mask.expect("mask wasn't set").to_bytes());
// Init the image to the offset
self.image = Some(dfg::EdwardsPoint(self.key_image_generator) * view.offset());
}
// Transcript this participant's contribution
self.transcript.append_message(b"participant", l.to_bytes());
self
.transcript
.append_message(b"key_image_share", addendum.key_image_share.compress().to_bytes());
// Accumulate the interpolated share
let interpolated_key_image_share =
addendum.key_image_share * lagrange::<dfg::Scalar>(l, view.included());
*self.image.as_mut().unwrap() += interpolated_key_image_share;
self
.key_image_shares
.insert(view.verification_share(l).to_bytes(), interpolated_key_image_share);
Ok(())
}
fn transcript(&mut self) -> &mut Self::Transcript {
&mut self.transcript
}
fn sign_share(
&mut self,
view: &ThresholdView<Ed25519>,
nonce_sums: &[Vec<dfg::EdwardsPoint>],
nonces: Vec<Zeroizing<dfg::Scalar>>,
msg: &[u8],
) -> dfg::Scalar {
// Use the transcript to get a seeded random number generator
//
// The transcript contains private data, preventing passive adversaries from recreating this
// process even if they have access to the commitments/key image share broadcast so far
//
// Specifically, the transcript contains the signer's index within the ring, along with the
// opening of the commitment being re-randomized (and what it's re-randomized to)
let mut rng = ChaCha20Rng::from_seed(self.transcript.rng_seed(b"decoy_responses"));
self.msg = Some(msg.try_into().expect("CLSAG message should be 32-bytes"));
let sign_core = Clsag::sign_core(
&mut rng,
&self.image.expect("verifying a share despite never processing any addendums").0,
&self.context,
self.mask.expect("mask wasn't set"),
self.msg.as_ref().unwrap(),
nonce_sums[0][0].0,
nonce_sums[0][1].0,
);
self.interim = Some(Interim {
p: sign_core.key_challenge,
c: sign_core.challenged_mask,
clsag: sign_core.incomplete_clsag,
pseudo_out: sign_core.pseudo_out,
});
// r - p x, where p is the challenge for the keys
*nonces[0] - dfg::Scalar(sign_core.key_challenge) * view.secret_share().deref()
}
#[must_use]
fn verify(
&self,
_: dfg::EdwardsPoint,
_: &[Vec<dfg::EdwardsPoint>],
sum: dfg::Scalar,
) -> Option<Self::Signature> {
let interim = self.interim.as_ref().unwrap();
let mut clsag = interim.clsag.clone();
// We produced shares as `r - p x`, yet the signature is actually `r - p x - c x`
// Substract `c x` (saved as `c`) now
clsag.s[usize::from(self.context.decoys.signer_index())] = sum.0 - interim.c;
if clsag
.verify(
self.context.decoys.ring(),
&self.image.expect("verifying a signature despite never processing any addendums").0,
&interim.pseudo_out,
self.msg.as_ref().unwrap(),
)
.is_ok()
{
return Some((clsag, interim.pseudo_out));
}
None
}
fn verify_share(
&self,
verification_share: dfg::EdwardsPoint,
nonces: &[Vec<dfg::EdwardsPoint>],
share: dfg::Scalar,
) -> Result<Vec<(dfg::Scalar, dfg::EdwardsPoint)>, ()> {
let interim = self.interim.as_ref().unwrap();
// For a share `r - p x`, the following two equalities should hold:
// - `(r - p x)G == R.0 - pV`, where `V = xG`
// - `(r - p x)H == R.1 - pK`, where `K = xH` (the key image share)
//
// This is effectively a discrete log equality proof for:
// V, K over G, H
// with nonces
// R.0, R.1
// and solution
// s
//
// Which is a batch-verifiable rewrite of the traditional CP93 proof
// (and also writable as Generalized Schnorr Protocol)
//
// That means that given a proper challenge, this alone can be certainly argued to prove the
// key image share is well-formed and the provided signature so proves for that.
// This is a bit funky as it doesn't prove the nonces are well-formed however. They're part of
// the prover data/transcript for a CP93/GSP proof, not part of the statement. This practically
// is fine, for a variety of reasons (given a consistent `x`, a consistent `r` can be
// extracted, and the nonces as used in CLSAG are also part of its prover data/transcript).
let key_image_share = self.key_image_shares[&verification_share.to_bytes()];
// Hash every variable relevant here, using the hash output as the random weight
let mut weight_transcript =
RecommendedTranscript::new(b"monero-serai v0.1 ClsagMultisig::verify_share");
weight_transcript.append_message(b"G", dfg::EdwardsPoint::generator().to_bytes());
weight_transcript.append_message(b"H", self.key_image_generator.to_bytes());
weight_transcript.append_message(b"xG", verification_share.to_bytes());
weight_transcript.append_message(b"xH", key_image_share.to_bytes());
weight_transcript.append_message(b"rG", nonces[0][0].to_bytes());
weight_transcript.append_message(b"rH", nonces[0][1].to_bytes());
weight_transcript.append_message(b"c", dfg::Scalar(interim.p).to_repr());
weight_transcript.append_message(b"s", share.to_repr());
let weight = weight_transcript.challenge(b"weight");
let weight = dfg::Scalar(Scalar::from_bytes_mod_order_wide(&weight.into()));
let part_one = vec![
(share, dfg::EdwardsPoint::generator()),
// -(R.0 - pV) == -R.0 + pV
(-dfg::Scalar::ONE, nonces[0][0]),
(dfg::Scalar(interim.p), verification_share),
];
let mut part_two = vec![
(weight * share, dfg::EdwardsPoint(self.key_image_generator)),
// -(R.1 - pK) == -R.1 + pK
(-weight, nonces[0][1]),
(weight * dfg::Scalar(interim.p), key_image_share),
];
let mut all = part_one;
all.append(&mut part_two);
Ok(all)
}
}

View File

@@ -0,0 +1,119 @@
use core::ops::Deref;
use zeroize::Zeroizing;
use rand_core::{RngCore, OsRng};
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar};
#[cfg(feature = "multisig")]
use transcript::{Transcript, RecommendedTranscript};
#[cfg(feature = "multisig")]
use frost::curve::Ed25519;
use monero_generators::hash_to_point;
use monero_primitives::{Commitment, Decoys};
use crate::{ClsagContext, Clsag};
#[cfg(feature = "multisig")]
use crate::ClsagMultisig;
#[cfg(feature = "multisig")]
use frost::{
Participant,
tests::{key_gen, algorithm_machines, sign},
};
const RING_LEN: u64 = 11;
const AMOUNT: u64 = 1337;
#[cfg(feature = "multisig")]
const RING_INDEX: u8 = 3;
#[test]
fn clsag() {
for real in 0 .. RING_LEN {
let msg = [1; 32];
let mut secrets = (Zeroizing::new(Scalar::ZERO), Scalar::ZERO);
let mut ring = vec![];
for i in 0 .. RING_LEN {
let dest = Zeroizing::new(Scalar::random(&mut OsRng));
let mask = Scalar::random(&mut OsRng);
let amount;
if i == real {
secrets = (dest.clone(), mask);
amount = AMOUNT;
} else {
amount = OsRng.next_u64();
}
ring
.push([dest.deref() * ED25519_BASEPOINT_TABLE, Commitment::new(mask, amount).calculate()]);
}
let (mut clsag, pseudo_out) = Clsag::sign(
&mut OsRng,
vec![(
secrets.0.clone(),
ClsagContext::new(
Decoys::new((1 ..= RING_LEN).collect(), u8::try_from(real).unwrap(), ring.clone())
.unwrap(),
Commitment::new(secrets.1, AMOUNT),
)
.unwrap(),
)],
Scalar::random(&mut OsRng),
msg,
)
.unwrap()
.swap_remove(0);
let image =
hash_to_point((ED25519_BASEPOINT_TABLE * secrets.0.deref()).compress().0) * secrets.0.deref();
clsag.verify(&ring, &image, &pseudo_out, &msg).unwrap();
// make sure verification fails if we throw a random `c1` at it.
clsag.c1 = Scalar::random(&mut OsRng);
assert!(clsag.verify(&ring, &image, &pseudo_out, &msg).is_err());
}
}
#[cfg(feature = "multisig")]
#[test]
fn clsag_multisig() {
let keys = key_gen::<_, Ed25519>(&mut OsRng);
let randomness = Scalar::random(&mut OsRng);
let mut ring = vec![];
for i in 0 .. RING_LEN {
let dest;
let mask;
let amount;
if i != u64::from(RING_INDEX) {
dest = &Scalar::random(&mut OsRng) * ED25519_BASEPOINT_TABLE;
mask = Scalar::random(&mut OsRng);
amount = OsRng.next_u64();
} else {
dest = keys[&Participant::new(1).unwrap()].group_key().0;
mask = randomness;
amount = AMOUNT;
}
ring.push([dest, Commitment::new(mask, amount).calculate()]);
}
let (algorithm, mask_send) = ClsagMultisig::new(
RecommendedTranscript::new(b"Monero Serai CLSAG Test"),
ClsagContext::new(
Decoys::new((1 ..= RING_LEN).collect(), RING_INDEX, ring.clone()).unwrap(),
Commitment::new(randomness, AMOUNT),
)
.unwrap(),
);
mask_send.send(Scalar::random(&mut OsRng));
sign(
&mut OsRng,
&algorithm,
keys.clone(),
algorithm_machines(&mut OsRng, &algorithm, &keys),
&[1; 32],
);
}