mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 20:29:23 +00:00
Rename the coins folder to networks (#583)
* Rename the coins folder to networks Ethereum isn't a coin. It's a network. Resolves #357. * More renames of coins -> networks in orchestration * Correct paths in tests/ * cargo fmt
This commit is contained in:
52
networks/ethereum/contracts/Deployer.sol
Normal file
52
networks/ethereum/contracts/Deployer.sol
Normal file
@@ -0,0 +1,52 @@
|
||||
// SPDX-License-Identifier: AGPLv3
|
||||
pragma solidity ^0.8.0;
|
||||
|
||||
/*
|
||||
The expected deployment process of the Router is as follows:
|
||||
|
||||
1) A transaction deploying Deployer is made. Then, a deterministic signature is
|
||||
created such that an account with an unknown private key is the creator of
|
||||
the contract. Anyone can fund this address, and once anyone does, the
|
||||
transaction deploying Deployer can be published by anyone. No other
|
||||
transaction may be made from that account.
|
||||
|
||||
2) Anyone deploys the Router through the Deployer. This uses a sequential nonce
|
||||
such that meet-in-the-middle attacks, with complexity 2**80, aren't feasible.
|
||||
While such attacks would still be feasible if the Deployer's address was
|
||||
controllable, the usage of a deterministic signature with a NUMS method
|
||||
prevents that.
|
||||
|
||||
This doesn't have any denial-of-service risks and will resolve once anyone steps
|
||||
forward as deployer. This does fail to guarantee an identical address across
|
||||
every chain, though it enables letting anyone efficiently ask the Deployer for
|
||||
the address (with the Deployer having an identical address on every chain).
|
||||
|
||||
Unfortunately, guaranteeing identical addresses aren't feasible. We'd need the
|
||||
Deployer contract to use a consistent salt for the Router, yet the Router must
|
||||
be deployed with a specific public key for Serai. Since Ethereum isn't able to
|
||||
determine a valid public key (one the result of a Serai DKG) from a dishonest
|
||||
public key, we have to allow multiple deployments with Serai being the one to
|
||||
determine which to use.
|
||||
|
||||
The alternative would be to have a council publish the Serai key on-Ethereum,
|
||||
with Serai verifying the published result. This would introduce a DoS risk in
|
||||
the council not publishing the correct key/not publishing any key.
|
||||
*/
|
||||
|
||||
contract Deployer {
|
||||
event Deployment(bytes32 indexed init_code_hash, address created);
|
||||
|
||||
error DeploymentFailed();
|
||||
|
||||
function deploy(bytes memory init_code) external {
|
||||
address created;
|
||||
assembly {
|
||||
created := create(0, add(init_code, 0x20), mload(init_code))
|
||||
}
|
||||
if (created == address(0)) {
|
||||
revert DeploymentFailed();
|
||||
}
|
||||
// These may be emitted out of order upon re-entrancy
|
||||
emit Deployment(keccak256(init_code), created);
|
||||
}
|
||||
}
|
||||
20
networks/ethereum/contracts/IERC20.sol
Normal file
20
networks/ethereum/contracts/IERC20.sol
Normal file
@@ -0,0 +1,20 @@
|
||||
// SPDX-License-Identifier: CC0
|
||||
pragma solidity ^0.8.0;
|
||||
|
||||
interface IERC20 {
|
||||
event Transfer(address indexed from, address indexed to, uint256 value);
|
||||
event Approval(address indexed owner, address indexed spender, uint256 value);
|
||||
|
||||
function name() external view returns (string memory);
|
||||
function symbol() external view returns (string memory);
|
||||
function decimals() external view returns (uint8);
|
||||
|
||||
function totalSupply() external view returns (uint256);
|
||||
|
||||
function balanceOf(address owner) external view returns (uint256);
|
||||
function transfer(address to, uint256 value) external returns (bool);
|
||||
function transferFrom(address from, address to, uint256 value) external returns (bool);
|
||||
|
||||
function approve(address spender, uint256 value) external returns (bool);
|
||||
function allowance(address owner, address spender) external view returns (uint256);
|
||||
}
|
||||
222
networks/ethereum/contracts/Router.sol
Normal file
222
networks/ethereum/contracts/Router.sol
Normal file
@@ -0,0 +1,222 @@
|
||||
// SPDX-License-Identifier: AGPLv3
|
||||
pragma solidity ^0.8.0;
|
||||
|
||||
import "./IERC20.sol";
|
||||
|
||||
import "./Schnorr.sol";
|
||||
import "./Sandbox.sol";
|
||||
|
||||
contract Router {
|
||||
// Nonce is incremented for each batch of transactions executed/key update
|
||||
uint256 public nonce;
|
||||
|
||||
// Current public key's x-coordinate
|
||||
// This key must always have the parity defined within the Schnorr contract
|
||||
bytes32 public seraiKey;
|
||||
|
||||
struct OutInstruction {
|
||||
address to;
|
||||
Call[] calls;
|
||||
|
||||
uint256 value;
|
||||
}
|
||||
|
||||
struct Signature {
|
||||
bytes32 c;
|
||||
bytes32 s;
|
||||
}
|
||||
|
||||
event SeraiKeyUpdated(
|
||||
uint256 indexed nonce,
|
||||
bytes32 indexed key,
|
||||
Signature signature
|
||||
);
|
||||
event InInstruction(
|
||||
address indexed from,
|
||||
address indexed coin,
|
||||
uint256 amount,
|
||||
bytes instruction
|
||||
);
|
||||
// success is a uint256 representing a bitfield of transaction successes
|
||||
event Executed(
|
||||
uint256 indexed nonce,
|
||||
bytes32 indexed batch,
|
||||
uint256 success,
|
||||
Signature signature
|
||||
);
|
||||
|
||||
// error types
|
||||
error InvalidKey();
|
||||
error InvalidSignature();
|
||||
error InvalidAmount();
|
||||
error FailedTransfer();
|
||||
error TooManyTransactions();
|
||||
|
||||
modifier _updateSeraiKeyAtEndOfFn(
|
||||
uint256 _nonce,
|
||||
bytes32 key,
|
||||
Signature memory sig
|
||||
) {
|
||||
if (
|
||||
(key == bytes32(0)) ||
|
||||
((bytes32(uint256(key) % Schnorr.Q)) != key)
|
||||
) {
|
||||
revert InvalidKey();
|
||||
}
|
||||
|
||||
_;
|
||||
|
||||
seraiKey = key;
|
||||
emit SeraiKeyUpdated(_nonce, key, sig);
|
||||
}
|
||||
|
||||
constructor(bytes32 _seraiKey) _updateSeraiKeyAtEndOfFn(
|
||||
0,
|
||||
_seraiKey,
|
||||
Signature({ c: bytes32(0), s: bytes32(0) })
|
||||
) {
|
||||
nonce = 1;
|
||||
}
|
||||
|
||||
// updateSeraiKey validates the given Schnorr signature against the current
|
||||
// public key, and if successful, updates the contract's public key to the
|
||||
// given one.
|
||||
function updateSeraiKey(
|
||||
bytes32 _seraiKey,
|
||||
Signature calldata sig
|
||||
) external _updateSeraiKeyAtEndOfFn(nonce, _seraiKey, sig) {
|
||||
bytes memory message =
|
||||
abi.encodePacked("updateSeraiKey", block.chainid, nonce, _seraiKey);
|
||||
nonce++;
|
||||
|
||||
if (!Schnorr.verify(seraiKey, message, sig.c, sig.s)) {
|
||||
revert InvalidSignature();
|
||||
}
|
||||
}
|
||||
|
||||
function inInstruction(
|
||||
address coin,
|
||||
uint256 amount,
|
||||
bytes memory instruction
|
||||
) external payable {
|
||||
if (coin == address(0)) {
|
||||
if (amount != msg.value) {
|
||||
revert InvalidAmount();
|
||||
}
|
||||
} else {
|
||||
(bool success, bytes memory res) =
|
||||
address(coin).call(
|
||||
abi.encodeWithSelector(
|
||||
IERC20.transferFrom.selector,
|
||||
msg.sender,
|
||||
address(this),
|
||||
amount
|
||||
)
|
||||
);
|
||||
|
||||
// Require there was nothing returned, which is done by some non-standard
|
||||
// tokens, or that the ERC20 contract did in fact return true
|
||||
bool nonStandardResOrTrue =
|
||||
(res.length == 0) || abi.decode(res, (bool));
|
||||
if (!(success && nonStandardResOrTrue)) {
|
||||
revert FailedTransfer();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Due to fee-on-transfer tokens, emitting the amount directly is frowned upon.
|
||||
The amount instructed to transfer may not actually be the amount
|
||||
transferred.
|
||||
|
||||
If we add nonReentrant to every single function which can effect the
|
||||
balance, we can check the amount exactly matches. This prevents transfers of
|
||||
less value than expected occurring, at least, not without an additional
|
||||
transfer to top up the difference (which isn't routed through this contract
|
||||
and accordingly isn't trying to artificially create events).
|
||||
|
||||
If we don't add nonReentrant, a transfer can be started, and then a new
|
||||
transfer for the difference can follow it up (again and again until a
|
||||
rounding error is reached). This contract would believe all transfers were
|
||||
done in full, despite each only being done in part (except for the last
|
||||
one).
|
||||
|
||||
Given fee-on-transfer tokens aren't intended to be supported, the only
|
||||
token planned to be supported is Dai and it doesn't have any fee-on-transfer
|
||||
logic, fee-on-transfer tokens aren't even able to be supported at this time,
|
||||
we simply classify this entire class of tokens as non-standard
|
||||
implementations which induce undefined behavior. It is the Serai network's
|
||||
role not to add support for any non-standard implementations.
|
||||
*/
|
||||
emit InInstruction(msg.sender, coin, amount, instruction);
|
||||
}
|
||||
|
||||
// execute accepts a list of transactions to execute as well as a signature.
|
||||
// if signature verification passes, the given transactions are executed.
|
||||
// if signature verification fails, this function will revert.
|
||||
function execute(
|
||||
OutInstruction[] calldata transactions,
|
||||
Signature calldata sig
|
||||
) external {
|
||||
if (transactions.length > 256) {
|
||||
revert TooManyTransactions();
|
||||
}
|
||||
|
||||
bytes memory message =
|
||||
abi.encode("execute", block.chainid, nonce, transactions);
|
||||
uint256 executed_with_nonce = nonce;
|
||||
// This prevents re-entrancy from causing double spends yet does allow
|
||||
// out-of-order execution via re-entrancy
|
||||
nonce++;
|
||||
|
||||
if (!Schnorr.verify(seraiKey, message, sig.c, sig.s)) {
|
||||
revert InvalidSignature();
|
||||
}
|
||||
|
||||
uint256 successes;
|
||||
for (uint256 i = 0; i < transactions.length; i++) {
|
||||
bool success;
|
||||
|
||||
// If there are no calls, send to `to` the value
|
||||
if (transactions[i].calls.length == 0) {
|
||||
(success, ) = transactions[i].to.call{
|
||||
value: transactions[i].value,
|
||||
gas: 5_000
|
||||
}("");
|
||||
} else {
|
||||
// If there are calls, ignore `to`. Deploy a new Sandbox and proxy the
|
||||
// calls through that
|
||||
//
|
||||
// We could use a single sandbox in order to reduce gas costs, yet that
|
||||
// risks one person creating an approval that's hooked before another
|
||||
// user's intended action executes, in order to drain their coins
|
||||
//
|
||||
// While technically, that would be a flaw in the sandboxed flow, this
|
||||
// is robust and prevents such flaws from being possible
|
||||
//
|
||||
// We also don't want people to set state via the Sandbox and expect it
|
||||
// future available when anyone else could set a distinct value
|
||||
Sandbox sandbox = new Sandbox();
|
||||
(success, ) = address(sandbox).call{
|
||||
value: transactions[i].value,
|
||||
// TODO: Have the Call specify the gas up front
|
||||
gas: 350_000
|
||||
}(
|
||||
abi.encodeWithSelector(
|
||||
Sandbox.sandbox.selector,
|
||||
transactions[i].calls
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
assembly {
|
||||
successes := or(successes, shl(i, success))
|
||||
}
|
||||
}
|
||||
emit Executed(
|
||||
executed_with_nonce,
|
||||
keccak256(message),
|
||||
successes,
|
||||
sig
|
||||
);
|
||||
}
|
||||
}
|
||||
48
networks/ethereum/contracts/Sandbox.sol
Normal file
48
networks/ethereum/contracts/Sandbox.sol
Normal file
@@ -0,0 +1,48 @@
|
||||
// SPDX-License-Identifier: AGPLv3
|
||||
pragma solidity ^0.8.24;
|
||||
|
||||
struct Call {
|
||||
address to;
|
||||
uint256 value;
|
||||
bytes data;
|
||||
}
|
||||
|
||||
// A minimal sandbox focused on gas efficiency.
|
||||
//
|
||||
// The first call is executed if any of the calls fail, making it a fallback.
|
||||
// All other calls are executed sequentially.
|
||||
contract Sandbox {
|
||||
error AlreadyCalled();
|
||||
error CallsFailed();
|
||||
|
||||
function sandbox(Call[] calldata calls) external payable {
|
||||
// Prevent re-entrancy due to this executing arbitrary calls from anyone
|
||||
// and anywhere
|
||||
bool called;
|
||||
assembly { called := tload(0) }
|
||||
if (called) {
|
||||
revert AlreadyCalled();
|
||||
}
|
||||
assembly { tstore(0, 1) }
|
||||
|
||||
// Execute the calls, starting from 1
|
||||
for (uint256 i = 1; i < calls.length; i++) {
|
||||
(bool success, ) =
|
||||
calls[i].to.call{ value: calls[i].value }(calls[i].data);
|
||||
|
||||
// If this call failed, execute the fallback (call 0)
|
||||
if (!success) {
|
||||
(success, ) =
|
||||
calls[0].to.call{ value: address(this).balance }(calls[0].data);
|
||||
// If this call also failed, revert entirely
|
||||
if (!success) {
|
||||
revert CallsFailed();
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// We don't clear the re-entrancy guard as this contract should never be
|
||||
// called again, so there's no reason to spend the effort
|
||||
}
|
||||
}
|
||||
44
networks/ethereum/contracts/Schnorr.sol
Normal file
44
networks/ethereum/contracts/Schnorr.sol
Normal file
@@ -0,0 +1,44 @@
|
||||
// SPDX-License-Identifier: AGPLv3
|
||||
pragma solidity ^0.8.0;
|
||||
|
||||
// see https://github.com/noot/schnorr-verify for implementation details
|
||||
library Schnorr {
|
||||
// secp256k1 group order
|
||||
uint256 constant public Q =
|
||||
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141;
|
||||
|
||||
// Fixed parity for the public keys used in this contract
|
||||
// This avoids spending a word passing the parity in a similar style to
|
||||
// Bitcoin's Taproot
|
||||
uint8 constant public KEY_PARITY = 27;
|
||||
|
||||
error InvalidSOrA();
|
||||
error MalformedSignature();
|
||||
|
||||
// px := public key x-coord, where the public key has a parity of KEY_PARITY
|
||||
// message := 32-byte hash of the message
|
||||
// c := schnorr signature challenge
|
||||
// s := schnorr signature
|
||||
function verify(
|
||||
bytes32 px,
|
||||
bytes memory message,
|
||||
bytes32 c,
|
||||
bytes32 s
|
||||
) internal pure returns (bool) {
|
||||
// ecrecover = (m, v, r, s) -> key
|
||||
// We instead pass the following to obtain the nonce (not the key)
|
||||
// Then we hash it and verify it matches the challenge
|
||||
bytes32 sa = bytes32(Q - mulmod(uint256(s), uint256(px), Q));
|
||||
bytes32 ca = bytes32(Q - mulmod(uint256(c), uint256(px), Q));
|
||||
|
||||
// For safety, we want each input to ecrecover to be 0 (sa, px, ca)
|
||||
// The ecreover precomple checks `r` and `s` (`px` and `ca`) are non-zero
|
||||
// That leaves us to check `sa` are non-zero
|
||||
if (sa == 0) revert InvalidSOrA();
|
||||
address R = ecrecover(sa, KEY_PARITY, px, ca);
|
||||
if (R == address(0)) revert MalformedSignature();
|
||||
|
||||
// Check the signature is correct by rebuilding the challenge
|
||||
return c == keccak256(abi.encodePacked(R, px, message));
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user