Redo the Bulletproofs impl

Uses the IP-impl from the FCMP++ work.
This commit is contained in:
Luke Parker
2024-07-10 20:56:53 -04:00
parent 3ddf1eec0c
commit 7a68b065e0
12 changed files with 794 additions and 431 deletions

View File

@@ -1,395 +1,344 @@
use std_shims::{vec, vec::Vec, sync::OnceLock};
use std_shims::{sync::OnceLock, vec::Vec};
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use subtle::{Choice, ConditionallySelectable};
use curve25519_dalek::{
constants::{ED25519_BASEPOINT_POINT, ED25519_BASEPOINT_TABLE},
scalar::Scalar,
edwards::EdwardsPoint,
};
use curve25519_dalek::{constants::ED25519_BASEPOINT_POINT, Scalar, EdwardsPoint};
use monero_generators::{H, Generators};
use monero_primitives::{INV_EIGHT, Commitment, keccak256_to_scalar};
use monero_generators::{H, Generators, MAX_COMMITMENTS, COMMITMENT_BITS};
use monero_primitives::{Commitment, INV_EIGHT, keccak256_to_scalar};
use crate::{core::multiexp, scalar_vector::ScalarVector, BulletproofsBatchVerifier};
use crate::{core::*, ScalarVector, batch_verifier::BulletproofsBatchVerifier};
pub(crate) mod inner_product;
use inner_product::*;
pub(crate) use inner_product::IpProof;
include!(concat!(env!("OUT_DIR"), "/generators.rs"));
static TWO_N_CELL: OnceLock<ScalarVector> = OnceLock::new();
fn TWO_N() -> &'static ScalarVector {
TWO_N_CELL.get_or_init(|| ScalarVector::powers(Scalar::from(2u8), COMMITMENT_BITS))
#[derive(Clone, Debug)]
pub(crate) struct AggregateRangeStatement<'a> {
commitments: &'a [EdwardsPoint],
}
static IP12_CELL: OnceLock<Scalar> = OnceLock::new();
fn IP12() -> Scalar {
*IP12_CELL.get_or_init(|| ScalarVector(vec![Scalar::ONE; COMMITMENT_BITS]).inner_product(TWO_N()))
#[derive(Clone, Debug)]
pub(crate) struct AggregateRangeWitness {
commitments: Vec<Commitment>,
}
fn MN(outputs: usize) -> (usize, usize, usize) {
let mut logM = 0;
let mut M;
while {
M = 1 << logM;
(M <= MAX_COMMITMENTS) && (M < outputs)
} {
logM += 1;
}
(logM + LOG_COMMITMENT_BITS, M, M * COMMITMENT_BITS)
}
fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
let (_, M, MN) = MN(commitments.len());
let sv = commitments.iter().map(|c| Scalar::from(c.amount)).collect::<Vec<_>>();
let mut aL = ScalarVector::new(MN);
let mut aR = ScalarVector::new(MN);
for j in 0 .. M {
for i in (0 .. COMMITMENT_BITS).rev() {
let bit =
if j < sv.len() { Choice::from((sv[j][i / 8] >> (i % 8)) & 1) } else { Choice::from(0) };
aL.0[(j * COMMITMENT_BITS) + i] =
Scalar::conditional_select(&Scalar::ZERO, &Scalar::ONE, bit);
aR.0[(j * COMMITMENT_BITS) + i] =
Scalar::conditional_select(&-Scalar::ONE, &Scalar::ZERO, bit);
}
}
(aL, aR)
}
fn hash_commitments<C: IntoIterator<Item = EdwardsPoint>>(
commitments: C,
) -> (Scalar, Vec<EdwardsPoint>) {
let V = commitments.into_iter().map(|c| c * INV_EIGHT()).collect::<Vec<_>>();
(keccak256_to_scalar(V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>()), V)
}
fn alpha_rho<R: RngCore + CryptoRng>(
rng: &mut R,
generators: &Generators,
aL: &ScalarVector,
aR: &ScalarVector,
) -> (Scalar, EdwardsPoint) {
fn vector_exponent(generators: &Generators, a: &ScalarVector, b: &ScalarVector) -> EdwardsPoint {
debug_assert_eq!(a.len(), b.len());
(a * &generators.G[.. a.len()]) + (b * &generators.H[.. b.len()])
}
let ar = Scalar::random(rng);
(ar, (vector_exponent(generators, aL, aR) + (ED25519_BASEPOINT_TABLE * &ar)) * INV_EIGHT())
}
fn LR_statements(
a: &ScalarVector,
G_i: &[EdwardsPoint],
b: &ScalarVector,
H_i: &[EdwardsPoint],
cL: Scalar,
U: EdwardsPoint,
) -> Vec<(Scalar, EdwardsPoint)> {
let mut res = a
.0
.iter()
.copied()
.zip(G_i.iter().copied())
.chain(b.0.iter().copied().zip(H_i.iter().copied()))
.collect::<Vec<_>>();
res.push((cL, U));
res
}
fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
let slice =
&[cache.to_bytes().as_ref(), mash.iter().copied().flatten().collect::<Vec<_>>().as_ref()]
.concat();
*cache = keccak256_to_scalar(slice);
*cache
}
fn hadamard_fold(
l: &[EdwardsPoint],
r: &[EdwardsPoint],
a: Scalar,
b: Scalar,
) -> Vec<EdwardsPoint> {
let mut res = Vec::with_capacity(l.len() / 2);
for i in 0 .. l.len() {
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
}
res
}
/// Internal structure representing a Bulletproof, as defined by Monero..
#[doc(hidden)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OriginalStruct {
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct AggregateRangeProof {
pub(crate) A: EdwardsPoint,
pub(crate) S: EdwardsPoint,
pub(crate) T1: EdwardsPoint,
pub(crate) T2: EdwardsPoint,
pub(crate) tau_x: Scalar,
pub(crate) mu: Scalar,
pub(crate) L: Vec<EdwardsPoint>,
pub(crate) R: Vec<EdwardsPoint>,
pub(crate) a: Scalar,
pub(crate) b: Scalar,
pub(crate) t: Scalar,
pub(crate) t_hat: Scalar,
pub(crate) ip: IpProof,
}
impl OriginalStruct {
pub(crate) fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> OriginalStruct {
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let commitments_points = commitments.iter().map(Commitment::calculate).collect::<Vec<_>>();
let (mut cache, _) = hash_commitments(commitments_points.clone());
let (sL, sR) =
ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::<Vec<_>>()).split();
let generators = GENERATORS();
let (mut alpha, A) = alpha_rho(&mut *rng, generators, &aL, &aR);
let (mut rho, S) = alpha_rho(&mut *rng, generators, &sL, &sR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
let mut cache = keccak256_to_scalar(y.to_bytes());
let z = cache;
let l0 = aL - z;
let l1 = sL;
let mut zero_twos = Vec::with_capacity(MN);
let zpow = ScalarVector::powers(z, M + 2);
for j in 0 .. M {
for i in 0 .. COMMITMENT_BITS {
zero_twos.push(zpow[j + 2] * TWO_N()[i]);
}
impl<'a> AggregateRangeStatement<'a> {
pub(crate) fn new(commitments: &'a [EdwardsPoint]) -> Option<Self> {
if commitments.is_empty() || (commitments.len() > MAX_COMMITMENTS) {
None?;
}
Some(Self { commitments })
}
}
let yMN = ScalarVector::powers(y, MN);
let r0 = ((aR + z) * &yMN) + &ScalarVector(zero_twos);
let r1 = yMN * &sR;
impl AggregateRangeWitness {
pub(crate) fn new(commitments: Vec<Commitment>) -> Option<Self> {
if commitments.is_empty() || (commitments.len() > MAX_COMMITMENTS) {
None?;
}
Some(Self { commitments })
}
}
let (T1, T2, x, mut tau_x) = {
let t1 = l0.clone().inner_product(&r1) + r0.clone().inner_product(&l1);
let t2 = l1.clone().inner_product(&r1);
impl<'a> AggregateRangeStatement<'a> {
fn initial_transcript(&self) -> (Scalar, Vec<EdwardsPoint>) {
let V = self.commitments.iter().map(|c| c * INV_EIGHT()).collect::<Vec<_>>();
(keccak256_to_scalar(V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>()), V)
}
let mut tau1 = Scalar::random(&mut *rng);
let mut tau2 = Scalar::random(&mut *rng);
fn transcript_A_S(transcript: Scalar, A: EdwardsPoint, S: EdwardsPoint) -> (Scalar, Scalar) {
let mut buf = Vec::with_capacity(96);
buf.extend(transcript.to_bytes());
buf.extend(A.compress().to_bytes());
buf.extend(S.compress().to_bytes());
let y = keccak256_to_scalar(buf);
let z = keccak256_to_scalar(y.to_bytes());
(y, z)
}
let T1 = multiexp(&[(t1, H()), (tau1, ED25519_BASEPOINT_POINT)]) * INV_EIGHT();
let T2 = multiexp(&[(t2, H()), (tau2, ED25519_BASEPOINT_POINT)]) * INV_EIGHT();
fn transcript_T12(transcript: Scalar, T1: EdwardsPoint, T2: EdwardsPoint) -> Scalar {
let mut buf = Vec::with_capacity(128);
buf.extend(transcript.to_bytes());
buf.extend(transcript.to_bytes());
buf.extend(T1.compress().to_bytes());
buf.extend(T2.compress().to_bytes());
keccak256_to_scalar(buf)
}
let x =
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
fn transcript_tau_x_mu_t_hat(
transcript: Scalar,
tau_x: Scalar,
mu: Scalar,
t_hat: Scalar,
) -> Scalar {
let mut buf = Vec::with_capacity(128);
buf.extend(transcript.to_bytes());
buf.extend(transcript.to_bytes());
buf.extend(tau_x.to_bytes());
buf.extend(mu.to_bytes());
buf.extend(t_hat.to_bytes());
keccak256_to_scalar(buf)
}
let tau_x = (tau2 * (x * x)) + (tau1 * x);
tau1.zeroize();
tau2.zeroize();
(T1, T2, x, tau_x)
#[allow(clippy::needless_pass_by_value)]
pub(crate) fn prove(
self,
rng: &mut (impl RngCore + CryptoRng),
witness: AggregateRangeWitness,
) -> Option<AggregateRangeProof> {
if self.commitments != witness.commitments.iter().map(Commitment::calculate).collect::<Vec<_>>()
{
None?
};
let mu = (x * rho) + alpha;
alpha.zeroize();
rho.zeroize();
let generators = GENERATORS();
for (i, gamma) in commitments.iter().map(|c| c.mask).enumerate() {
tau_x += zpow[i + 2] * gamma;
let (mut transcript, _) = self.initial_transcript();
// Find out the padded amount of commitments
let mut padded_pow_of_2 = 1;
while padded_pow_of_2 < witness.commitments.len() {
padded_pow_of_2 <<= 1;
}
let l = l0 + &(l1 * x);
let r = r0 + &(r1 * x);
let t = l.clone().inner_product(&r);
let x_ip =
hash_cache(&mut cache, &[x.to_bytes(), tau_x.to_bytes(), mu.to_bytes(), t.to_bytes()]);
let mut a = l;
let mut b = r;
let yinv = y.invert();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = generators.G[.. a.len()].to_vec();
let mut H_proof = generators.H[.. a.len()].to_vec();
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
let U = H() * x_ip;
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = aL.clone().inner_product(&bR);
let cR = aR.clone().inner_product(&bL);
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let L_i = multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U)) * INV_EIGHT();
let R_i = multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U)) * INV_EIGHT();
L.push(L_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let w_inv = w.invert();
a = (aL * w) + &(aR * w_inv);
b = (bL * w_inv) + &(bR * w);
if a.len() != 1 {
G_proof = hadamard_fold(G_L, G_R, w_inv, w);
H_proof = hadamard_fold(H_L, H_R, w, w_inv);
let mut aL = ScalarVector::new(padded_pow_of_2 * COMMITMENT_BITS);
for (i, commitment) in witness.commitments.iter().enumerate() {
let mut amount = commitment.amount;
for j in 0 .. COMMITMENT_BITS {
aL[(i * COMMITMENT_BITS) + j] = Scalar::from(amount & 1);
amount >>= 1;
}
}
let aR = aL.clone() - Scalar::ONE;
let res = OriginalStruct { A, S, T1, T2, tau_x, mu, L, R, a: a[0], b: b[0], t };
let alpha = Scalar::random(&mut *rng);
let A = {
let mut terms = Vec::with_capacity(1 + (2 * aL.len()));
terms.push((alpha, ED25519_BASEPOINT_POINT));
for (aL, G) in aL.0.iter().zip(&generators.G) {
terms.push((*aL, *G));
}
for (aR, H) in aR.0.iter().zip(&generators.H) {
terms.push((*aR, *H));
}
let res = multiexp(&terms) * INV_EIGHT();
terms.zeroize();
res
};
let mut sL = ScalarVector::new(padded_pow_of_2 * COMMITMENT_BITS);
let mut sR = ScalarVector::new(padded_pow_of_2 * COMMITMENT_BITS);
for i in 0 .. (padded_pow_of_2 * COMMITMENT_BITS) {
sL[i] = Scalar::random(&mut *rng);
sR[i] = Scalar::random(&mut *rng);
}
let rho = Scalar::random(&mut *rng);
let S = {
let mut terms = Vec::with_capacity(1 + (2 * sL.len()));
terms.push((rho, ED25519_BASEPOINT_POINT));
for (sL, G) in sL.0.iter().zip(&generators.G) {
terms.push((*sL, *G));
}
for (sR, H) in sR.0.iter().zip(&generators.H) {
terms.push((*sR, *H));
}
let res = multiexp(&terms) * INV_EIGHT();
terms.zeroize();
res
};
let (y, z) = Self::transcript_A_S(transcript, A, S);
transcript = z;
let twos = ScalarVector::powers(Scalar::from(2u8), COMMITMENT_BITS);
let l = [aL - z, sL];
let y_pow_n = ScalarVector::powers(y, aR.len());
let mut r = [((aR + z) * &y_pow_n), sR * &y_pow_n];
{
let mut z_current = z * z;
for j in 0 .. padded_pow_of_2 {
for i in 0 .. COMMITMENT_BITS {
r[0].0[(j * COMMITMENT_BITS) + i] += z_current * twos[i];
}
z_current *= z;
}
}
let t1 = (l[0].clone().inner_product(&r[1])) + (r[0].clone().inner_product(&l[1]));
let t2 = l[1].clone().inner_product(&r[1]);
let tau_1 = Scalar::random(&mut *rng);
let T1 = {
let mut T1_terms = [(t1, H()), (tau_1, ED25519_BASEPOINT_POINT)];
for term in &mut T1_terms {
term.0 *= INV_EIGHT();
}
let T1 = multiexp(&T1_terms);
T1_terms.zeroize();
T1
};
let tau_2 = Scalar::random(&mut *rng);
let T2 = {
let mut T2_terms = [(t2, H()), (tau_2, ED25519_BASEPOINT_POINT)];
for term in &mut T2_terms {
term.0 *= INV_EIGHT();
}
let T2 = multiexp(&T2_terms);
T2_terms.zeroize();
T2
};
transcript = Self::transcript_T12(transcript, T1, T2);
let x = transcript;
let [l0, l1] = l;
let l = l0 + &(l1 * x);
let [r0, r1] = r;
let r = r0 + &(r1 * x);
let t_hat = l.clone().inner_product(&r);
let mut tau_x = ((tau_2 * x) + tau_1) * x;
{
let mut z_current = z * z;
for commitment in &witness.commitments {
tau_x += z_current * commitment.mask;
z_current *= z;
}
}
let mu = alpha + (rho * x);
let y_inv_pow_n = ScalarVector::powers(y.invert(), l.len());
transcript = Self::transcript_tau_x_mu_t_hat(transcript, tau_x, mu, t_hat);
let x_ip = transcript;
let ip = IpStatement::new_without_P_transcript(y_inv_pow_n, x_ip)
.prove(transcript, IpWitness::new(l, r).unwrap())
.unwrap();
let res = AggregateRangeProof { A, S, T1, T2, tau_x, mu, t_hat, ip };
#[cfg(debug_assertions)]
{
let mut verifier = BulletproofsBatchVerifier::default();
debug_assert!(res.verify(rng, &mut verifier, &commitments_points));
debug_assert!(self.verify(rng, &mut verifier, res.clone()));
debug_assert!(verifier.verify());
}
res
Some(res)
}
#[must_use]
pub(crate) fn verify<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
pub(crate) fn verify(
self,
rng: &mut (impl RngCore + CryptoRng),
verifier: &mut BulletproofsBatchVerifier,
commitments: &[EdwardsPoint],
mut proof: AggregateRangeProof,
) -> bool {
// Verify commitments are valid
if commitments.is_empty() || (commitments.len() > MAX_COMMITMENTS) {
return false;
let mut padded_pow_of_2 = 1;
while padded_pow_of_2 < self.commitments.len() {
padded_pow_of_2 <<= 1;
}
let ip_rows = padded_pow_of_2 * COMMITMENT_BITS;
while verifier.0.g_bold.len() < ip_rows {
verifier.0.g_bold.push(Scalar::ZERO);
verifier.0.h_bold.push(Scalar::ZERO);
}
// Verify L and R are properly sized
if self.L.len() != self.R.len() {
return false;
let (mut transcript, mut commitments) = self.initial_transcript();
for commitment in &mut commitments {
*commitment = commitment.mul_by_cofactor();
}
let (logMN, M, MN) = MN(commitments.len());
if self.L.len() != logMN {
return false;
}
let (y, z) = Self::transcript_A_S(transcript, proof.A, proof.S);
transcript = z;
transcript = Self::transcript_T12(transcript, proof.T1, proof.T2);
let x = transcript;
transcript = Self::transcript_tau_x_mu_t_hat(transcript, proof.tau_x, proof.mu, proof.t_hat);
let x_ip = transcript;
// Rebuild all challenges
let (mut cache, commitments) = hash_commitments(commitments.iter().copied());
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]);
proof.A = proof.A.mul_by_cofactor();
proof.S = proof.S.mul_by_cofactor();
proof.T1 = proof.T1.mul_by_cofactor();
proof.T2 = proof.T2.mul_by_cofactor();
let z = keccak256_to_scalar(y.to_bytes());
cache = z;
let y_pow_n = ScalarVector::powers(y, ip_rows);
let y_inv_pow_n = ScalarVector::powers(y.invert(), ip_rows);
let x = hash_cache(
&mut cache,
&[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()],
);
let twos = ScalarVector::powers(Scalar::from(2u8), COMMITMENT_BITS);
let x_ip = hash_cache(
&mut cache,
&[x.to_bytes(), self.tau_x.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()],
);
let mut w_and_w_inv = Vec::with_capacity(logMN);
for (L, R) in self.L.iter().zip(&self.R) {
let w = hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]);
let w_inv = w.invert();
w_and_w_inv.push((w, w_inv));
}
// Convert the proof from * INV_EIGHT to its actual form
let normalize = |point: &EdwardsPoint| point.mul_by_cofactor();
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
let T1 = normalize(&self.T1);
let T2 = normalize(&self.T2);
let A = normalize(&self.A);
let S = normalize(&self.S);
let commitments = commitments.iter().map(EdwardsPoint::mul_by_cofactor).collect::<Vec<_>>();
// Verify it
let zpow = ScalarVector::powers(z, M + 3);
// First multiexp
// 65
{
let verifier_weight = Scalar::random(rng);
let weight = Scalar::random(&mut *rng);
verifier.0.h += weight * proof.t_hat;
verifier.0.g += weight * proof.tau_x;
let ip1y = ScalarVector::powers(y, M * COMMITMENT_BITS).sum();
let mut k = -(zpow[2] * ip1y);
for j in 1 ..= M {
k -= zpow[j + 2] * IP12();
}
let y1 = self.t - ((z * ip1y) + k);
verifier.0.h -= verifier_weight * y1;
// Now that we've accumulated the lhs, negate the weight and accumulate the rhs
// These will now sum to 0 if equal
let weight = -weight;
verifier.0.g -= verifier_weight * self.tau_x;
verifier.0.h += weight * (z - (z * z)) * y_pow_n.sum();
for (j, commitment) in commitments.iter().enumerate() {
verifier.0.other.push((verifier_weight * zpow[j + 2], *commitment));
let mut z_current = z * z;
for commitment in &commitments {
verifier.0.other.push((weight * z_current, *commitment));
z_current *= z;
}
verifier.0.other.push((verifier_weight * x, T1));
verifier.0.other.push((verifier_weight * (x * x), T2));
let mut z_current = z * z * z;
for _ in 0 .. padded_pow_of_2 {
verifier.0.h -= weight * z_current * twos.clone().sum();
z_current *= z;
}
verifier.0.other.push((weight * x, proof.T1));
verifier.0.other.push((weight * (x * x), proof.T2));
}
// Second multiexp
let ip_weight = Scalar::random(&mut *rng);
// 66
verifier.0.other.push((ip_weight, proof.A));
verifier.0.other.push((ip_weight * x, proof.S));
// TODO: g_sum
for i in 0 .. ip_rows {
verifier.0.g_bold[i] += ip_weight * -z;
}
// TODO: h_sum
for i in 0 .. ip_rows {
verifier.0.h_bold[i] += ip_weight * z;
}
{
let verifier_weight = Scalar::random(rng);
let z3 = (self.t - (self.a * self.b)) * x_ip;
verifier.0.h += verifier_weight * z3;
verifier.0.g -= verifier_weight * self.mu;
verifier.0.other.push((verifier_weight, A));
verifier.0.other.push((verifier_weight * x, S));
{
let ypow = ScalarVector::powers(y, MN);
let yinv = y.invert();
let yinvpow = ScalarVector::powers(yinv, MN);
let w_cache = challenge_products(&w_and_w_inv);
while verifier.0.g_bold.len() < MN {
verifier.0.g_bold.push(Scalar::ZERO);
let mut z_current = z * z;
for j in 0 .. padded_pow_of_2 {
for i in 0 .. COMMITMENT_BITS {
let full_i = (j * COMMITMENT_BITS) + i;
verifier.0.h_bold[full_i] += ip_weight * y_inv_pow_n[full_i] * z_current * twos[i];
}
while verifier.0.h_bold.len() < MN {
verifier.0.h_bold.push(Scalar::ZERO);
}
for i in 0 .. MN {
let g = (self.a * w_cache[i]) + z;
verifier.0.g_bold[i] -= verifier_weight * g;
let mut h = self.b * yinvpow[i] * w_cache[(!i) & (MN - 1)];
h -= ((zpow[(i / COMMITMENT_BITS) + 2] * TWO_N()[i % COMMITMENT_BITS]) + (z * ypow[i])) *
yinvpow[i];
verifier.0.h_bold[i] -= verifier_weight * h;
}
}
for i in 0 .. logMN {
verifier.0.other.push((verifier_weight * (w_and_w_inv[i].0 * w_and_w_inv[i].0), L[i]));
verifier.0.other.push((verifier_weight * (w_and_w_inv[i].1 * w_and_w_inv[i].1), R[i]));
z_current *= z;
}
}
verifier.0.h += ip_weight * x_ip * proof.t_hat;
true
// 67, 68
verifier.0.g += ip_weight * -proof.mu;
let res = IpStatement::new_without_P_transcript(y_inv_pow_n, x_ip)
.verify(verifier, ip_rows, transcript, ip_weight, proof.ip);
res.is_ok()
}
}