* Partial move to ff 0.13

It turns out the newly released k256 0.12 isn't on ff 0.13, preventing further
work at this time.

* Update all crates to work on ff 0.13

The provided curves still need to be expanded to fit the new API.

* Finish adding dalek-ff-group ff 0.13 constants

* Correct FieldElement::product definition

Also stops exporting macros.

* Test most new parts of ff 0.13

* Additionally test ff-group-tests with BLS12-381 and the pasta curves

We only tested curves from RustCrypto. Now we test a curve offered by zk-crypto,
the group behind ff/group, and the pasta curves, which is by Zcash (though
Zcash developers are also behind zk-crypto).

* Finish Ed448

Fully specifies all constants, passes all tests in ff-group-tests, and finishes moving to ff-0.13.

* Add RustCrypto/elliptic-curves to allowed git repos

Needed due to k256/p256 incorrectly defining product.

* Finish writing ff 0.13 tests

* Add additional comments to dalek

* Further comments

* Update ethereum-serai to ff 0.13
This commit is contained in:
Luke Parker
2023-03-28 04:38:01 -04:00
committed by GitHub
parent a9f6300e86
commit 79aff5d4c8
59 changed files with 865 additions and 429 deletions

View File

@@ -32,7 +32,7 @@ pub(crate) fn challenge<T: Transcript, F: PrimeField>(transcript: &mut T) -> F {
// and loading it in
// 3: Iterating over each byte and manually doubling/adding. This is simplest
let mut challenge = F::zero();
let mut challenge = F::ZERO;
// Get a wide amount of bytes to safely reduce without bias
// In most cases, <=1.5x bytes is enough. 2x is still standard and there's some theoretical
@@ -105,13 +105,19 @@ pub enum DLEqError {
/// A proof that points have the same discrete logarithm across generators.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct DLEqProof<G: PrimeGroup> {
pub struct DLEqProof<G: PrimeGroup>
where
G::Scalar: Zeroize,
{
c: G::Scalar,
s: G::Scalar,
}
#[allow(non_snake_case)]
impl<G: PrimeGroup> DLEqProof<G> {
impl<G: PrimeGroup> DLEqProof<G>
where
G::Scalar: Zeroize,
{
fn transcript<T: Transcript>(transcript: &mut T, generator: G, nonce: G, point: G) {
transcript.append_message(b"generator", generator.to_bytes());
transcript.append_message(b"nonce", nonce.to_bytes());
@@ -125,10 +131,7 @@ impl<G: PrimeGroup> DLEqProof<G> {
transcript: &mut T,
generators: &[G],
scalar: &Zeroizing<G::Scalar>,
) -> DLEqProof<G>
where
G::Scalar: Zeroize,
{
) -> DLEqProof<G> {
let r = Zeroizing::new(G::Scalar::random(rng));
transcript.domain_separate(b"dleq");
@@ -210,14 +213,20 @@ impl<G: PrimeGroup> DLEqProof<G> {
/// across some generators, yet with a smaller overall proof size.
#[cfg(feature = "std")]
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct MultiDLEqProof<G: PrimeGroup> {
pub struct MultiDLEqProof<G: PrimeGroup>
where
G::Scalar: Zeroize,
{
c: G::Scalar,
s: Vec<G::Scalar>,
}
#[cfg(feature = "std")]
#[allow(non_snake_case)]
impl<G: PrimeGroup> MultiDLEqProof<G> {
impl<G: PrimeGroup> MultiDLEqProof<G>
where
G::Scalar: Zeroize,
{
/// Prove for each scalar that the series of points created by multiplying it against its
/// matching generators share a discrete logarithm.
/// This function panics if `generators.len() != scalars.len()`.
@@ -226,10 +235,7 @@ impl<G: PrimeGroup> MultiDLEqProof<G> {
transcript: &mut T,
generators: &[Vec<G>],
scalars: &[Zeroizing<G::Scalar>],
) -> MultiDLEqProof<G>
where
G::Scalar: Zeroize,
{
) -> MultiDLEqProof<G> {
assert_eq!(
generators.len(),
scalars.len(),