mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-13 14:39:25 +00:00
Begin crate smashing
This commit is contained in:
@@ -17,7 +17,7 @@ mod binaries {
|
||||
rpc::{RpcError, Rpc, HttpRpc},
|
||||
};
|
||||
|
||||
pub(crate) use monero_generators::decompress_point;
|
||||
pub(crate) use monero_io::decompress_point;
|
||||
|
||||
pub(crate) use tokio::task::JoinHandle;
|
||||
|
||||
|
||||
@@ -6,26 +6,21 @@
|
||||
#[macro_use]
|
||||
extern crate alloc;
|
||||
|
||||
use std_shims::{sync::OnceLock, io};
|
||||
use std_shims::io;
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use zeroize::{Zeroize, ZeroizeOnDrop};
|
||||
use zeroize::Zeroize;
|
||||
|
||||
use sha3::{Digest, Keccak256};
|
||||
|
||||
use curve25519_dalek::{
|
||||
constants::{ED25519_BASEPOINT_TABLE, ED25519_BASEPOINT_POINT},
|
||||
scalar::Scalar,
|
||||
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation},
|
||||
traits::VartimePrecomputedMultiscalarMul,
|
||||
};
|
||||
use curve25519_dalek::scalar::Scalar;
|
||||
|
||||
pub use monero_generators::{H, decompress_point};
|
||||
pub use monero_io::decompress_point;
|
||||
pub use monero_generators::H;
|
||||
pub use monero_primitives::INV_EIGHT;
|
||||
|
||||
mod merkle;
|
||||
|
||||
mod serialize;
|
||||
use monero_io as serialize;
|
||||
use serialize::{read_byte, read_u16};
|
||||
|
||||
/// UnreducedScalar struct with functionality for recovering incorrectly reduced scalars.
|
||||
@@ -55,19 +50,6 @@ pub const DEFAULT_LOCK_WINDOW: usize = 10;
|
||||
pub const COINBASE_LOCK_WINDOW: usize = 60;
|
||||
pub const BLOCK_TIME: usize = 120;
|
||||
|
||||
static INV_EIGHT_CELL: OnceLock<Scalar> = OnceLock::new();
|
||||
#[allow(non_snake_case)]
|
||||
pub(crate) fn INV_EIGHT() -> Scalar {
|
||||
*INV_EIGHT_CELL.get_or_init(|| Scalar::from(8u8).invert())
|
||||
}
|
||||
|
||||
static BASEPOINT_PRECOMP_CELL: OnceLock<VartimeEdwardsPrecomputation> = OnceLock::new();
|
||||
#[allow(non_snake_case)]
|
||||
pub(crate) fn BASEPOINT_PRECOMP() -> &'static VartimeEdwardsPrecomputation {
|
||||
BASEPOINT_PRECOMP_CELL
|
||||
.get_or_init(|| VartimeEdwardsPrecomputation::new([ED25519_BASEPOINT_POINT]))
|
||||
}
|
||||
|
||||
/// Monero protocol version.
|
||||
///
|
||||
/// v15 is omitted as v15 was simply v14 and v16 being active at the same time, with regards to the
|
||||
@@ -188,42 +170,7 @@ impl Protocol {
|
||||
}
|
||||
}
|
||||
|
||||
/// Transparent structure representing a Pedersen commitment's contents.
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone, PartialEq, Eq, Zeroize, ZeroizeOnDrop)]
|
||||
pub struct Commitment {
|
||||
pub mask: Scalar,
|
||||
pub amount: u64,
|
||||
}
|
||||
|
||||
impl core::fmt::Debug for Commitment {
|
||||
fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
|
||||
fmt.debug_struct("Commitment").field("amount", &self.amount).finish_non_exhaustive()
|
||||
}
|
||||
}
|
||||
|
||||
impl Commitment {
|
||||
/// A commitment to zero, defined with a mask of 1 (as to not be the identity).
|
||||
pub fn zero() -> Commitment {
|
||||
Commitment { mask: Scalar::ONE, amount: 0 }
|
||||
}
|
||||
|
||||
pub fn new(mask: Scalar, amount: u64) -> Commitment {
|
||||
Commitment { mask, amount }
|
||||
}
|
||||
|
||||
/// Calculate a Pedersen commitment, as a point, from the transparent structure.
|
||||
pub fn calculate(&self) -> EdwardsPoint {
|
||||
(&self.mask * ED25519_BASEPOINT_TABLE) + (Scalar::from(self.amount) * H())
|
||||
}
|
||||
}
|
||||
|
||||
/// Support generating a random scalar using a modern rand, as dalek's is notoriously dated.
|
||||
pub fn random_scalar<R: RngCore + CryptoRng>(rng: &mut R) -> Scalar {
|
||||
let mut r = [0; 64];
|
||||
rng.fill_bytes(&mut r);
|
||||
Scalar::from_bytes_mod_order_wide(&r)
|
||||
}
|
||||
pub use monero_primitives::Commitment;
|
||||
|
||||
pub(crate) fn hash(data: &[u8]) -> [u8; 32] {
|
||||
Keccak256::digest(data).into()
|
||||
|
||||
@@ -1,367 +0,0 @@
|
||||
#![allow(non_snake_case)]
|
||||
|
||||
use core::ops::Deref;
|
||||
use std_shims::{
|
||||
vec::Vec,
|
||||
io::{self, Read, Write},
|
||||
};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
|
||||
use subtle::{ConstantTimeEq, ConditionallySelectable};
|
||||
|
||||
use curve25519_dalek::{
|
||||
constants::{ED25519_BASEPOINT_TABLE, ED25519_BASEPOINT_POINT},
|
||||
scalar::Scalar,
|
||||
traits::{IsIdentity, MultiscalarMul, VartimePrecomputedMultiscalarMul},
|
||||
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation},
|
||||
};
|
||||
|
||||
use crate::{
|
||||
INV_EIGHT, BASEPOINT_PRECOMP, Commitment, random_scalar, hash_to_scalar, wallet::decoys::Decoys,
|
||||
ringct::hash_to_point, serialize::*,
|
||||
};
|
||||
|
||||
#[cfg(feature = "multisig")]
|
||||
mod multisig;
|
||||
#[cfg(feature = "multisig")]
|
||||
pub(crate) use multisig::{ClsagDetails, ClsagAddendum, ClsagMultisig};
|
||||
|
||||
/// Errors when working with CLSAGs.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
#[cfg_attr(feature = "std", derive(thiserror::Error))]
|
||||
pub enum ClsagError {
|
||||
/// The ring was invalid (such as being too small or too large).
|
||||
#[cfg_attr(feature = "std", error("invalid ring"))]
|
||||
InvalidRing,
|
||||
/// The specified ring member was invalid (index, ring size).
|
||||
#[cfg_attr(feature = "std", error("invalid ring member (member {0}, ring size {1})"))]
|
||||
InvalidRingMember(u8, u8),
|
||||
/// The commitment opening provided did not match the ring member's.
|
||||
#[cfg_attr(feature = "std", error("invalid commitment"))]
|
||||
InvalidCommitment,
|
||||
/// The key image was invalid (such as being identity or torsioned)
|
||||
#[cfg_attr(feature = "std", error("invalid key image"))]
|
||||
InvalidImage,
|
||||
/// The `D` component was invalid.
|
||||
#[cfg_attr(feature = "std", error("invalid D"))]
|
||||
InvalidD,
|
||||
/// The `s` vector was invalid.
|
||||
#[cfg_attr(feature = "std", error("invalid s"))]
|
||||
InvalidS,
|
||||
/// The `c1` variable was invalid.
|
||||
#[cfg_attr(feature = "std", error("invalid c1"))]
|
||||
InvalidC1,
|
||||
}
|
||||
|
||||
/// Context on the ring member being signed for.
|
||||
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
|
||||
pub struct ClsagInput {
|
||||
// The actual commitment for the true spend
|
||||
pub(crate) commitment: Commitment,
|
||||
// True spend index, offsets, and ring
|
||||
pub(crate) decoys: Decoys,
|
||||
}
|
||||
|
||||
impl ClsagInput {
|
||||
pub fn new(commitment: Commitment, decoys: Decoys) -> Result<ClsagInput, ClsagError> {
|
||||
let n = decoys.len();
|
||||
if n > u8::MAX.into() {
|
||||
Err(ClsagError::InvalidRing)?;
|
||||
}
|
||||
let n = u8::try_from(n).unwrap();
|
||||
if decoys.i >= n {
|
||||
Err(ClsagError::InvalidRingMember(decoys.i, n))?;
|
||||
}
|
||||
|
||||
// Validate the commitment matches
|
||||
if decoys.ring[usize::from(decoys.i)][1] != commitment.calculate() {
|
||||
Err(ClsagError::InvalidCommitment)?;
|
||||
}
|
||||
|
||||
Ok(ClsagInput { commitment, decoys })
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::large_enum_variant)]
|
||||
enum Mode {
|
||||
Sign(usize, EdwardsPoint, EdwardsPoint),
|
||||
Verify(Scalar),
|
||||
}
|
||||
|
||||
// Core of the CLSAG algorithm, applicable to both sign and verify with minimal differences
|
||||
// Said differences are covered via the above Mode
|
||||
fn core(
|
||||
ring: &[[EdwardsPoint; 2]],
|
||||
I: &EdwardsPoint,
|
||||
pseudo_out: &EdwardsPoint,
|
||||
msg: &[u8; 32],
|
||||
D: &EdwardsPoint,
|
||||
s: &[Scalar],
|
||||
A_c1: &Mode,
|
||||
) -> ((EdwardsPoint, Scalar, Scalar), Scalar) {
|
||||
let n = ring.len();
|
||||
|
||||
let images_precomp = match A_c1 {
|
||||
Mode::Sign(..) => None,
|
||||
Mode::Verify(..) => Some(VartimeEdwardsPrecomputation::new([I, D])),
|
||||
};
|
||||
let D_INV_EIGHT = D * INV_EIGHT();
|
||||
|
||||
// Generate the transcript
|
||||
// Instead of generating multiple, a single transcript is created and then edited as needed
|
||||
const PREFIX: &[u8] = b"CLSAG_";
|
||||
#[rustfmt::skip]
|
||||
const AGG_0: &[u8] = b"agg_0";
|
||||
#[rustfmt::skip]
|
||||
const ROUND: &[u8] = b"round";
|
||||
const PREFIX_AGG_0_LEN: usize = PREFIX.len() + AGG_0.len();
|
||||
|
||||
let mut to_hash = Vec::with_capacity(((2 * n) + 5) * 32);
|
||||
to_hash.extend(PREFIX);
|
||||
to_hash.extend(AGG_0);
|
||||
to_hash.extend([0; 32 - PREFIX_AGG_0_LEN]);
|
||||
|
||||
let mut P = Vec::with_capacity(n);
|
||||
for member in ring {
|
||||
P.push(member[0]);
|
||||
to_hash.extend(member[0].compress().to_bytes());
|
||||
}
|
||||
|
||||
let mut C = Vec::with_capacity(n);
|
||||
for member in ring {
|
||||
C.push(member[1] - pseudo_out);
|
||||
to_hash.extend(member[1].compress().to_bytes());
|
||||
}
|
||||
|
||||
to_hash.extend(I.compress().to_bytes());
|
||||
to_hash.extend(D_INV_EIGHT.compress().to_bytes());
|
||||
to_hash.extend(pseudo_out.compress().to_bytes());
|
||||
// mu_P with agg_0
|
||||
let mu_P = hash_to_scalar(&to_hash);
|
||||
// mu_C with agg_1
|
||||
to_hash[PREFIX_AGG_0_LEN - 1] = b'1';
|
||||
let mu_C = hash_to_scalar(&to_hash);
|
||||
|
||||
// Truncate it for the round transcript, altering the DST as needed
|
||||
to_hash.truncate(((2 * n) + 1) * 32);
|
||||
for i in 0 .. ROUND.len() {
|
||||
to_hash[PREFIX.len() + i] = ROUND[i];
|
||||
}
|
||||
// Unfortunately, it's I D pseudo_out instead of pseudo_out I D, meaning this needs to be
|
||||
// truncated just to add it back
|
||||
to_hash.extend(pseudo_out.compress().to_bytes());
|
||||
to_hash.extend(msg);
|
||||
|
||||
// Configure the loop based on if we're signing or verifying
|
||||
let start;
|
||||
let end;
|
||||
let mut c;
|
||||
match A_c1 {
|
||||
Mode::Sign(r, A, AH) => {
|
||||
start = r + 1;
|
||||
end = r + n;
|
||||
to_hash.extend(A.compress().to_bytes());
|
||||
to_hash.extend(AH.compress().to_bytes());
|
||||
c = hash_to_scalar(&to_hash);
|
||||
}
|
||||
|
||||
Mode::Verify(c1) => {
|
||||
start = 0;
|
||||
end = n;
|
||||
c = *c1;
|
||||
}
|
||||
}
|
||||
|
||||
// Perform the core loop
|
||||
let mut c1 = c;
|
||||
for i in (start .. end).map(|i| i % n) {
|
||||
let c_p = mu_P * c;
|
||||
let c_c = mu_C * c;
|
||||
|
||||
// (s_i * G) + (c_p * P_i) + (c_c * C_i)
|
||||
let L = match A_c1 {
|
||||
Mode::Sign(..) => {
|
||||
EdwardsPoint::multiscalar_mul([s[i], c_p, c_c], [ED25519_BASEPOINT_POINT, P[i], C[i]])
|
||||
}
|
||||
Mode::Verify(..) => {
|
||||
BASEPOINT_PRECOMP().vartime_mixed_multiscalar_mul([s[i]], [c_p, c_c], [P[i], C[i]])
|
||||
}
|
||||
};
|
||||
|
||||
let PH = hash_to_point(&P[i]);
|
||||
|
||||
// (c_p * I) + (c_c * D) + (s_i * PH)
|
||||
let R = match A_c1 {
|
||||
Mode::Sign(..) => EdwardsPoint::multiscalar_mul([c_p, c_c, s[i]], [I, D, &PH]),
|
||||
Mode::Verify(..) => {
|
||||
images_precomp.as_ref().unwrap().vartime_mixed_multiscalar_mul([c_p, c_c], [s[i]], [PH])
|
||||
}
|
||||
};
|
||||
|
||||
to_hash.truncate(((2 * n) + 3) * 32);
|
||||
to_hash.extend(L.compress().to_bytes());
|
||||
to_hash.extend(R.compress().to_bytes());
|
||||
c = hash_to_scalar(&to_hash);
|
||||
|
||||
// This will only execute once and shouldn't need to be constant time. Making it constant time
|
||||
// removes the risk of branch prediction creating timing differences depending on ring index
|
||||
// however
|
||||
c1.conditional_assign(&c, i.ct_eq(&(n - 1)));
|
||||
}
|
||||
|
||||
// This first tuple is needed to continue signing, the latter is the c to be tested/worked with
|
||||
((D_INV_EIGHT, c * mu_P, c * mu_C), c1)
|
||||
}
|
||||
|
||||
/// CLSAG signature, as used in Monero.
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct Clsag {
|
||||
D: EdwardsPoint,
|
||||
pub(crate) s: Vec<Scalar>,
|
||||
pub(crate) c1: Scalar,
|
||||
}
|
||||
|
||||
pub(crate) struct ClsagSignCore {
|
||||
incomplete_clsag: Clsag,
|
||||
pseudo_out: EdwardsPoint,
|
||||
key_challenge: Scalar,
|
||||
challenged_mask: Scalar,
|
||||
}
|
||||
|
||||
impl Clsag {
|
||||
// Sign core is the extension of core as needed for signing, yet is shared between single signer
|
||||
// and multisig, hence why it's still core
|
||||
pub(crate) fn sign_core<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
I: &EdwardsPoint,
|
||||
input: &ClsagInput,
|
||||
mask: Scalar,
|
||||
msg: &[u8; 32],
|
||||
A: EdwardsPoint,
|
||||
AH: EdwardsPoint,
|
||||
) -> ClsagSignCore {
|
||||
let r: usize = input.decoys.i.into();
|
||||
|
||||
let pseudo_out = Commitment::new(mask, input.commitment.amount).calculate();
|
||||
let mask_delta = input.commitment.mask - mask;
|
||||
|
||||
let H = hash_to_point(&input.decoys.ring[r][0]);
|
||||
let D = H * mask_delta;
|
||||
let mut s = Vec::with_capacity(input.decoys.ring.len());
|
||||
for _ in 0 .. input.decoys.ring.len() {
|
||||
s.push(random_scalar(rng));
|
||||
}
|
||||
let ((D, c_p, c_c), c1) =
|
||||
core(&input.decoys.ring, I, &pseudo_out, msg, &D, &s, &Mode::Sign(r, A, AH));
|
||||
|
||||
ClsagSignCore {
|
||||
incomplete_clsag: Clsag { D, s, c1 },
|
||||
pseudo_out,
|
||||
key_challenge: c_p,
|
||||
challenged_mask: c_c * mask_delta,
|
||||
}
|
||||
}
|
||||
|
||||
/// Generate CLSAG signatures for the given inputs.
|
||||
///
|
||||
/// inputs is of the form (private key, key image, input).
|
||||
/// sum_outputs is for the sum of the outputs' commitment masks.
|
||||
pub(crate) fn sign<R: RngCore + CryptoRng>(
|
||||
rng: &mut R,
|
||||
mut inputs: Vec<(Zeroizing<Scalar>, EdwardsPoint, ClsagInput)>,
|
||||
sum_outputs: Scalar,
|
||||
msg: [u8; 32],
|
||||
) -> Vec<(Clsag, EdwardsPoint)> {
|
||||
let mut res = Vec::with_capacity(inputs.len());
|
||||
let mut sum_pseudo_outs = Scalar::ZERO;
|
||||
for i in 0 .. inputs.len() {
|
||||
let mut mask = random_scalar(rng);
|
||||
if i == (inputs.len() - 1) {
|
||||
mask = sum_outputs - sum_pseudo_outs;
|
||||
} else {
|
||||
sum_pseudo_outs += mask;
|
||||
}
|
||||
|
||||
let mut nonce = Zeroizing::new(random_scalar(rng));
|
||||
let ClsagSignCore { mut incomplete_clsag, pseudo_out, key_challenge, challenged_mask } =
|
||||
Clsag::sign_core(
|
||||
rng,
|
||||
&inputs[i].1,
|
||||
&inputs[i].2,
|
||||
mask,
|
||||
&msg,
|
||||
nonce.deref() * ED25519_BASEPOINT_TABLE,
|
||||
nonce.deref() *
|
||||
hash_to_point(&inputs[i].2.decoys.ring[usize::from(inputs[i].2.decoys.i)][0]),
|
||||
);
|
||||
// Effectively r - cx, except cx is (c_p x) + (c_c z), where z is the delta between a ring
|
||||
// member's commitment and our input commitment (which will only have a known discrete log
|
||||
// over G if the amounts cancel out)
|
||||
incomplete_clsag.s[usize::from(inputs[i].2.decoys.i)] =
|
||||
nonce.deref() - ((key_challenge * inputs[i].0.deref()) + challenged_mask);
|
||||
let clsag = incomplete_clsag;
|
||||
|
||||
// Zeroize private keys and nonces.
|
||||
inputs[i].0.zeroize();
|
||||
nonce.zeroize();
|
||||
|
||||
debug_assert!(clsag
|
||||
.verify(&inputs[i].2.decoys.ring, &inputs[i].1, &pseudo_out, &msg)
|
||||
.is_ok());
|
||||
|
||||
res.push((clsag, pseudo_out));
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
/// Verify the CLSAG signature against the given Transaction data.
|
||||
pub fn verify(
|
||||
&self,
|
||||
ring: &[[EdwardsPoint; 2]],
|
||||
I: &EdwardsPoint,
|
||||
pseudo_out: &EdwardsPoint,
|
||||
msg: &[u8; 32],
|
||||
) -> Result<(), ClsagError> {
|
||||
// Preliminary checks. s, c1, and points must also be encoded canonically, which isn't checked
|
||||
// here
|
||||
if ring.is_empty() {
|
||||
Err(ClsagError::InvalidRing)?;
|
||||
}
|
||||
if ring.len() != self.s.len() {
|
||||
Err(ClsagError::InvalidS)?;
|
||||
}
|
||||
if I.is_identity() || (!I.is_torsion_free()) {
|
||||
Err(ClsagError::InvalidImage)?;
|
||||
}
|
||||
|
||||
let D = self.D.mul_by_cofactor();
|
||||
if D.is_identity() {
|
||||
Err(ClsagError::InvalidD)?;
|
||||
}
|
||||
|
||||
let (_, c1) = core(ring, I, pseudo_out, msg, &D, &self.s, &Mode::Verify(self.c1));
|
||||
if c1 != self.c1 {
|
||||
Err(ClsagError::InvalidC1)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn fee_weight(ring_len: usize) -> usize {
|
||||
(ring_len * 32) + 32 + 32
|
||||
}
|
||||
|
||||
/// Write the CLSAG to a writer.
|
||||
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
|
||||
write_raw_vec(write_scalar, &self.s, w)?;
|
||||
w.write_all(&self.c1.to_bytes())?;
|
||||
write_point(&self.D, w)
|
||||
}
|
||||
|
||||
/// Read a CLSAG from a reader.
|
||||
pub fn read<R: Read>(decoys: usize, r: &mut R) -> io::Result<Clsag> {
|
||||
Ok(Clsag { s: read_raw_vec(read_scalar, decoys, r)?, c1: read_scalar(r)?, D: read_point(r)? })
|
||||
}
|
||||
}
|
||||
@@ -1,332 +0,0 @@
|
||||
use core::{ops::Deref, fmt::Debug};
|
||||
use std_shims::{
|
||||
io::{self, Read, Write},
|
||||
collections::HashMap,
|
||||
};
|
||||
use std::sync::{Arc, RwLock};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng, SeedableRng};
|
||||
use rand_chacha::ChaCha20Rng;
|
||||
|
||||
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
|
||||
|
||||
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
|
||||
|
||||
use group::{
|
||||
ff::{Field, PrimeField},
|
||||
Group, GroupEncoding,
|
||||
};
|
||||
|
||||
use transcript::{Transcript, RecommendedTranscript};
|
||||
use dalek_ff_group as dfg;
|
||||
use frost::{
|
||||
dkg::lagrange,
|
||||
curve::Ed25519,
|
||||
Participant, FrostError, ThresholdKeys, ThresholdView,
|
||||
algorithm::{WriteAddendum, Algorithm},
|
||||
};
|
||||
|
||||
use crate::ringct::{
|
||||
hash_to_point,
|
||||
clsag::{ClsagInput, Clsag},
|
||||
};
|
||||
|
||||
impl ClsagInput {
|
||||
fn transcript<T: Transcript>(&self, transcript: &mut T) {
|
||||
// Doesn't domain separate as this is considered part of the larger CLSAG proof
|
||||
|
||||
// Ring index
|
||||
transcript.append_message(b"real_spend", [self.decoys.i]);
|
||||
|
||||
// Ring
|
||||
for (i, pair) in self.decoys.ring.iter().enumerate() {
|
||||
// Doesn't include global output indexes as CLSAG doesn't care and won't be affected by it
|
||||
// They're just a unreliable reference to this data which will be included in the message
|
||||
// if in use
|
||||
transcript.append_message(b"member", [u8::try_from(i).expect("ring size exceeded 255")]);
|
||||
// This also transcripts the key image generator since it's derived from this key
|
||||
transcript.append_message(b"key", pair[0].compress().to_bytes());
|
||||
transcript.append_message(b"commitment", pair[1].compress().to_bytes())
|
||||
}
|
||||
|
||||
// Doesn't include the commitment's parts as the above ring + index includes the commitment
|
||||
// The only potential malleability would be if the G/H relationship is known breaking the
|
||||
// discrete log problem, which breaks everything already
|
||||
}
|
||||
}
|
||||
|
||||
/// CLSAG input and the mask to use for it.
|
||||
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
|
||||
pub(crate) struct ClsagDetails {
|
||||
input: ClsagInput,
|
||||
mask: Scalar,
|
||||
}
|
||||
|
||||
impl ClsagDetails {
|
||||
pub(crate) fn new(input: ClsagInput, mask: Scalar) -> ClsagDetails {
|
||||
ClsagDetails { input, mask }
|
||||
}
|
||||
}
|
||||
|
||||
/// Addendum produced during the FROST signing process with relevant data.
|
||||
#[derive(Clone, PartialEq, Eq, Zeroize, Debug)]
|
||||
pub struct ClsagAddendum {
|
||||
pub(crate) key_image: dfg::EdwardsPoint,
|
||||
}
|
||||
|
||||
impl WriteAddendum for ClsagAddendum {
|
||||
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(self.key_image.compress().to_bytes().as_ref())
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
struct Interim {
|
||||
p: Scalar,
|
||||
c: Scalar,
|
||||
|
||||
clsag: Clsag,
|
||||
pseudo_out: EdwardsPoint,
|
||||
}
|
||||
|
||||
/// FROST algorithm for producing a CLSAG signature.
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub(crate) struct ClsagMultisig {
|
||||
transcript: RecommendedTranscript,
|
||||
|
||||
pub(crate) H: EdwardsPoint,
|
||||
key_image_shares: HashMap<[u8; 32], dfg::EdwardsPoint>,
|
||||
image: Option<dfg::EdwardsPoint>,
|
||||
|
||||
details: Arc<RwLock<Option<ClsagDetails>>>,
|
||||
|
||||
msg: Option<[u8; 32]>,
|
||||
interim: Option<Interim>,
|
||||
}
|
||||
|
||||
impl ClsagMultisig {
|
||||
pub(crate) fn new(
|
||||
transcript: RecommendedTranscript,
|
||||
output_key: EdwardsPoint,
|
||||
details: Arc<RwLock<Option<ClsagDetails>>>,
|
||||
) -> ClsagMultisig {
|
||||
ClsagMultisig {
|
||||
transcript,
|
||||
|
||||
H: hash_to_point(&output_key),
|
||||
key_image_shares: HashMap::new(),
|
||||
image: None,
|
||||
|
||||
details,
|
||||
|
||||
msg: None,
|
||||
interim: None,
|
||||
}
|
||||
}
|
||||
|
||||
fn input(&self) -> ClsagInput {
|
||||
(*self.details.read().unwrap()).as_ref().unwrap().input.clone()
|
||||
}
|
||||
|
||||
fn mask(&self) -> Scalar {
|
||||
(*self.details.read().unwrap()).as_ref().unwrap().mask
|
||||
}
|
||||
}
|
||||
|
||||
impl Algorithm<Ed25519> for ClsagMultisig {
|
||||
type Transcript = RecommendedTranscript;
|
||||
type Addendum = ClsagAddendum;
|
||||
type Signature = (Clsag, EdwardsPoint);
|
||||
|
||||
fn nonces(&self) -> Vec<Vec<dfg::EdwardsPoint>> {
|
||||
vec![vec![dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.H)]]
|
||||
}
|
||||
|
||||
fn preprocess_addendum<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
_rng: &mut R,
|
||||
keys: &ThresholdKeys<Ed25519>,
|
||||
) -> ClsagAddendum {
|
||||
ClsagAddendum { key_image: dfg::EdwardsPoint(self.H) * keys.secret_share().deref() }
|
||||
}
|
||||
|
||||
fn read_addendum<R: Read>(&self, reader: &mut R) -> io::Result<ClsagAddendum> {
|
||||
let mut bytes = [0; 32];
|
||||
reader.read_exact(&mut bytes)?;
|
||||
// dfg ensures the point is torsion free
|
||||
let xH = Option::<dfg::EdwardsPoint>::from(dfg::EdwardsPoint::from_bytes(&bytes))
|
||||
.ok_or_else(|| io::Error::other("invalid key image"))?;
|
||||
// Ensure this is a canonical point
|
||||
if xH.to_bytes() != bytes {
|
||||
Err(io::Error::other("non-canonical key image"))?;
|
||||
}
|
||||
|
||||
Ok(ClsagAddendum { key_image: xH })
|
||||
}
|
||||
|
||||
fn process_addendum(
|
||||
&mut self,
|
||||
view: &ThresholdView<Ed25519>,
|
||||
l: Participant,
|
||||
addendum: ClsagAddendum,
|
||||
) -> Result<(), FrostError> {
|
||||
if self.image.is_none() {
|
||||
self.transcript.domain_separate(b"CLSAG");
|
||||
// Transcript the ring
|
||||
self.input().transcript(&mut self.transcript);
|
||||
// Transcript the mask
|
||||
self.transcript.append_message(b"mask", self.mask().to_bytes());
|
||||
|
||||
// Init the image to the offset
|
||||
self.image = Some(dfg::EdwardsPoint(self.H) * view.offset());
|
||||
}
|
||||
|
||||
// Transcript this participant's contribution
|
||||
self.transcript.append_message(b"participant", l.to_bytes());
|
||||
self.transcript.append_message(b"key_image_share", addendum.key_image.compress().to_bytes());
|
||||
|
||||
// Accumulate the interpolated share
|
||||
let interpolated_key_image_share =
|
||||
addendum.key_image * lagrange::<dfg::Scalar>(l, view.included());
|
||||
*self.image.as_mut().unwrap() += interpolated_key_image_share;
|
||||
|
||||
self
|
||||
.key_image_shares
|
||||
.insert(view.verification_share(l).to_bytes(), interpolated_key_image_share);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn transcript(&mut self) -> &mut Self::Transcript {
|
||||
&mut self.transcript
|
||||
}
|
||||
|
||||
fn sign_share(
|
||||
&mut self,
|
||||
view: &ThresholdView<Ed25519>,
|
||||
nonce_sums: &[Vec<dfg::EdwardsPoint>],
|
||||
nonces: Vec<Zeroizing<dfg::Scalar>>,
|
||||
msg: &[u8],
|
||||
) -> dfg::Scalar {
|
||||
// Use the transcript to get a seeded random number generator
|
||||
// The transcript contains private data, preventing passive adversaries from recreating this
|
||||
// process even if they have access to commitments (specifically, the ring index being signed
|
||||
// for, along with the mask which should not only require knowing the shared keys yet also the
|
||||
// input commitment masks)
|
||||
let mut rng = ChaCha20Rng::from_seed(self.transcript.rng_seed(b"decoy_responses"));
|
||||
|
||||
self.msg = Some(msg.try_into().expect("CLSAG message should be 32-bytes"));
|
||||
|
||||
let sign_core = Clsag::sign_core(
|
||||
&mut rng,
|
||||
&self.image.expect("verifying a share despite never processing any addendums").0,
|
||||
&self.input(),
|
||||
self.mask(),
|
||||
self.msg.as_ref().unwrap(),
|
||||
nonce_sums[0][0].0,
|
||||
nonce_sums[0][1].0,
|
||||
);
|
||||
self.interim = Some(Interim {
|
||||
p: sign_core.key_challenge,
|
||||
c: sign_core.challenged_mask,
|
||||
clsag: sign_core.incomplete_clsag,
|
||||
pseudo_out: sign_core.pseudo_out,
|
||||
});
|
||||
|
||||
// r - p x, where p is the challenge for the keys
|
||||
*nonces[0] - dfg::Scalar(sign_core.key_challenge) * view.secret_share().deref()
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn verify(
|
||||
&self,
|
||||
_: dfg::EdwardsPoint,
|
||||
_: &[Vec<dfg::EdwardsPoint>],
|
||||
sum: dfg::Scalar,
|
||||
) -> Option<Self::Signature> {
|
||||
let interim = self.interim.as_ref().unwrap();
|
||||
let mut clsag = interim.clsag.clone();
|
||||
// We produced shares as `r - p x`, yet the signature is `r - p x - c x`
|
||||
// Substract `c x` (saved as `c`) now
|
||||
clsag.s[usize::from(self.input().decoys.i)] = sum.0 - interim.c;
|
||||
if clsag
|
||||
.verify(
|
||||
&self.input().decoys.ring,
|
||||
&self.image.expect("verifying a signature despite never processing any addendums").0,
|
||||
&interim.pseudo_out,
|
||||
self.msg.as_ref().unwrap(),
|
||||
)
|
||||
.is_ok()
|
||||
{
|
||||
return Some((clsag, interim.pseudo_out));
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
fn verify_share(
|
||||
&self,
|
||||
verification_share: dfg::EdwardsPoint,
|
||||
nonces: &[Vec<dfg::EdwardsPoint>],
|
||||
share: dfg::Scalar,
|
||||
) -> Result<Vec<(dfg::Scalar, dfg::EdwardsPoint)>, ()> {
|
||||
let interim = self.interim.as_ref().unwrap();
|
||||
|
||||
// For a share `r - p x`, the following two equalities should hold:
|
||||
// - `(r - p x)G == R.0 - pV`, where `V = xG`
|
||||
// - `(r - p x)H == R.1 - pK`, where `K = xH` (the key image share)
|
||||
//
|
||||
// This is effectively a discrete log equality proof for:
|
||||
// V, K over G, H
|
||||
// with nonces
|
||||
// R.0, R.1
|
||||
// and solution
|
||||
// s
|
||||
//
|
||||
// Which is a batch-verifiable rewrite of the traditional CP93 proof
|
||||
// (and also writable as Generalized Schnorr Protocol)
|
||||
//
|
||||
// That means that given a proper challenge, this alone can be certainly argued to prove the
|
||||
// key image share is well-formed and the provided signature so proves for that.
|
||||
|
||||
// This is a bit funky as it doesn't prove the nonces are well-formed however. They're part of
|
||||
// the prover data/transcript for a CP93/GSP proof, not part of the statement. This practically
|
||||
// is fine, for a variety of reasons (given a consistent `x`, a consistent `r` can be
|
||||
// extracted, and the nonces as used in CLSAG are also part of its prover data/transcript).
|
||||
|
||||
let key_image_share = self.key_image_shares[&verification_share.to_bytes()];
|
||||
|
||||
// Hash every variable relevant here, using the hahs output as the random weight
|
||||
let mut weight_transcript =
|
||||
RecommendedTranscript::new(b"monero-serai v0.1 ClsagMultisig::verify_share");
|
||||
weight_transcript.append_message(b"G", dfg::EdwardsPoint::generator().to_bytes());
|
||||
weight_transcript.append_message(b"H", self.H.to_bytes());
|
||||
weight_transcript.append_message(b"xG", verification_share.to_bytes());
|
||||
weight_transcript.append_message(b"xH", key_image_share.to_bytes());
|
||||
weight_transcript.append_message(b"rG", nonces[0][0].to_bytes());
|
||||
weight_transcript.append_message(b"rH", nonces[0][1].to_bytes());
|
||||
weight_transcript.append_message(b"c", dfg::Scalar(interim.p).to_repr());
|
||||
weight_transcript.append_message(b"s", share.to_repr());
|
||||
let weight = weight_transcript.challenge(b"weight");
|
||||
let weight = dfg::Scalar(Scalar::from_bytes_mod_order_wide(&weight.into()));
|
||||
|
||||
let part_one = vec![
|
||||
(share, dfg::EdwardsPoint::generator()),
|
||||
// -(R.0 - pV) == -R.0 + pV
|
||||
(-dfg::Scalar::ONE, nonces[0][0]),
|
||||
(dfg::Scalar(interim.p), verification_share),
|
||||
];
|
||||
|
||||
let mut part_two = vec![
|
||||
(weight * share, dfg::EdwardsPoint(self.H)),
|
||||
// -(R.1 - pK) == -R.1 + pK
|
||||
(-weight, nonces[0][1]),
|
||||
(weight * dfg::Scalar(interim.p), key_image_share),
|
||||
];
|
||||
|
||||
let mut all = part_one;
|
||||
all.append(&mut part_two);
|
||||
Ok(all)
|
||||
}
|
||||
}
|
||||
@@ -14,7 +14,7 @@ pub use hash_to_point::{raw_hash_to_point, hash_to_point};
|
||||
/// MLSAG struct, along with verifying functionality.
|
||||
pub mod mlsag;
|
||||
/// CLSAG struct, along with signing and verifying functionality.
|
||||
pub mod clsag;
|
||||
pub use monero_clsag as clsag;
|
||||
/// BorromeanRange struct, along with verifying functionality.
|
||||
pub mod borromean;
|
||||
/// Bulletproofs(+) structs, along with proving and verifying functionality.
|
||||
|
||||
@@ -11,7 +11,7 @@ use async_trait::async_trait;
|
||||
|
||||
use curve25519_dalek::edwards::EdwardsPoint;
|
||||
|
||||
use monero_generators::decompress_point;
|
||||
use monero_io::decompress_point;
|
||||
|
||||
use serde::{Serialize, Deserialize, de::DeserializeOwned};
|
||||
use serde_json::{Value, json};
|
||||
|
||||
@@ -1,172 +0,0 @@
|
||||
use core::fmt::Debug;
|
||||
use std_shims::{
|
||||
vec::Vec,
|
||||
io::{self, Read, Write},
|
||||
};
|
||||
|
||||
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
|
||||
|
||||
use monero_generators::decompress_point;
|
||||
|
||||
const VARINT_CONTINUATION_MASK: u8 = 0b1000_0000;
|
||||
|
||||
mod sealed {
|
||||
pub trait VarInt: TryInto<u64> + TryFrom<u64> + Copy {
|
||||
const BITS: usize;
|
||||
}
|
||||
impl VarInt for u8 {
|
||||
const BITS: usize = 8;
|
||||
}
|
||||
impl VarInt for u32 {
|
||||
const BITS: usize = 32;
|
||||
}
|
||||
impl VarInt for u64 {
|
||||
const BITS: usize = 64;
|
||||
}
|
||||
impl VarInt for usize {
|
||||
const BITS: usize = core::mem::size_of::<usize>() * 8;
|
||||
}
|
||||
}
|
||||
|
||||
// This will panic if the VarInt exceeds u64::MAX
|
||||
pub(crate) fn varint_len<U: sealed::VarInt>(varint: U) -> usize {
|
||||
let varint_u64: u64 = varint.try_into().map_err(|_| "varint exceeded u64").unwrap();
|
||||
((usize::try_from(u64::BITS - varint_u64.leading_zeros()).unwrap().saturating_sub(1)) / 7) + 1
|
||||
}
|
||||
|
||||
pub(crate) fn write_byte<W: Write>(byte: &u8, w: &mut W) -> io::Result<()> {
|
||||
w.write_all(&[*byte])
|
||||
}
|
||||
|
||||
// This will panic if the VarInt exceeds u64::MAX
|
||||
pub(crate) fn write_varint<W: Write, U: sealed::VarInt>(varint: &U, w: &mut W) -> io::Result<()> {
|
||||
let mut varint: u64 = (*varint).try_into().map_err(|_| "varint exceeded u64").unwrap();
|
||||
while {
|
||||
let mut b = u8::try_from(varint & u64::from(!VARINT_CONTINUATION_MASK)).unwrap();
|
||||
varint >>= 7;
|
||||
if varint != 0 {
|
||||
b |= VARINT_CONTINUATION_MASK;
|
||||
}
|
||||
write_byte(&b, w)?;
|
||||
varint != 0
|
||||
} {}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn write_scalar<W: Write>(scalar: &Scalar, w: &mut W) -> io::Result<()> {
|
||||
w.write_all(&scalar.to_bytes())
|
||||
}
|
||||
|
||||
pub(crate) fn write_point<W: Write>(point: &EdwardsPoint, w: &mut W) -> io::Result<()> {
|
||||
w.write_all(&point.compress().to_bytes())
|
||||
}
|
||||
|
||||
pub(crate) fn write_raw_vec<T, W: Write, F: Fn(&T, &mut W) -> io::Result<()>>(
|
||||
f: F,
|
||||
values: &[T],
|
||||
w: &mut W,
|
||||
) -> io::Result<()> {
|
||||
for value in values {
|
||||
f(value, w)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn write_vec<T, W: Write, F: Fn(&T, &mut W) -> io::Result<()>>(
|
||||
f: F,
|
||||
values: &[T],
|
||||
w: &mut W,
|
||||
) -> io::Result<()> {
|
||||
write_varint(&values.len(), w)?;
|
||||
write_raw_vec(f, values, w)
|
||||
}
|
||||
|
||||
pub(crate) fn read_bytes<R: Read, const N: usize>(r: &mut R) -> io::Result<[u8; N]> {
|
||||
let mut res = [0; N];
|
||||
r.read_exact(&mut res)?;
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
pub(crate) fn read_byte<R: Read>(r: &mut R) -> io::Result<u8> {
|
||||
Ok(read_bytes::<_, 1>(r)?[0])
|
||||
}
|
||||
|
||||
pub(crate) fn read_u16<R: Read>(r: &mut R) -> io::Result<u16> {
|
||||
read_bytes(r).map(u16::from_le_bytes)
|
||||
}
|
||||
|
||||
pub(crate) fn read_u32<R: Read>(r: &mut R) -> io::Result<u32> {
|
||||
read_bytes(r).map(u32::from_le_bytes)
|
||||
}
|
||||
|
||||
pub(crate) fn read_u64<R: Read>(r: &mut R) -> io::Result<u64> {
|
||||
read_bytes(r).map(u64::from_le_bytes)
|
||||
}
|
||||
|
||||
pub(crate) fn read_varint<R: Read, U: sealed::VarInt>(r: &mut R) -> io::Result<U> {
|
||||
let mut bits = 0;
|
||||
let mut res = 0;
|
||||
while {
|
||||
let b = read_byte(r)?;
|
||||
if (bits != 0) && (b == 0) {
|
||||
Err(io::Error::other("non-canonical varint"))?;
|
||||
}
|
||||
if ((bits + 7) >= U::BITS) && (b >= (1 << (U::BITS - bits))) {
|
||||
Err(io::Error::other("varint overflow"))?;
|
||||
}
|
||||
|
||||
res += u64::from(b & (!VARINT_CONTINUATION_MASK)) << bits;
|
||||
bits += 7;
|
||||
b & VARINT_CONTINUATION_MASK == VARINT_CONTINUATION_MASK
|
||||
} {}
|
||||
res.try_into().map_err(|_| io::Error::other("VarInt does not fit into integer type"))
|
||||
}
|
||||
|
||||
// All scalar fields supported by monero-serai are checked to be canonical for valid transactions
|
||||
// While from_bytes_mod_order would be more flexible, it's not currently needed and would be
|
||||
// inaccurate to include now. While casting a wide net may be preferable, it'd also be inaccurate
|
||||
// for now. There's also further edge cases as noted by
|
||||
// https://github.com/monero-project/monero/issues/8438, where some scalars had an archaic
|
||||
// reduction applied
|
||||
pub(crate) fn read_scalar<R: Read>(r: &mut R) -> io::Result<Scalar> {
|
||||
Option::from(Scalar::from_canonical_bytes(read_bytes(r)?))
|
||||
.ok_or_else(|| io::Error::other("unreduced scalar"))
|
||||
}
|
||||
|
||||
pub(crate) fn read_point<R: Read>(r: &mut R) -> io::Result<EdwardsPoint> {
|
||||
let bytes = read_bytes(r)?;
|
||||
decompress_point(bytes).ok_or_else(|| io::Error::other("invalid point"))
|
||||
}
|
||||
|
||||
pub(crate) fn read_torsion_free_point<R: Read>(r: &mut R) -> io::Result<EdwardsPoint> {
|
||||
read_point(r)
|
||||
.ok()
|
||||
.filter(EdwardsPoint::is_torsion_free)
|
||||
.ok_or_else(|| io::Error::other("invalid point"))
|
||||
}
|
||||
|
||||
pub(crate) fn read_raw_vec<R: Read, T, F: Fn(&mut R) -> io::Result<T>>(
|
||||
f: F,
|
||||
len: usize,
|
||||
r: &mut R,
|
||||
) -> io::Result<Vec<T>> {
|
||||
let mut res = vec![];
|
||||
for _ in 0 .. len {
|
||||
res.push(f(r)?);
|
||||
}
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
pub(crate) fn read_array<R: Read, T: Debug, F: Fn(&mut R) -> io::Result<T>, const N: usize>(
|
||||
f: F,
|
||||
r: &mut R,
|
||||
) -> io::Result<[T; N]> {
|
||||
read_raw_vec(f, N, r).map(|vec| vec.try_into().unwrap())
|
||||
}
|
||||
|
||||
pub(crate) fn read_vec<R: Read, T, F: Fn(&mut R) -> io::Result<T>>(
|
||||
f: F,
|
||||
r: &mut R,
|
||||
) -> io::Result<Vec<T>> {
|
||||
read_raw_vec(f, read_varint(r)?, r)
|
||||
}
|
||||
@@ -2,14 +2,11 @@ use hex_literal::hex;
|
||||
|
||||
use rand_core::{RngCore, OsRng};
|
||||
|
||||
use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
|
||||
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar};
|
||||
|
||||
use monero_generators::decompress_point;
|
||||
use monero_io::decompress_point;
|
||||
|
||||
use crate::{
|
||||
random_scalar,
|
||||
wallet::address::{Network, AddressType, AddressMeta, MoneroAddress},
|
||||
};
|
||||
use crate::wallet::address::{Network, AddressType, AddressMeta, MoneroAddress};
|
||||
|
||||
const SPEND: [u8; 32] = hex!("f8631661f6ab4e6fda310c797330d86e23a682f20d5bc8cc27b18051191f16d7");
|
||||
const VIEW: [u8; 32] = hex!("4a1535063ad1fee2dabbf909d4fd9a873e29541b401f0944754e17c9a41820ce");
|
||||
@@ -75,8 +72,8 @@ fn featured() {
|
||||
[(Network::Mainnet, 'C'), (Network::Testnet, 'K'), (Network::Stagenet, 'F')]
|
||||
{
|
||||
for _ in 0 .. 100 {
|
||||
let spend = &random_scalar(&mut OsRng) * ED25519_BASEPOINT_TABLE;
|
||||
let view = &random_scalar(&mut OsRng) * ED25519_BASEPOINT_TABLE;
|
||||
let spend = &Scalar::random(&mut OsRng) * ED25519_BASEPOINT_TABLE;
|
||||
let view = &Scalar::random(&mut OsRng) * ED25519_BASEPOINT_TABLE;
|
||||
|
||||
for features in 0 .. (1 << 3) {
|
||||
const SUBADDRESS_FEATURE_BIT: u8 = 1;
|
||||
|
||||
@@ -2,11 +2,11 @@ use hex_literal::hex;
|
||||
use rand_core::OsRng;
|
||||
|
||||
use curve25519_dalek::scalar::Scalar;
|
||||
use monero_generators::decompress_point;
|
||||
use monero_io::decompress_point;
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::{
|
||||
Commitment, random_scalar,
|
||||
Commitment,
|
||||
ringct::bulletproofs::{Bulletproof, original::OriginalStruct},
|
||||
wallet::TransactionError,
|
||||
};
|
||||
@@ -68,7 +68,7 @@ macro_rules! bulletproofs_tests {
|
||||
let mut verifier = BatchVerifier::new(16);
|
||||
for i in 1 ..= 16 {
|
||||
let commitments = (1 ..= i)
|
||||
.map(|i| Commitment::new(random_scalar(&mut OsRng), u64::try_from(i).unwrap()))
|
||||
.map(|i| Commitment::new(Scalar::random(&mut OsRng), u64::try_from(i).unwrap()))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let bp = if $plus {
|
||||
|
||||
@@ -13,7 +13,7 @@ use transcript::{Transcript, RecommendedTranscript};
|
||||
use frost::curve::Ed25519;
|
||||
|
||||
use crate::{
|
||||
Commitment, random_scalar,
|
||||
Commitment,
|
||||
wallet::Decoys,
|
||||
ringct::{
|
||||
generate_key_image,
|
||||
@@ -43,8 +43,8 @@ fn clsag() {
|
||||
let mut secrets = (Zeroizing::new(Scalar::ZERO), Scalar::ZERO);
|
||||
let mut ring = vec![];
|
||||
for i in 0 .. RING_LEN {
|
||||
let dest = Zeroizing::new(random_scalar(&mut OsRng));
|
||||
let mask = random_scalar(&mut OsRng);
|
||||
let dest = Zeroizing::new(Scalar::random(&mut OsRng));
|
||||
let mask = Scalar::random(&mut OsRng);
|
||||
let amount;
|
||||
if i == real {
|
||||
secrets = (dest.clone(), mask);
|
||||
@@ -72,7 +72,7 @@ fn clsag() {
|
||||
)
|
||||
.unwrap(),
|
||||
)],
|
||||
random_scalar(&mut OsRng),
|
||||
Scalar::random(&mut OsRng),
|
||||
msg,
|
||||
)
|
||||
.swap_remove(0);
|
||||
@@ -80,7 +80,7 @@ fn clsag() {
|
||||
clsag.verify(&ring, &image, &pseudo_out, &msg).unwrap();
|
||||
|
||||
// make sure verification fails if we throw a random `c1` at it.
|
||||
clsag.c1 = random_scalar(&mut OsRng);
|
||||
clsag.c1 = Scalar::random(&mut OsRng);
|
||||
assert!(clsag.verify(&ring, &image, &pseudo_out, &msg).is_err());
|
||||
}
|
||||
}
|
||||
@@ -90,15 +90,15 @@ fn clsag() {
|
||||
fn clsag_multisig() {
|
||||
let keys = key_gen::<_, Ed25519>(&mut OsRng);
|
||||
|
||||
let randomness = random_scalar(&mut OsRng);
|
||||
let randomness = Scalar::random(&mut OsRng);
|
||||
let mut ring = vec![];
|
||||
for i in 0 .. RING_LEN {
|
||||
let dest;
|
||||
let mask;
|
||||
let amount;
|
||||
if i != u64::from(RING_INDEX) {
|
||||
dest = &random_scalar(&mut OsRng) * ED25519_BASEPOINT_TABLE;
|
||||
mask = random_scalar(&mut OsRng);
|
||||
dest = &Scalar::random(&mut OsRng) * ED25519_BASEPOINT_TABLE;
|
||||
mask = Scalar::random(&mut OsRng);
|
||||
amount = OsRng.next_u64();
|
||||
} else {
|
||||
dest = keys[&Participant::new(1).unwrap()].group_key().0;
|
||||
@@ -108,7 +108,7 @@ fn clsag_multisig() {
|
||||
ring.push([dest, Commitment::new(mask, amount).calculate()]);
|
||||
}
|
||||
|
||||
let mask_sum = random_scalar(&mut OsRng);
|
||||
let mask_sum = Scalar::random(&mut OsRng);
|
||||
let algorithm = ClsagMultisig::new(
|
||||
RecommendedTranscript::new(b"Monero Serai CLSAG Test"),
|
||||
keys[&Participant::new(1).unwrap()].group_key().0,
|
||||
|
||||
@@ -5,7 +5,7 @@ use zeroize::Zeroize;
|
||||
|
||||
use curve25519_dalek::edwards::EdwardsPoint;
|
||||
|
||||
use monero_generators::decompress_point;
|
||||
use monero_io::decompress_point;
|
||||
|
||||
use base58_monero::base58::{encode_check, decode_check};
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use std_shims::{vec::Vec, collections::HashSet};
|
||||
|
||||
use zeroize::{Zeroize, ZeroizeOnDrop};
|
||||
use zeroize::Zeroize;
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
use rand_distr::{Distribution, Gamma};
|
||||
@@ -10,7 +10,6 @@ use rand_distr::num_traits::Float;
|
||||
use curve25519_dalek::edwards::EdwardsPoint;
|
||||
|
||||
use crate::{
|
||||
serialize::varint_len,
|
||||
wallet::SpendableOutput,
|
||||
rpc::{RpcError, RpcConnection, Rpc},
|
||||
DEFAULT_LOCK_WINDOW, COINBASE_LOCK_WINDOW, BLOCK_TIME,
|
||||
@@ -272,35 +271,38 @@ async fn select_decoys<R: RngCore + CryptoRng, RPC: RpcConnection>(
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
/// Decoy data, containing the actual member as well (at index `i`).
|
||||
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
|
||||
pub struct Decoys {
|
||||
pub(crate) i: u8,
|
||||
pub(crate) offsets: Vec<u64>,
|
||||
pub(crate) ring: Vec<[EdwardsPoint; 2]>,
|
||||
pub use monero_primitives::Decoys;
|
||||
|
||||
// TODO: Remove this trait
|
||||
#[cfg(feature = "std")]
|
||||
#[async_trait::async_trait]
|
||||
pub trait DecoySelection {
|
||||
async fn select<R: Send + Sync + RngCore + CryptoRng, RPC: Send + Sync + RpcConnection>(
|
||||
rng: &mut R,
|
||||
rpc: &Rpc<RPC>,
|
||||
ring_len: usize,
|
||||
height: usize,
|
||||
inputs: &[SpendableOutput],
|
||||
) -> Result<Vec<Decoys>, RpcError>;
|
||||
|
||||
async fn fingerprintable_canonical_select<
|
||||
R: Send + Sync + RngCore + CryptoRng,
|
||||
RPC: Send + Sync + RpcConnection,
|
||||
>(
|
||||
rng: &mut R,
|
||||
rpc: &Rpc<RPC>,
|
||||
ring_len: usize,
|
||||
height: usize,
|
||||
inputs: &[SpendableOutput],
|
||||
) -> Result<Vec<Decoys>, RpcError>;
|
||||
}
|
||||
|
||||
#[allow(clippy::len_without_is_empty)]
|
||||
impl Decoys {
|
||||
pub fn fee_weight(offsets: &[u64]) -> usize {
|
||||
varint_len(offsets.len()) + offsets.iter().map(|offset| varint_len(*offset)).sum::<usize>()
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.offsets.len()
|
||||
}
|
||||
|
||||
pub fn indexes(&self) -> Vec<u64> {
|
||||
let mut res = vec![self.offsets[0]; self.len()];
|
||||
for m in 1 .. res.len() {
|
||||
res[m] = res[m - 1] + self.offsets[m];
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
#[async_trait::async_trait]
|
||||
impl DecoySelection for Decoys {
|
||||
/// Select decoys using the same distribution as Monero. Relies on the monerod RPC
|
||||
/// response for an output's unlocked status, minimizing trips to the daemon.
|
||||
pub async fn select<R: RngCore + CryptoRng, RPC: RpcConnection>(
|
||||
async fn select<R: Send + Sync + RngCore + CryptoRng, RPC: Send + Sync + RpcConnection>(
|
||||
rng: &mut R,
|
||||
rpc: &Rpc<RPC>,
|
||||
ring_len: usize,
|
||||
@@ -318,7 +320,10 @@ impl Decoys {
|
||||
///
|
||||
/// TODO: upstream change to monerod get_outs RPC to accept a height param for checking
|
||||
/// output's unlocked status and remove all usage of fingerprintable_canonical
|
||||
pub async fn fingerprintable_canonical_select<R: RngCore + CryptoRng, RPC: RpcConnection>(
|
||||
async fn fingerprintable_canonical_select<
|
||||
R: Send + Sync + RngCore + CryptoRng,
|
||||
RPC: Send + Sync + RpcConnection,
|
||||
>(
|
||||
rng: &mut R,
|
||||
rpc: &Rpc<RPC>,
|
||||
ring_len: usize,
|
||||
|
||||
@@ -10,7 +10,8 @@ use curve25519_dalek::{
|
||||
};
|
||||
|
||||
use crate::{
|
||||
hash, hash_to_scalar, serialize::write_varint, Commitment, ringct::EncryptedAmount, transaction::Input,
|
||||
hash, hash_to_scalar, serialize::write_varint, Commitment, ringct::EncryptedAmount,
|
||||
transaction::Input,
|
||||
};
|
||||
|
||||
pub mod extra;
|
||||
@@ -26,8 +27,14 @@ use address::{Network, AddressType, SubaddressIndex, AddressSpec, AddressMeta, M
|
||||
mod scan;
|
||||
pub use scan::{ReceivedOutput, SpendableOutput, Timelocked};
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
pub mod decoys;
|
||||
pub use decoys::Decoys;
|
||||
#[cfg(not(feature = "std"))]
|
||||
pub mod decoys {
|
||||
pub use monero_primitives::Decoys;
|
||||
pub trait DecoySelection {}
|
||||
}
|
||||
pub use decoys::{DecoySelection, Decoys};
|
||||
|
||||
mod send;
|
||||
pub use send::{FeePriority, Fee, TransactionError, Change, SignableTransaction, Eventuality};
|
||||
|
||||
@@ -9,7 +9,7 @@ use zeroize::{Zeroize, ZeroizeOnDrop};
|
||||
|
||||
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar, edwards::EdwardsPoint};
|
||||
|
||||
use monero_generators::decompress_point;
|
||||
use monero_io::decompress_point;
|
||||
|
||||
use crate::{
|
||||
Commitment,
|
||||
|
||||
@@ -11,7 +11,7 @@ use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use curve25519_dalek::scalar::Scalar;
|
||||
|
||||
use crate::{random_scalar, wallet::seed::SeedError};
|
||||
use crate::wallet::seed::SeedError;
|
||||
|
||||
pub(crate) const CLASSIC_SEED_LENGTH: usize = 24;
|
||||
pub(crate) const CLASSIC_SEED_LENGTH_WITH_CHECKSUM: usize = 25;
|
||||
@@ -276,7 +276,7 @@ pub(crate) fn seed_to_bytes(lang: Language, words: &str) -> Result<Zeroizing<[u8
|
||||
pub struct ClassicSeed(Language, Zeroizing<String>);
|
||||
impl ClassicSeed {
|
||||
pub(crate) fn new<R: RngCore + CryptoRng>(rng: &mut R, lang: Language) -> ClassicSeed {
|
||||
key_to_seed(lang, Zeroizing::new(random_scalar(rng)))
|
||||
key_to_seed(lang, Zeroizing::new(Scalar::random(rng)))
|
||||
}
|
||||
|
||||
#[allow(clippy::needless_pass_by_value)]
|
||||
|
||||
@@ -23,7 +23,7 @@ use dalek_ff_group as dfg;
|
||||
use frost::FrostError;
|
||||
|
||||
use crate::{
|
||||
Protocol, Commitment, hash, random_scalar,
|
||||
Protocol, Commitment, hash,
|
||||
serialize::{
|
||||
read_byte, read_bytes, read_u64, read_scalar, read_point, read_vec, write_byte, write_scalar,
|
||||
write_point, write_raw_vec, write_vec,
|
||||
@@ -616,7 +616,7 @@ impl SignableTransaction {
|
||||
payments.shuffle(&mut rng);
|
||||
|
||||
// Used for all non-subaddress outputs, or if there's only one subaddress output and a change
|
||||
let tx_key = Zeroizing::new(random_scalar(&mut rng));
|
||||
let tx_key = Zeroizing::new(Scalar::random(&mut rng));
|
||||
let mut tx_public_key = tx_key.deref() * ED25519_BASEPOINT_TABLE;
|
||||
|
||||
// If any of these outputs are to a subaddress, we need keys distinct to them
|
||||
@@ -660,7 +660,7 @@ impl SignableTransaction {
|
||||
let (output, payment_id) = match payment {
|
||||
InternalPayment::Payment(payment, need_dummy_payment_id) => {
|
||||
// If this is a subaddress, generate a dedicated r. Else, reuse the TX key
|
||||
let dedicated = Zeroizing::new(random_scalar(&mut rng));
|
||||
let dedicated = Zeroizing::new(Scalar::random(&mut rng));
|
||||
let use_dedicated = additional && payment.0.is_subaddress();
|
||||
let r = if use_dedicated { &dedicated } else { &tx_key };
|
||||
|
||||
|
||||
@@ -26,7 +26,6 @@ use frost::{
|
||||
};
|
||||
|
||||
use crate::{
|
||||
random_scalar,
|
||||
ringct::{
|
||||
clsag::{ClsagInput, ClsagDetails, ClsagAddendum, ClsagMultisig},
|
||||
RctPrunable,
|
||||
@@ -348,7 +347,7 @@ impl SignMachine<Transaction> for TransactionSignMachine {
|
||||
while !sorted.is_empty() {
|
||||
let value = sorted.remove(0);
|
||||
|
||||
let mut mask = random_scalar(&mut rng);
|
||||
let mut mask = Scalar::random(&mut rng);
|
||||
if sorted.is_empty() {
|
||||
mask = output_masks - sum_pseudo_outs;
|
||||
} else {
|
||||
|
||||
Reference in New Issue
Block a user