mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-09 04:39:24 +00:00
Add non-transaction-chaining scheduler
This commit is contained in:
35
processor/scheduler/utxo/standard/Cargo.toml
Normal file
35
processor/scheduler/utxo/standard/Cargo.toml
Normal file
@@ -0,0 +1,35 @@
|
||||
[package]
|
||||
name = "serai-processor-utxo-scheduler"
|
||||
version = "0.1.0"
|
||||
description = "Scheduler for UTXO networks for the Serai processor"
|
||||
license = "AGPL-3.0-only"
|
||||
repository = "https://github.com/serai-dex/serai/tree/develop/processor/scheduler/utxo/standard"
|
||||
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
|
||||
keywords = []
|
||||
edition = "2021"
|
||||
publish = false
|
||||
|
||||
[package.metadata.docs.rs]
|
||||
all-features = true
|
||||
rustdoc-args = ["--cfg", "docsrs"]
|
||||
|
||||
[package.metadata.cargo-machete]
|
||||
ignored = ["scale", "borsh"]
|
||||
|
||||
[lints]
|
||||
workspace = true
|
||||
|
||||
[dependencies]
|
||||
group = { version = "0.13", default-features = false }
|
||||
|
||||
scale = { package = "parity-scale-codec", version = "3", default-features = false, features = ["std"] }
|
||||
borsh = { version = "1", default-features = false, features = ["std", "derive", "de_strict_order"] }
|
||||
|
||||
serai-primitives = { path = "../../../../substrate/primitives", default-features = false, features = ["std"] }
|
||||
|
||||
serai-db = { path = "../../../../common/db" }
|
||||
|
||||
primitives = { package = "serai-processor-primitives", path = "../../../primitives" }
|
||||
scanner = { package = "serai-processor-scanner", path = "../../../scanner" }
|
||||
scheduler-primitives = { package = "serai-processor-scheduler-primitives", path = "../../primitives" }
|
||||
utxo-scheduler-primitives = { package = "serai-processor-utxo-scheduler-primitives", path = "../primitives" }
|
||||
15
processor/scheduler/utxo/standard/LICENSE
Normal file
15
processor/scheduler/utxo/standard/LICENSE
Normal file
@@ -0,0 +1,15 @@
|
||||
AGPL-3.0-only license
|
||||
|
||||
Copyright (c) 2024 Luke Parker
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License Version 3 as
|
||||
published by the Free Software Foundation.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
17
processor/scheduler/utxo/standard/README.md
Normal file
17
processor/scheduler/utxo/standard/README.md
Normal file
@@ -0,0 +1,17 @@
|
||||
# UTXO Scheduler
|
||||
|
||||
A scheduler of transactions for networks premised on the UTXO model.
|
||||
|
||||
### Design
|
||||
|
||||
The scheduler is designed to achieve fulfillment of all expected payments with
|
||||
an `O(1)` delay (regardless of prior scheduler state), `O(log n)` time, and
|
||||
`O(log(n) + n)` computational complexity.
|
||||
|
||||
For the time/computational complexity, we use a tree to fulfill payments.
|
||||
This quickly gives us the ability to make as many outputs as necessary
|
||||
(regardless of per-transaction output limits) and only has the latency of
|
||||
including a chain of `O(log n)` transactions on-chain. The only computational
|
||||
overhead is in creating the transactions which are branches in the tree.
|
||||
Since we split off the root of the tree from a master output, the delay to start
|
||||
fulfillment is the delay for the master output to re-appear on-chain.
|
||||
113
processor/scheduler/utxo/standard/src/db.rs
Normal file
113
processor/scheduler/utxo/standard/src/db.rs
Normal file
@@ -0,0 +1,113 @@
|
||||
use core::marker::PhantomData;
|
||||
|
||||
use group::GroupEncoding;
|
||||
|
||||
use serai_primitives::{Coin, Amount, Balance};
|
||||
|
||||
use borsh::BorshDeserialize;
|
||||
use serai_db::{Get, DbTxn, create_db, db_channel};
|
||||
|
||||
use primitives::{Payment, ReceivedOutput};
|
||||
use utxo_scheduler_primitives::TreeTransaction;
|
||||
use scanner::{ScannerFeed, KeyFor, AddressFor, OutputFor};
|
||||
|
||||
create_db! {
|
||||
UtxoScheduler {
|
||||
OperatingCosts: (coin: Coin) -> Amount,
|
||||
SerializedOutputs: (key: &[u8], coin: Coin) -> Vec<u8>,
|
||||
SerializedQueuedPayments: (key: &[u8], coin: Coin) -> Vec<u8>,
|
||||
}
|
||||
}
|
||||
|
||||
db_channel! {
|
||||
UtxoScheduler {
|
||||
PendingBranch: (key: &[u8], balance: Balance) -> Vec<u8>,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) struct Db<S: ScannerFeed>(PhantomData<S>);
|
||||
impl<S: ScannerFeed> Db<S> {
|
||||
pub(crate) fn operating_costs(getter: &impl Get, coin: Coin) -> Amount {
|
||||
OperatingCosts::get(getter, coin).unwrap_or(Amount(0))
|
||||
}
|
||||
pub(crate) fn set_operating_costs(txn: &mut impl DbTxn, coin: Coin, amount: Amount) {
|
||||
OperatingCosts::set(txn, coin, &amount)
|
||||
}
|
||||
|
||||
pub(crate) fn outputs(
|
||||
getter: &impl Get,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
) -> Option<Vec<OutputFor<S>>> {
|
||||
let buf = SerializedOutputs::get(getter, key.to_bytes().as_ref(), coin)?;
|
||||
let mut buf = buf.as_slice();
|
||||
|
||||
let mut res = Vec::with_capacity(buf.len() / 128);
|
||||
while !buf.is_empty() {
|
||||
res.push(OutputFor::<S>::read(&mut buf).unwrap());
|
||||
}
|
||||
Some(res)
|
||||
}
|
||||
pub(crate) fn set_outputs(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
outputs: &[OutputFor<S>],
|
||||
) {
|
||||
let mut buf = Vec::with_capacity(outputs.len() * 128);
|
||||
for output in outputs {
|
||||
output.write(&mut buf).unwrap();
|
||||
}
|
||||
SerializedOutputs::set(txn, key.to_bytes().as_ref(), coin, &buf);
|
||||
}
|
||||
pub(crate) fn del_outputs(txn: &mut impl DbTxn, key: KeyFor<S>, coin: Coin) {
|
||||
SerializedOutputs::del(txn, key.to_bytes().as_ref(), coin);
|
||||
}
|
||||
|
||||
pub(crate) fn queued_payments(
|
||||
getter: &impl Get,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
) -> Option<Vec<Payment<AddressFor<S>>>> {
|
||||
let buf = SerializedQueuedPayments::get(getter, key.to_bytes().as_ref(), coin)?;
|
||||
let mut buf = buf.as_slice();
|
||||
|
||||
let mut res = Vec::with_capacity(buf.len() / 128);
|
||||
while !buf.is_empty() {
|
||||
res.push(Payment::read(&mut buf).unwrap());
|
||||
}
|
||||
Some(res)
|
||||
}
|
||||
pub(crate) fn set_queued_payments(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
queued: &[Payment<AddressFor<S>>],
|
||||
) {
|
||||
let mut buf = Vec::with_capacity(queued.len() * 128);
|
||||
for queued in queued {
|
||||
queued.write(&mut buf).unwrap();
|
||||
}
|
||||
SerializedQueuedPayments::set(txn, key.to_bytes().as_ref(), coin, &buf);
|
||||
}
|
||||
pub(crate) fn del_queued_payments(txn: &mut impl DbTxn, key: KeyFor<S>, coin: Coin) {
|
||||
SerializedQueuedPayments::del(txn, key.to_bytes().as_ref(), coin);
|
||||
}
|
||||
|
||||
pub(crate) fn queue_pending_branch(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
balance: Balance,
|
||||
child: &TreeTransaction<AddressFor<S>>,
|
||||
) {
|
||||
PendingBranch::send(txn, key.to_bytes().as_ref(), balance, &borsh::to_vec(child).unwrap())
|
||||
}
|
||||
pub(crate) fn take_pending_branch(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
balance: Balance,
|
||||
) -> Option<TreeTransaction<AddressFor<S>>> {
|
||||
PendingBranch::try_recv(txn, key.to_bytes().as_ref(), balance)
|
||||
.map(|bytes| TreeTransaction::<AddressFor<S>>::deserialize(&mut bytes.as_slice()).unwrap())
|
||||
}
|
||||
}
|
||||
508
processor/scheduler/utxo/standard/src/lib.rs
Normal file
508
processor/scheduler/utxo/standard/src/lib.rs
Normal file
@@ -0,0 +1,508 @@
|
||||
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
|
||||
#![doc = include_str!("../README.md")]
|
||||
#![deny(missing_docs)]
|
||||
|
||||
use core::marker::PhantomData;
|
||||
use std::collections::HashMap;
|
||||
|
||||
use group::GroupEncoding;
|
||||
|
||||
use serai_primitives::{Coin, Amount, Balance};
|
||||
|
||||
use serai_db::DbTxn;
|
||||
|
||||
use primitives::{ReceivedOutput, Payment};
|
||||
use scanner::{
|
||||
LifetimeStage, ScannerFeed, KeyFor, AddressFor, OutputFor, EventualityFor, BlockFor,
|
||||
SchedulerUpdate, Scheduler as SchedulerTrait,
|
||||
};
|
||||
use scheduler_primitives::*;
|
||||
use utxo_scheduler_primitives::*;
|
||||
|
||||
mod db;
|
||||
use db::Db;
|
||||
|
||||
/// A scheduler of transactions for networks premised on the UTXO model.
|
||||
pub struct Scheduler<S: ScannerFeed, P: TransactionPlanner<S, ()>>(PhantomData<S>, PhantomData<P>);
|
||||
|
||||
impl<S: ScannerFeed, P: TransactionPlanner<S, ()>> Scheduler<S, P> {
|
||||
fn aggregate_inputs(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
key_for_change: KeyFor<S>,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
) -> Vec<EventualityFor<S>> {
|
||||
let mut eventualities = vec![];
|
||||
|
||||
let mut operating_costs = Db::<S>::operating_costs(txn, coin).0;
|
||||
let mut outputs = Db::<S>::outputs(txn, key, coin).unwrap();
|
||||
outputs.sort_by_key(|output| output.balance().amount.0);
|
||||
while outputs.len() > P::MAX_INPUTS {
|
||||
let to_aggregate = outputs.drain(.. P::MAX_INPUTS).collect::<Vec<_>>();
|
||||
|
||||
let Some(planned) = P::plan_transaction_with_fee_amortization(
|
||||
&mut operating_costs,
|
||||
P::fee_rate(block, coin),
|
||||
to_aggregate,
|
||||
vec![],
|
||||
Some(key_for_change),
|
||||
) else {
|
||||
continue;
|
||||
};
|
||||
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
|
||||
eventualities.push(planned.eventuality);
|
||||
}
|
||||
|
||||
Db::<S>::set_outputs(txn, key, coin, &outputs);
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
|
||||
eventualities
|
||||
}
|
||||
|
||||
fn fulfillable_payments(
|
||||
txn: &mut impl DbTxn,
|
||||
operating_costs: &mut u64,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
value_of_outputs: u64,
|
||||
) -> Vec<Payment<AddressFor<S>>> {
|
||||
// Fetch all payments for this key
|
||||
let mut payments = Db::<S>::queued_payments(txn, key, coin).unwrap();
|
||||
if payments.is_empty() {
|
||||
return vec![];
|
||||
}
|
||||
|
||||
loop {
|
||||
// inputs must be >= (payments - operating costs)
|
||||
// Accordingly, (inputs + operating costs) must be >= payments
|
||||
let value_fulfillable = value_of_outputs + *operating_costs;
|
||||
|
||||
// Drop to just the payments we can currently fulfill
|
||||
{
|
||||
let mut can_handle = 0;
|
||||
let mut value_used = 0;
|
||||
for payment in &payments {
|
||||
value_used += payment.balance().amount.0;
|
||||
if value_fulfillable < value_used {
|
||||
break;
|
||||
}
|
||||
can_handle += 1;
|
||||
}
|
||||
|
||||
let remaining_payments = payments.drain(can_handle ..).collect::<Vec<_>>();
|
||||
// Restore the rest to the database
|
||||
Db::<S>::set_queued_payments(txn, key, coin, &remaining_payments);
|
||||
}
|
||||
|
||||
// If these payments are worth less than the operating costs, immediately drop them
|
||||
let payments_value = payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>();
|
||||
if payments_value <= *operating_costs {
|
||||
*operating_costs -= payments_value;
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(*operating_costs));
|
||||
|
||||
// Reset payments to the queued payments
|
||||
payments = Db::<S>::queued_payments(txn, key, coin).unwrap();
|
||||
// If there's no more payments, stop looking for which payments we should fulfill
|
||||
if payments.is_empty() {
|
||||
return vec![];
|
||||
}
|
||||
// Find which of these we should handle
|
||||
continue;
|
||||
}
|
||||
|
||||
return payments;
|
||||
}
|
||||
}
|
||||
|
||||
fn queue_branches(
|
||||
txn: &mut impl DbTxn,
|
||||
key: KeyFor<S>,
|
||||
coin: Coin,
|
||||
effected_payments: Vec<Amount>,
|
||||
tx: TreeTransaction<AddressFor<S>>,
|
||||
) {
|
||||
match tx {
|
||||
TreeTransaction::Leaves { .. } => {}
|
||||
TreeTransaction::Branch { mut children, .. } => {
|
||||
children.sort_by_key(TreeTransaction::value);
|
||||
children.reverse();
|
||||
|
||||
/*
|
||||
This may only be a subset of payments but it'll be the originally-highest-valued
|
||||
payments. `zip` will truncate to the first children which will be the highest-valued
|
||||
children thanks to our sort.
|
||||
*/
|
||||
for (amount, child) in effected_payments.into_iter().zip(children) {
|
||||
Db::<S>::queue_pending_branch(txn, key, Balance { coin, amount }, &child);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn handle_branch(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
eventualities: &mut Vec<EventualityFor<S>>,
|
||||
output: OutputFor<S>,
|
||||
tx: TreeTransaction<AddressFor<S>>,
|
||||
) -> bool {
|
||||
let key = output.key();
|
||||
let coin = output.balance().coin;
|
||||
let Some(payments) = tx.payments::<S>(coin, &P::branch_address(key), output.balance().amount.0)
|
||||
else {
|
||||
// If this output has become too small to satisfy this branch, drop it
|
||||
return false;
|
||||
};
|
||||
|
||||
let Some(planned) = P::plan_transaction_with_fee_amortization(
|
||||
// Uses 0 as there's no operating costs to incur/amortize here
|
||||
&mut 0,
|
||||
P::fee_rate(block, coin),
|
||||
vec![output],
|
||||
payments,
|
||||
None,
|
||||
) else {
|
||||
// This Branch isn't viable, so drop it (and its children)
|
||||
return false;
|
||||
};
|
||||
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
|
||||
eventualities.push(planned.eventuality);
|
||||
|
||||
Self::queue_branches(txn, key, coin, planned.effected_payments, tx);
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
fn step(
|
||||
txn: &mut impl DbTxn,
|
||||
active_keys: &[(KeyFor<S>, LifetimeStage)],
|
||||
block: &BlockFor<S>,
|
||||
key: KeyFor<S>,
|
||||
) -> Vec<EventualityFor<S>> {
|
||||
let mut eventualities = vec![];
|
||||
|
||||
let key_for_change = match active_keys[0].1 {
|
||||
LifetimeStage::ActiveYetNotReporting => {
|
||||
panic!("expected to fulfill payments despite not reporting for the oldest key")
|
||||
}
|
||||
LifetimeStage::Active => active_keys[0].0,
|
||||
LifetimeStage::UsingNewForChange | LifetimeStage::Forwarding | LifetimeStage::Finishing => {
|
||||
active_keys[1].0
|
||||
}
|
||||
};
|
||||
let branch_address = P::branch_address(key);
|
||||
|
||||
'coin: for coin in S::NETWORK.coins() {
|
||||
let coin = *coin;
|
||||
|
||||
// Perform any input aggregation we should
|
||||
eventualities.append(&mut Self::aggregate_inputs(txn, block, key_for_change, key, coin));
|
||||
|
||||
// Fetch the operating costs/outputs
|
||||
let mut operating_costs = Db::<S>::operating_costs(txn, coin).0;
|
||||
let outputs = Db::<S>::outputs(txn, key, coin).unwrap();
|
||||
|
||||
// Fetch the fulfillable payments
|
||||
let payments = Self::fulfillable_payments(
|
||||
txn,
|
||||
&mut operating_costs,
|
||||
key,
|
||||
coin,
|
||||
outputs.iter().map(|output| output.balance().amount.0).sum(),
|
||||
);
|
||||
if payments.is_empty() {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create a tree to fulfill the payments
|
||||
let mut tree = vec![P::tree(&payments)];
|
||||
|
||||
// Create the transaction for the root of the tree
|
||||
// Try creating this transaction twice, once with a change output and once with increased
|
||||
// operating costs to ensure a change output (as necessary to meet the requirements of the
|
||||
// scanner API)
|
||||
let mut planned_outer = None;
|
||||
for i in 0 .. 2 {
|
||||
let Some(planned) = P::plan_transaction_with_fee_amortization(
|
||||
&mut operating_costs,
|
||||
P::fee_rate(block, coin),
|
||||
outputs.clone(),
|
||||
tree[0]
|
||||
.payments::<S>(coin, &branch_address, tree[0].value())
|
||||
.expect("payments were dropped despite providing an input of the needed value"),
|
||||
Some(key_for_change),
|
||||
) else {
|
||||
// This should trip on the first iteration or not at all
|
||||
assert_eq!(i, 0);
|
||||
// This doesn't have inputs even worth aggregating so drop the entire tree
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
|
||||
continue 'coin;
|
||||
};
|
||||
|
||||
// If this doesn't have a change output, increase operating costs and try again
|
||||
if !planned.has_change {
|
||||
/*
|
||||
Since we'll create a change output if it's worth at least dust, amortizing dust from
|
||||
the payments should solve this. If the new transaction can't afford those operating
|
||||
costs, then the payments should be amortized out, causing there to be a change or no
|
||||
transaction at all.
|
||||
*/
|
||||
operating_costs += S::dust(coin).0;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Since this had a change output, move forward with it
|
||||
planned_outer = Some(planned);
|
||||
break;
|
||||
}
|
||||
let Some(planned) = planned_outer else {
|
||||
panic!("couldn't create a tree root with a change output")
|
||||
};
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
|
||||
eventualities.push(planned.eventuality);
|
||||
|
||||
// Now save the next layer of the tree to the database
|
||||
// We'll execute it when it appears
|
||||
Self::queue_branches(txn, key, coin, planned.effected_payments, tree.remove(0));
|
||||
}
|
||||
|
||||
eventualities
|
||||
}
|
||||
|
||||
fn flush_outputs(
|
||||
txn: &mut impl DbTxn,
|
||||
eventualities: &mut HashMap<Vec<u8>, Vec<EventualityFor<S>>>,
|
||||
block: &BlockFor<S>,
|
||||
from: KeyFor<S>,
|
||||
to: KeyFor<S>,
|
||||
coin: Coin,
|
||||
) {
|
||||
let from_bytes = from.to_bytes().as_ref().to_vec();
|
||||
// Ensure our inputs are aggregated
|
||||
eventualities
|
||||
.entry(from_bytes.clone())
|
||||
.or_insert(vec![])
|
||||
.append(&mut Self::aggregate_inputs(txn, block, to, from, coin));
|
||||
|
||||
// Now that our inputs are aggregated, transfer all of them to the new key
|
||||
let mut operating_costs = Db::<S>::operating_costs(txn, coin).0;
|
||||
let outputs = Db::<S>::outputs(txn, from, coin).unwrap();
|
||||
if outputs.is_empty() {
|
||||
return;
|
||||
}
|
||||
let planned = P::plan_transaction_with_fee_amortization(
|
||||
&mut operating_costs,
|
||||
P::fee_rate(block, coin),
|
||||
outputs,
|
||||
vec![],
|
||||
Some(to),
|
||||
);
|
||||
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
|
||||
let Some(planned) = planned else { return };
|
||||
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &from, &planned.signable);
|
||||
eventualities.get_mut(&from_bytes).unwrap().push(planned.eventuality);
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: ScannerFeed, P: TransactionPlanner<S, ()>> SchedulerTrait<S> for Scheduler<S, P> {
|
||||
fn activate_key(txn: &mut impl DbTxn, key: KeyFor<S>) {
|
||||
for coin in S::NETWORK.coins() {
|
||||
assert!(Db::<S>::outputs(txn, key, *coin).is_none());
|
||||
Db::<S>::set_outputs(txn, key, *coin, &[]);
|
||||
assert!(Db::<S>::queued_payments(txn, key, *coin).is_none());
|
||||
Db::<S>::set_queued_payments(txn, key, *coin, &[]);
|
||||
}
|
||||
}
|
||||
|
||||
fn flush_key(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
retiring_key: KeyFor<S>,
|
||||
new_key: KeyFor<S>,
|
||||
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
|
||||
let mut eventualities = HashMap::new();
|
||||
for coin in S::NETWORK.coins() {
|
||||
// Move the payments to the new key
|
||||
{
|
||||
let still_queued = Db::<S>::queued_payments(txn, retiring_key, *coin).unwrap();
|
||||
let mut new_queued = Db::<S>::queued_payments(txn, new_key, *coin).unwrap();
|
||||
|
||||
let mut queued = still_queued;
|
||||
queued.append(&mut new_queued);
|
||||
|
||||
Db::<S>::set_queued_payments(txn, retiring_key, *coin, &[]);
|
||||
Db::<S>::set_queued_payments(txn, new_key, *coin, &queued);
|
||||
}
|
||||
|
||||
// Move the outputs to the new key
|
||||
Self::flush_outputs(txn, &mut eventualities, block, retiring_key, new_key, *coin);
|
||||
}
|
||||
eventualities
|
||||
}
|
||||
|
||||
fn retire_key(txn: &mut impl DbTxn, key: KeyFor<S>) {
|
||||
for coin in S::NETWORK.coins() {
|
||||
assert!(Db::<S>::outputs(txn, key, *coin).unwrap().is_empty());
|
||||
Db::<S>::del_outputs(txn, key, *coin);
|
||||
assert!(Db::<S>::queued_payments(txn, key, *coin).unwrap().is_empty());
|
||||
Db::<S>::del_queued_payments(txn, key, *coin);
|
||||
}
|
||||
}
|
||||
|
||||
fn update(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
active_keys: &[(KeyFor<S>, LifetimeStage)],
|
||||
update: SchedulerUpdate<S>,
|
||||
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
|
||||
let mut eventualities = HashMap::new();
|
||||
|
||||
// Accumulate the new outputs
|
||||
{
|
||||
let mut outputs_by_key = HashMap::new();
|
||||
for output in update.outputs() {
|
||||
// If this aligns for a branch, handle it
|
||||
if let Some(branch) = Db::<S>::take_pending_branch(txn, output.key(), output.balance()) {
|
||||
if Self::handle_branch(
|
||||
txn,
|
||||
block,
|
||||
eventualities.entry(output.key().to_bytes().as_ref().to_vec()).or_insert(vec![]),
|
||||
output.clone(),
|
||||
branch,
|
||||
) {
|
||||
// If we could use it for a branch, we do and move on
|
||||
// Else, we let it be accumulated by the standard accumulation code
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
let coin = output.balance().coin;
|
||||
outputs_by_key
|
||||
// Index by key and coin
|
||||
.entry((output.key().to_bytes().as_ref().to_vec(), coin))
|
||||
// If we haven't accumulated here prior, read the outputs from the database
|
||||
.or_insert_with(|| (output.key(), Db::<S>::outputs(txn, output.key(), coin).unwrap()))
|
||||
.1
|
||||
.push(output.clone());
|
||||
}
|
||||
// Write the outputs back to the database
|
||||
for ((_key_vec, coin), (key, outputs)) in outputs_by_key {
|
||||
Db::<S>::set_outputs(txn, key, coin, &outputs);
|
||||
}
|
||||
}
|
||||
|
||||
// Fulfill the payments we prior couldn't
|
||||
for (key, _stage) in active_keys {
|
||||
eventualities
|
||||
.entry(key.to_bytes().as_ref().to_vec())
|
||||
.or_insert(vec![])
|
||||
.append(&mut Self::step(txn, active_keys, block, *key));
|
||||
}
|
||||
|
||||
// If this key has been flushed, forward all outputs
|
||||
match active_keys[0].1 {
|
||||
LifetimeStage::ActiveYetNotReporting |
|
||||
LifetimeStage::Active |
|
||||
LifetimeStage::UsingNewForChange => {}
|
||||
LifetimeStage::Forwarding | LifetimeStage::Finishing => {
|
||||
for coin in S::NETWORK.coins() {
|
||||
Self::flush_outputs(
|
||||
txn,
|
||||
&mut eventualities,
|
||||
block,
|
||||
active_keys[0].0,
|
||||
active_keys[1].0,
|
||||
*coin,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create the transactions for the forwards/burns
|
||||
{
|
||||
let mut planned_txs = vec![];
|
||||
for forward in update.forwards() {
|
||||
let key = forward.key();
|
||||
|
||||
assert_eq!(active_keys.len(), 2);
|
||||
assert_eq!(active_keys[0].1, LifetimeStage::Forwarding);
|
||||
assert_eq!(active_keys[1].1, LifetimeStage::Active);
|
||||
let forward_to_key = active_keys[1].0;
|
||||
|
||||
let Some(plan) = P::plan_transaction_with_fee_amortization(
|
||||
// This uses 0 for the operating costs as we don't incur any here
|
||||
// If the output can't pay for itself to be forwarded, we simply drop it
|
||||
&mut 0,
|
||||
P::fee_rate(block, forward.balance().coin),
|
||||
vec![forward.clone()],
|
||||
vec![Payment::new(P::forwarding_address(forward_to_key), forward.balance(), None)],
|
||||
None,
|
||||
) else {
|
||||
continue;
|
||||
};
|
||||
planned_txs.push((key, plan));
|
||||
}
|
||||
for to_return in update.returns() {
|
||||
let key = to_return.output().key();
|
||||
let out_instruction =
|
||||
Payment::new(to_return.address().clone(), to_return.output().balance(), None);
|
||||
let Some(plan) = P::plan_transaction_with_fee_amortization(
|
||||
// This uses 0 for the operating costs as we don't incur any here
|
||||
// If the output can't pay for itself to be returned, we simply drop it
|
||||
&mut 0,
|
||||
P::fee_rate(block, out_instruction.balance().coin),
|
||||
vec![to_return.output().clone()],
|
||||
vec![out_instruction],
|
||||
None,
|
||||
) else {
|
||||
continue;
|
||||
};
|
||||
planned_txs.push((key, plan));
|
||||
}
|
||||
|
||||
for (key, planned_tx) in planned_txs {
|
||||
// Send the transactions off for signing
|
||||
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned_tx.signable);
|
||||
|
||||
// Insert the Eventualities into the result
|
||||
eventualities.get_mut(key.to_bytes().as_ref()).unwrap().push(planned_tx.eventuality);
|
||||
}
|
||||
|
||||
eventualities
|
||||
}
|
||||
}
|
||||
|
||||
fn fulfill(
|
||||
txn: &mut impl DbTxn,
|
||||
block: &BlockFor<S>,
|
||||
active_keys: &[(KeyFor<S>, LifetimeStage)],
|
||||
payments: Vec<Payment<AddressFor<S>>>,
|
||||
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
|
||||
// Find the key to filfill these payments with
|
||||
let fulfillment_key = match active_keys[0].1 {
|
||||
LifetimeStage::ActiveYetNotReporting => {
|
||||
panic!("expected to fulfill payments despite not reporting for the oldest key")
|
||||
}
|
||||
LifetimeStage::Active | LifetimeStage::UsingNewForChange => active_keys[0].0,
|
||||
LifetimeStage::Forwarding | LifetimeStage::Finishing => active_keys[1].0,
|
||||
};
|
||||
|
||||
// Queue the payments for this key
|
||||
for coin in S::NETWORK.coins() {
|
||||
let mut queued_payments = Db::<S>::queued_payments(txn, fulfillment_key, *coin).unwrap();
|
||||
queued_payments
|
||||
.extend(payments.iter().filter(|payment| payment.balance().coin == *coin).cloned());
|
||||
Db::<S>::set_queued_payments(txn, fulfillment_key, *coin, &queued_payments);
|
||||
}
|
||||
|
||||
// Handle the queued payments
|
||||
HashMap::from([(
|
||||
fulfillment_key.to_bytes().as_ref().to_vec(),
|
||||
Self::step(txn, active_keys, block, fulfillment_key),
|
||||
)])
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user