Add non-transaction-chaining scheduler

This commit is contained in:
Luke Parker
2024-09-04 03:54:12 -04:00
parent 0c1aec29bb
commit 6e9cb74022
17 changed files with 951 additions and 145 deletions

View File

@@ -0,0 +1,35 @@
[package]
name = "serai-processor-utxo-scheduler"
version = "0.1.0"
description = "Scheduler for UTXO networks for the Serai processor"
license = "AGPL-3.0-only"
repository = "https://github.com/serai-dex/serai/tree/develop/processor/scheduler/utxo/standard"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = []
edition = "2021"
publish = false
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[package.metadata.cargo-machete]
ignored = ["scale", "borsh"]
[lints]
workspace = true
[dependencies]
group = { version = "0.13", default-features = false }
scale = { package = "parity-scale-codec", version = "3", default-features = false, features = ["std"] }
borsh = { version = "1", default-features = false, features = ["std", "derive", "de_strict_order"] }
serai-primitives = { path = "../../../../substrate/primitives", default-features = false, features = ["std"] }
serai-db = { path = "../../../../common/db" }
primitives = { package = "serai-processor-primitives", path = "../../../primitives" }
scanner = { package = "serai-processor-scanner", path = "../../../scanner" }
scheduler-primitives = { package = "serai-processor-scheduler-primitives", path = "../../primitives" }
utxo-scheduler-primitives = { package = "serai-processor-utxo-scheduler-primitives", path = "../primitives" }

View File

@@ -0,0 +1,15 @@
AGPL-3.0-only license
Copyright (c) 2024 Luke Parker
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License Version 3 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

View File

@@ -0,0 +1,17 @@
# UTXO Scheduler
A scheduler of transactions for networks premised on the UTXO model.
### Design
The scheduler is designed to achieve fulfillment of all expected payments with
an `O(1)` delay (regardless of prior scheduler state), `O(log n)` time, and
`O(log(n) + n)` computational complexity.
For the time/computational complexity, we use a tree to fulfill payments.
This quickly gives us the ability to make as many outputs as necessary
(regardless of per-transaction output limits) and only has the latency of
including a chain of `O(log n)` transactions on-chain. The only computational
overhead is in creating the transactions which are branches in the tree.
Since we split off the root of the tree from a master output, the delay to start
fulfillment is the delay for the master output to re-appear on-chain.

View File

@@ -0,0 +1,113 @@
use core::marker::PhantomData;
use group::GroupEncoding;
use serai_primitives::{Coin, Amount, Balance};
use borsh::BorshDeserialize;
use serai_db::{Get, DbTxn, create_db, db_channel};
use primitives::{Payment, ReceivedOutput};
use utxo_scheduler_primitives::TreeTransaction;
use scanner::{ScannerFeed, KeyFor, AddressFor, OutputFor};
create_db! {
UtxoScheduler {
OperatingCosts: (coin: Coin) -> Amount,
SerializedOutputs: (key: &[u8], coin: Coin) -> Vec<u8>,
SerializedQueuedPayments: (key: &[u8], coin: Coin) -> Vec<u8>,
}
}
db_channel! {
UtxoScheduler {
PendingBranch: (key: &[u8], balance: Balance) -> Vec<u8>,
}
}
pub(crate) struct Db<S: ScannerFeed>(PhantomData<S>);
impl<S: ScannerFeed> Db<S> {
pub(crate) fn operating_costs(getter: &impl Get, coin: Coin) -> Amount {
OperatingCosts::get(getter, coin).unwrap_or(Amount(0))
}
pub(crate) fn set_operating_costs(txn: &mut impl DbTxn, coin: Coin, amount: Amount) {
OperatingCosts::set(txn, coin, &amount)
}
pub(crate) fn outputs(
getter: &impl Get,
key: KeyFor<S>,
coin: Coin,
) -> Option<Vec<OutputFor<S>>> {
let buf = SerializedOutputs::get(getter, key.to_bytes().as_ref(), coin)?;
let mut buf = buf.as_slice();
let mut res = Vec::with_capacity(buf.len() / 128);
while !buf.is_empty() {
res.push(OutputFor::<S>::read(&mut buf).unwrap());
}
Some(res)
}
pub(crate) fn set_outputs(
txn: &mut impl DbTxn,
key: KeyFor<S>,
coin: Coin,
outputs: &[OutputFor<S>],
) {
let mut buf = Vec::with_capacity(outputs.len() * 128);
for output in outputs {
output.write(&mut buf).unwrap();
}
SerializedOutputs::set(txn, key.to_bytes().as_ref(), coin, &buf);
}
pub(crate) fn del_outputs(txn: &mut impl DbTxn, key: KeyFor<S>, coin: Coin) {
SerializedOutputs::del(txn, key.to_bytes().as_ref(), coin);
}
pub(crate) fn queued_payments(
getter: &impl Get,
key: KeyFor<S>,
coin: Coin,
) -> Option<Vec<Payment<AddressFor<S>>>> {
let buf = SerializedQueuedPayments::get(getter, key.to_bytes().as_ref(), coin)?;
let mut buf = buf.as_slice();
let mut res = Vec::with_capacity(buf.len() / 128);
while !buf.is_empty() {
res.push(Payment::read(&mut buf).unwrap());
}
Some(res)
}
pub(crate) fn set_queued_payments(
txn: &mut impl DbTxn,
key: KeyFor<S>,
coin: Coin,
queued: &[Payment<AddressFor<S>>],
) {
let mut buf = Vec::with_capacity(queued.len() * 128);
for queued in queued {
queued.write(&mut buf).unwrap();
}
SerializedQueuedPayments::set(txn, key.to_bytes().as_ref(), coin, &buf);
}
pub(crate) fn del_queued_payments(txn: &mut impl DbTxn, key: KeyFor<S>, coin: Coin) {
SerializedQueuedPayments::del(txn, key.to_bytes().as_ref(), coin);
}
pub(crate) fn queue_pending_branch(
txn: &mut impl DbTxn,
key: KeyFor<S>,
balance: Balance,
child: &TreeTransaction<AddressFor<S>>,
) {
PendingBranch::send(txn, key.to_bytes().as_ref(), balance, &borsh::to_vec(child).unwrap())
}
pub(crate) fn take_pending_branch(
txn: &mut impl DbTxn,
key: KeyFor<S>,
balance: Balance,
) -> Option<TreeTransaction<AddressFor<S>>> {
PendingBranch::try_recv(txn, key.to_bytes().as_ref(), balance)
.map(|bytes| TreeTransaction::<AddressFor<S>>::deserialize(&mut bytes.as_slice()).unwrap())
}
}

View File

@@ -0,0 +1,508 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
use core::marker::PhantomData;
use std::collections::HashMap;
use group::GroupEncoding;
use serai_primitives::{Coin, Amount, Balance};
use serai_db::DbTxn;
use primitives::{ReceivedOutput, Payment};
use scanner::{
LifetimeStage, ScannerFeed, KeyFor, AddressFor, OutputFor, EventualityFor, BlockFor,
SchedulerUpdate, Scheduler as SchedulerTrait,
};
use scheduler_primitives::*;
use utxo_scheduler_primitives::*;
mod db;
use db::Db;
/// A scheduler of transactions for networks premised on the UTXO model.
pub struct Scheduler<S: ScannerFeed, P: TransactionPlanner<S, ()>>(PhantomData<S>, PhantomData<P>);
impl<S: ScannerFeed, P: TransactionPlanner<S, ()>> Scheduler<S, P> {
fn aggregate_inputs(
txn: &mut impl DbTxn,
block: &BlockFor<S>,
key_for_change: KeyFor<S>,
key: KeyFor<S>,
coin: Coin,
) -> Vec<EventualityFor<S>> {
let mut eventualities = vec![];
let mut operating_costs = Db::<S>::operating_costs(txn, coin).0;
let mut outputs = Db::<S>::outputs(txn, key, coin).unwrap();
outputs.sort_by_key(|output| output.balance().amount.0);
while outputs.len() > P::MAX_INPUTS {
let to_aggregate = outputs.drain(.. P::MAX_INPUTS).collect::<Vec<_>>();
let Some(planned) = P::plan_transaction_with_fee_amortization(
&mut operating_costs,
P::fee_rate(block, coin),
to_aggregate,
vec![],
Some(key_for_change),
) else {
continue;
};
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
eventualities.push(planned.eventuality);
}
Db::<S>::set_outputs(txn, key, coin, &outputs);
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
eventualities
}
fn fulfillable_payments(
txn: &mut impl DbTxn,
operating_costs: &mut u64,
key: KeyFor<S>,
coin: Coin,
value_of_outputs: u64,
) -> Vec<Payment<AddressFor<S>>> {
// Fetch all payments for this key
let mut payments = Db::<S>::queued_payments(txn, key, coin).unwrap();
if payments.is_empty() {
return vec![];
}
loop {
// inputs must be >= (payments - operating costs)
// Accordingly, (inputs + operating costs) must be >= payments
let value_fulfillable = value_of_outputs + *operating_costs;
// Drop to just the payments we can currently fulfill
{
let mut can_handle = 0;
let mut value_used = 0;
for payment in &payments {
value_used += payment.balance().amount.0;
if value_fulfillable < value_used {
break;
}
can_handle += 1;
}
let remaining_payments = payments.drain(can_handle ..).collect::<Vec<_>>();
// Restore the rest to the database
Db::<S>::set_queued_payments(txn, key, coin, &remaining_payments);
}
// If these payments are worth less than the operating costs, immediately drop them
let payments_value = payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>();
if payments_value <= *operating_costs {
*operating_costs -= payments_value;
Db::<S>::set_operating_costs(txn, coin, Amount(*operating_costs));
// Reset payments to the queued payments
payments = Db::<S>::queued_payments(txn, key, coin).unwrap();
// If there's no more payments, stop looking for which payments we should fulfill
if payments.is_empty() {
return vec![];
}
// Find which of these we should handle
continue;
}
return payments;
}
}
fn queue_branches(
txn: &mut impl DbTxn,
key: KeyFor<S>,
coin: Coin,
effected_payments: Vec<Amount>,
tx: TreeTransaction<AddressFor<S>>,
) {
match tx {
TreeTransaction::Leaves { .. } => {}
TreeTransaction::Branch { mut children, .. } => {
children.sort_by_key(TreeTransaction::value);
children.reverse();
/*
This may only be a subset of payments but it'll be the originally-highest-valued
payments. `zip` will truncate to the first children which will be the highest-valued
children thanks to our sort.
*/
for (amount, child) in effected_payments.into_iter().zip(children) {
Db::<S>::queue_pending_branch(txn, key, Balance { coin, amount }, &child);
}
}
}
}
fn handle_branch(
txn: &mut impl DbTxn,
block: &BlockFor<S>,
eventualities: &mut Vec<EventualityFor<S>>,
output: OutputFor<S>,
tx: TreeTransaction<AddressFor<S>>,
) -> bool {
let key = output.key();
let coin = output.balance().coin;
let Some(payments) = tx.payments::<S>(coin, &P::branch_address(key), output.balance().amount.0)
else {
// If this output has become too small to satisfy this branch, drop it
return false;
};
let Some(planned) = P::plan_transaction_with_fee_amortization(
// Uses 0 as there's no operating costs to incur/amortize here
&mut 0,
P::fee_rate(block, coin),
vec![output],
payments,
None,
) else {
// This Branch isn't viable, so drop it (and its children)
return false;
};
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
eventualities.push(planned.eventuality);
Self::queue_branches(txn, key, coin, planned.effected_payments, tx);
true
}
fn step(
txn: &mut impl DbTxn,
active_keys: &[(KeyFor<S>, LifetimeStage)],
block: &BlockFor<S>,
key: KeyFor<S>,
) -> Vec<EventualityFor<S>> {
let mut eventualities = vec![];
let key_for_change = match active_keys[0].1 {
LifetimeStage::ActiveYetNotReporting => {
panic!("expected to fulfill payments despite not reporting for the oldest key")
}
LifetimeStage::Active => active_keys[0].0,
LifetimeStage::UsingNewForChange | LifetimeStage::Forwarding | LifetimeStage::Finishing => {
active_keys[1].0
}
};
let branch_address = P::branch_address(key);
'coin: for coin in S::NETWORK.coins() {
let coin = *coin;
// Perform any input aggregation we should
eventualities.append(&mut Self::aggregate_inputs(txn, block, key_for_change, key, coin));
// Fetch the operating costs/outputs
let mut operating_costs = Db::<S>::operating_costs(txn, coin).0;
let outputs = Db::<S>::outputs(txn, key, coin).unwrap();
// Fetch the fulfillable payments
let payments = Self::fulfillable_payments(
txn,
&mut operating_costs,
key,
coin,
outputs.iter().map(|output| output.balance().amount.0).sum(),
);
if payments.is_empty() {
continue;
}
// Create a tree to fulfill the payments
let mut tree = vec![P::tree(&payments)];
// Create the transaction for the root of the tree
// Try creating this transaction twice, once with a change output and once with increased
// operating costs to ensure a change output (as necessary to meet the requirements of the
// scanner API)
let mut planned_outer = None;
for i in 0 .. 2 {
let Some(planned) = P::plan_transaction_with_fee_amortization(
&mut operating_costs,
P::fee_rate(block, coin),
outputs.clone(),
tree[0]
.payments::<S>(coin, &branch_address, tree[0].value())
.expect("payments were dropped despite providing an input of the needed value"),
Some(key_for_change),
) else {
// This should trip on the first iteration or not at all
assert_eq!(i, 0);
// This doesn't have inputs even worth aggregating so drop the entire tree
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
continue 'coin;
};
// If this doesn't have a change output, increase operating costs and try again
if !planned.has_change {
/*
Since we'll create a change output if it's worth at least dust, amortizing dust from
the payments should solve this. If the new transaction can't afford those operating
costs, then the payments should be amortized out, causing there to be a change or no
transaction at all.
*/
operating_costs += S::dust(coin).0;
continue;
}
// Since this had a change output, move forward with it
planned_outer = Some(planned);
break;
}
let Some(planned) = planned_outer else {
panic!("couldn't create a tree root with a change output")
};
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
eventualities.push(planned.eventuality);
// Now save the next layer of the tree to the database
// We'll execute it when it appears
Self::queue_branches(txn, key, coin, planned.effected_payments, tree.remove(0));
}
eventualities
}
fn flush_outputs(
txn: &mut impl DbTxn,
eventualities: &mut HashMap<Vec<u8>, Vec<EventualityFor<S>>>,
block: &BlockFor<S>,
from: KeyFor<S>,
to: KeyFor<S>,
coin: Coin,
) {
let from_bytes = from.to_bytes().as_ref().to_vec();
// Ensure our inputs are aggregated
eventualities
.entry(from_bytes.clone())
.or_insert(vec![])
.append(&mut Self::aggregate_inputs(txn, block, to, from, coin));
// Now that our inputs are aggregated, transfer all of them to the new key
let mut operating_costs = Db::<S>::operating_costs(txn, coin).0;
let outputs = Db::<S>::outputs(txn, from, coin).unwrap();
if outputs.is_empty() {
return;
}
let planned = P::plan_transaction_with_fee_amortization(
&mut operating_costs,
P::fee_rate(block, coin),
outputs,
vec![],
Some(to),
);
Db::<S>::set_operating_costs(txn, coin, Amount(operating_costs));
let Some(planned) = planned else { return };
TransactionsToSign::<P::SignableTransaction>::send(txn, &from, &planned.signable);
eventualities.get_mut(&from_bytes).unwrap().push(planned.eventuality);
}
}
impl<S: ScannerFeed, P: TransactionPlanner<S, ()>> SchedulerTrait<S> for Scheduler<S, P> {
fn activate_key(txn: &mut impl DbTxn, key: KeyFor<S>) {
for coin in S::NETWORK.coins() {
assert!(Db::<S>::outputs(txn, key, *coin).is_none());
Db::<S>::set_outputs(txn, key, *coin, &[]);
assert!(Db::<S>::queued_payments(txn, key, *coin).is_none());
Db::<S>::set_queued_payments(txn, key, *coin, &[]);
}
}
fn flush_key(
txn: &mut impl DbTxn,
block: &BlockFor<S>,
retiring_key: KeyFor<S>,
new_key: KeyFor<S>,
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
let mut eventualities = HashMap::new();
for coin in S::NETWORK.coins() {
// Move the payments to the new key
{
let still_queued = Db::<S>::queued_payments(txn, retiring_key, *coin).unwrap();
let mut new_queued = Db::<S>::queued_payments(txn, new_key, *coin).unwrap();
let mut queued = still_queued;
queued.append(&mut new_queued);
Db::<S>::set_queued_payments(txn, retiring_key, *coin, &[]);
Db::<S>::set_queued_payments(txn, new_key, *coin, &queued);
}
// Move the outputs to the new key
Self::flush_outputs(txn, &mut eventualities, block, retiring_key, new_key, *coin);
}
eventualities
}
fn retire_key(txn: &mut impl DbTxn, key: KeyFor<S>) {
for coin in S::NETWORK.coins() {
assert!(Db::<S>::outputs(txn, key, *coin).unwrap().is_empty());
Db::<S>::del_outputs(txn, key, *coin);
assert!(Db::<S>::queued_payments(txn, key, *coin).unwrap().is_empty());
Db::<S>::del_queued_payments(txn, key, *coin);
}
}
fn update(
txn: &mut impl DbTxn,
block: &BlockFor<S>,
active_keys: &[(KeyFor<S>, LifetimeStage)],
update: SchedulerUpdate<S>,
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
let mut eventualities = HashMap::new();
// Accumulate the new outputs
{
let mut outputs_by_key = HashMap::new();
for output in update.outputs() {
// If this aligns for a branch, handle it
if let Some(branch) = Db::<S>::take_pending_branch(txn, output.key(), output.balance()) {
if Self::handle_branch(
txn,
block,
eventualities.entry(output.key().to_bytes().as_ref().to_vec()).or_insert(vec![]),
output.clone(),
branch,
) {
// If we could use it for a branch, we do and move on
// Else, we let it be accumulated by the standard accumulation code
continue;
}
}
let coin = output.balance().coin;
outputs_by_key
// Index by key and coin
.entry((output.key().to_bytes().as_ref().to_vec(), coin))
// If we haven't accumulated here prior, read the outputs from the database
.or_insert_with(|| (output.key(), Db::<S>::outputs(txn, output.key(), coin).unwrap()))
.1
.push(output.clone());
}
// Write the outputs back to the database
for ((_key_vec, coin), (key, outputs)) in outputs_by_key {
Db::<S>::set_outputs(txn, key, coin, &outputs);
}
}
// Fulfill the payments we prior couldn't
for (key, _stage) in active_keys {
eventualities
.entry(key.to_bytes().as_ref().to_vec())
.or_insert(vec![])
.append(&mut Self::step(txn, active_keys, block, *key));
}
// If this key has been flushed, forward all outputs
match active_keys[0].1 {
LifetimeStage::ActiveYetNotReporting |
LifetimeStage::Active |
LifetimeStage::UsingNewForChange => {}
LifetimeStage::Forwarding | LifetimeStage::Finishing => {
for coin in S::NETWORK.coins() {
Self::flush_outputs(
txn,
&mut eventualities,
block,
active_keys[0].0,
active_keys[1].0,
*coin,
);
}
}
}
// Create the transactions for the forwards/burns
{
let mut planned_txs = vec![];
for forward in update.forwards() {
let key = forward.key();
assert_eq!(active_keys.len(), 2);
assert_eq!(active_keys[0].1, LifetimeStage::Forwarding);
assert_eq!(active_keys[1].1, LifetimeStage::Active);
let forward_to_key = active_keys[1].0;
let Some(plan) = P::plan_transaction_with_fee_amortization(
// This uses 0 for the operating costs as we don't incur any here
// If the output can't pay for itself to be forwarded, we simply drop it
&mut 0,
P::fee_rate(block, forward.balance().coin),
vec![forward.clone()],
vec![Payment::new(P::forwarding_address(forward_to_key), forward.balance(), None)],
None,
) else {
continue;
};
planned_txs.push((key, plan));
}
for to_return in update.returns() {
let key = to_return.output().key();
let out_instruction =
Payment::new(to_return.address().clone(), to_return.output().balance(), None);
let Some(plan) = P::plan_transaction_with_fee_amortization(
// This uses 0 for the operating costs as we don't incur any here
// If the output can't pay for itself to be returned, we simply drop it
&mut 0,
P::fee_rate(block, out_instruction.balance().coin),
vec![to_return.output().clone()],
vec![out_instruction],
None,
) else {
continue;
};
planned_txs.push((key, plan));
}
for (key, planned_tx) in planned_txs {
// Send the transactions off for signing
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned_tx.signable);
// Insert the Eventualities into the result
eventualities.get_mut(key.to_bytes().as_ref()).unwrap().push(planned_tx.eventuality);
}
eventualities
}
}
fn fulfill(
txn: &mut impl DbTxn,
block: &BlockFor<S>,
active_keys: &[(KeyFor<S>, LifetimeStage)],
payments: Vec<Payment<AddressFor<S>>>,
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
// Find the key to filfill these payments with
let fulfillment_key = match active_keys[0].1 {
LifetimeStage::ActiveYetNotReporting => {
panic!("expected to fulfill payments despite not reporting for the oldest key")
}
LifetimeStage::Active | LifetimeStage::UsingNewForChange => active_keys[0].0,
LifetimeStage::Forwarding | LifetimeStage::Finishing => active_keys[1].0,
};
// Queue the payments for this key
for coin in S::NETWORK.coins() {
let mut queued_payments = Db::<S>::queued_payments(txn, fulfillment_key, *coin).unwrap();
queued_payments
.extend(payments.iter().filter(|payment| payment.balance().coin == *coin).cloned());
Db::<S>::set_queued_payments(txn, fulfillment_key, *coin, &queued_payments);
}
// Handle the queued payments
HashMap::from([(
fulfillment_key.to_bytes().as_ref().to_vec(),
Self::step(txn, active_keys, block, fulfillment_key),
)])
}
}