implement Router.sol and associated functions (#92)

* start Router contract

* use calldata for function args

* var name changes

* start testing router contract

* test with and without abi.encode

* cleanup

* why tf isn't tests/utils working

* cleanup tests

* remove unused files

* wip

* fix router contract and tests, add set/update public keys funcs

* impl some Froms

* make execute non-reentrant

* cleanup

* update Router to use ReentrancyGuard

* update contract to use errors, use bitfield in Executed event, minor other fixes

* wip

* fix build issues from merge, tests ok

* Router.sol cleanup

* cleanup, uncomment stuff

* bump ethers.rs version to latest

* make contract functions take generic middleware

* update build script to assert no compiler errors

* hardcode pubkey parity into contract, update tests

* Polish coins/ethereum in various ways

---------

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
This commit is contained in:
noot
2024-03-24 09:00:54 -04:00
committed by GitHub
parent 3d855c75be
commit 63521f6a96
20 changed files with 690 additions and 348 deletions

View File

@@ -0,0 +1,132 @@
use rand_core::OsRng;
use sha2::Sha256;
use sha3::{Digest, Keccak256};
use group::Group;
use k256::{
ecdsa::{hazmat::SignPrimitive, signature::DigestVerifier, SigningKey, VerifyingKey},
elliptic_curve::{bigint::ArrayEncoding, ops::Reduce, point::DecompressPoint},
U256, Scalar, AffinePoint, ProjectivePoint,
};
use frost::{
curve::Secp256k1,
algorithm::{Hram, IetfSchnorr},
tests::{algorithm_machines, sign},
};
use crate::{crypto::*, tests::key_gen};
pub fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar::reduce(U256::from_be_slice(&keccak256(data)))
}
pub(crate) fn ecrecover(message: Scalar, v: u8, r: Scalar, s: Scalar) -> Option<[u8; 20]> {
if r.is_zero().into() || s.is_zero().into() || !((v == 27) || (v == 28)) {
return None;
}
#[allow(non_snake_case)]
let R = AffinePoint::decompress(&r.to_bytes(), (v - 27).into());
#[allow(non_snake_case)]
if let Some(R) = Option::<AffinePoint>::from(R) {
#[allow(non_snake_case)]
let R = ProjectivePoint::from(R);
let r = r.invert().unwrap();
let u1 = ProjectivePoint::GENERATOR * (-message * r);
let u2 = R * (s * r);
let key: ProjectivePoint = u1 + u2;
if !bool::from(key.is_identity()) {
return Some(address(&key));
}
}
None
}
#[test]
fn test_ecrecover() {
let private = SigningKey::random(&mut OsRng);
let public = VerifyingKey::from(&private);
// Sign the signature
const MESSAGE: &[u8] = b"Hello, World!";
let (sig, recovery_id) = private
.as_nonzero_scalar()
.try_sign_prehashed_rfc6979::<Sha256>(&Keccak256::digest(MESSAGE), b"")
.unwrap();
// Sanity check the signature verifies
#[allow(clippy::unit_cmp)] // Intended to assert this wasn't changed to Result<bool>
{
assert_eq!(public.verify_digest(Keccak256::new_with_prefix(MESSAGE), &sig).unwrap(), ());
}
// Perform the ecrecover
assert_eq!(
ecrecover(
hash_to_scalar(MESSAGE),
u8::from(recovery_id.unwrap().is_y_odd()) + 27,
*sig.r(),
*sig.s()
)
.unwrap(),
address(&ProjectivePoint::from(public.as_affine()))
);
}
// Run the sign test with the EthereumHram
#[test]
fn test_signing() {
let (keys, _) = key_gen();
const MESSAGE: &[u8] = b"Hello, World!";
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let _sig =
sign(&mut OsRng, &algo, keys.clone(), algorithm_machines(&mut OsRng, &algo, &keys), MESSAGE);
}
#[allow(non_snake_case)]
pub fn preprocess_signature_for_ecrecover(
R: ProjectivePoint,
public_key: &PublicKey,
chain_id: U256,
m: &[u8],
s: Scalar,
) -> (u8, Scalar, Scalar) {
let c = EthereumHram::hram(
&R,
&public_key.A,
&[chain_id.to_be_byte_array().as_slice(), &keccak256(m)].concat(),
);
let sa = -(s * public_key.px);
let ca = -(c * public_key.px);
(public_key.parity, sa, ca)
}
#[test]
fn test_ecrecover_hack() {
let (keys, public_key) = key_gen();
const MESSAGE: &[u8] = b"Hello, World!";
let hashed_message = keccak256(MESSAGE);
let chain_id = U256::ONE;
let full_message = &[chain_id.to_be_byte_array().as_slice(), &hashed_message].concat();
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let sig = sign(
&mut OsRng,
&algo,
keys.clone(),
algorithm_machines(&mut OsRng, &algo, &keys),
full_message,
);
let (parity, sa, ca) =
preprocess_signature_for_ecrecover(sig.R, &public_key, chain_id, MESSAGE, sig.s);
let q = ecrecover(sa, parity, public_key.px, ca).unwrap();
assert_eq!(q, address(&sig.R));
}

View File

@@ -0,0 +1,92 @@
use std::{sync::Arc, time::Duration, fs::File, collections::HashMap};
use rand_core::OsRng;
use group::ff::PrimeField;
use k256::{Scalar, ProjectivePoint};
use frost::{curve::Secp256k1, Participant, ThresholdKeys, tests::key_gen as frost_key_gen};
use ethers_core::{
types::{H160, Signature as EthersSignature},
abi::Abi,
};
use ethers_contract::ContractFactory;
use ethers_providers::{Middleware, Provider, Http};
use crate::crypto::PublicKey;
mod crypto;
mod schnorr;
mod router;
pub fn key_gen() -> (HashMap<Participant, ThresholdKeys<Secp256k1>>, PublicKey) {
let mut keys = frost_key_gen::<_, Secp256k1>(&mut OsRng);
let mut group_key = keys[&Participant::new(1).unwrap()].group_key();
let mut offset = Scalar::ZERO;
while PublicKey::new(group_key).is_none() {
offset += Scalar::ONE;
group_key += ProjectivePoint::GENERATOR;
}
for keys in keys.values_mut() {
*keys = keys.offset(offset);
}
let public_key = PublicKey::new(group_key).unwrap();
(keys, public_key)
}
// TODO: Replace with a contract deployment from an unknown account, so the environment solely has
// to fund the deployer, not create/pass a wallet
// TODO: Deterministic deployments across chains
pub async fn deploy_contract(
chain_id: u32,
client: Arc<Provider<Http>>,
wallet: &k256::ecdsa::SigningKey,
name: &str,
) -> eyre::Result<H160> {
let abi: Abi =
serde_json::from_reader(File::open(format!("./artifacts/{name}.abi")).unwrap()).unwrap();
let hex_bin_buf = std::fs::read_to_string(format!("./artifacts/{name}.bin")).unwrap();
let hex_bin =
if let Some(stripped) = hex_bin_buf.strip_prefix("0x") { stripped } else { &hex_bin_buf };
let bin = hex::decode(hex_bin).unwrap();
let factory = ContractFactory::new(abi, bin.into(), client.clone());
let mut deployment_tx = factory.deploy(())?.tx;
deployment_tx.set_chain_id(chain_id);
deployment_tx.set_gas(1_000_000);
let (max_fee_per_gas, max_priority_fee_per_gas) = client.estimate_eip1559_fees(None).await?;
deployment_tx.as_eip1559_mut().unwrap().max_fee_per_gas = Some(max_fee_per_gas);
deployment_tx.as_eip1559_mut().unwrap().max_priority_fee_per_gas = Some(max_priority_fee_per_gas);
let sig_hash = deployment_tx.sighash();
let (sig, rid) = wallet.sign_prehash_recoverable(sig_hash.as_ref()).unwrap();
// EIP-155 v
let mut v = u64::from(rid.to_byte());
assert!((v == 0) || (v == 1));
v += u64::from((chain_id * 2) + 35);
let r = sig.r().to_repr();
let r_ref: &[u8] = r.as_ref();
let s = sig.s().to_repr();
let s_ref: &[u8] = s.as_ref();
let deployment_tx =
deployment_tx.rlp_signed(&EthersSignature { r: r_ref.into(), s: s_ref.into(), v });
let pending_tx = client.send_raw_transaction(deployment_tx).await?;
let mut receipt;
while {
receipt = client.get_transaction_receipt(pending_tx.tx_hash()).await?;
receipt.is_none()
} {
tokio::time::sleep(Duration::from_secs(6)).await;
}
let receipt = receipt.unwrap();
assert!(receipt.status == Some(1.into()));
Ok(receipt.contract_address.unwrap())
}

View File

@@ -0,0 +1,109 @@
use std::{convert::TryFrom, sync::Arc, collections::HashMap};
use rand_core::OsRng;
use group::ff::PrimeField;
use frost::{
curve::Secp256k1,
Participant, ThresholdKeys,
algorithm::IetfSchnorr,
tests::{algorithm_machines, sign},
};
use ethers_core::{
types::{H160, U256, Bytes},
abi::AbiEncode,
utils::{Anvil, AnvilInstance},
};
use ethers_providers::{Middleware, Provider, Http};
use crate::{
crypto::{keccak256, PublicKey, EthereumHram, Signature},
router::{self, *},
tests::{key_gen, deploy_contract},
};
async fn setup_test() -> (
u32,
AnvilInstance,
Router<Provider<Http>>,
HashMap<Participant, ThresholdKeys<Secp256k1>>,
PublicKey,
) {
let anvil = Anvil::new().spawn();
let provider = Provider::<Http>::try_from(anvil.endpoint()).unwrap();
let chain_id = provider.get_chainid().await.unwrap().as_u32();
let wallet = anvil.keys()[0].clone().into();
let client = Arc::new(provider);
let contract_address =
deploy_contract(chain_id, client.clone(), &wallet, "Router").await.unwrap();
let contract = Router::new(contract_address, client.clone());
let (keys, public_key) = key_gen();
// Set the key to the threshold keys
let tx = contract.init_serai_key(public_key.px.to_repr().into()).gas(100_000);
let pending_tx = tx.send().await.unwrap();
let receipt = pending_tx.await.unwrap().unwrap();
assert!(receipt.status == Some(1.into()));
(chain_id, anvil, contract, keys, public_key)
}
#[tokio::test]
async fn test_deploy_contract() {
setup_test().await;
}
pub fn hash_and_sign(
keys: &HashMap<Participant, ThresholdKeys<Secp256k1>>,
public_key: &PublicKey,
chain_id: U256,
message: &[u8],
) -> Signature {
let hashed_message = keccak256(message);
let mut chain_id_bytes = [0; 32];
chain_id.to_big_endian(&mut chain_id_bytes);
let full_message = &[chain_id_bytes.as_slice(), &hashed_message].concat();
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let sig = sign(
&mut OsRng,
&algo,
keys.clone(),
algorithm_machines(&mut OsRng, &algo, keys),
full_message,
);
Signature::new(public_key, k256::U256::from_words(chain_id.0), message, sig).unwrap()
}
#[tokio::test]
async fn test_router_execute() {
let (chain_id, _anvil, contract, keys, public_key) = setup_test().await;
let to = H160([0u8; 20]);
let value = U256([0u64; 4]);
let data = Bytes::from([0]);
let tx = OutInstruction { to, value, data: data.clone() };
let nonce_call = contract.nonce();
let nonce = nonce_call.call().await.unwrap();
let encoded =
("execute".to_string(), nonce, vec![router::OutInstruction { to, value, data }]).encode();
let sig = hash_and_sign(&keys, &public_key, chain_id.into(), &encoded);
let tx = contract
.execute(vec![tx], router::Signature { c: sig.c.to_repr().into(), s: sig.s.to_repr().into() })
.gas(300_000);
let pending_tx = tx.send().await.unwrap();
let receipt = dbg!(pending_tx.await.unwrap().unwrap());
assert!(receipt.status == Some(1.into()));
println!("gas used: {:?}", receipt.cumulative_gas_used);
println!("logs: {:?}", receipt.logs);
}

View File

@@ -0,0 +1,67 @@
use std::{convert::TryFrom, sync::Arc};
use rand_core::OsRng;
use ::k256::{elliptic_curve::bigint::ArrayEncoding, U256, Scalar};
use ethers_core::utils::{keccak256, Anvil, AnvilInstance};
use ethers_providers::{Middleware, Provider, Http};
use frost::{
curve::Secp256k1,
algorithm::IetfSchnorr,
tests::{algorithm_machines, sign},
};
use crate::{
crypto::*,
schnorr::*,
tests::{key_gen, deploy_contract},
};
async fn setup_test() -> (u32, AnvilInstance, Schnorr<Provider<Http>>) {
let anvil = Anvil::new().spawn();
let provider = Provider::<Http>::try_from(anvil.endpoint()).unwrap();
let chain_id = provider.get_chainid().await.unwrap().as_u32();
let wallet = anvil.keys()[0].clone().into();
let client = Arc::new(provider);
let contract_address =
deploy_contract(chain_id, client.clone(), &wallet, "Schnorr").await.unwrap();
let contract = Schnorr::new(contract_address, client.clone());
(chain_id, anvil, contract)
}
#[tokio::test]
async fn test_deploy_contract() {
setup_test().await;
}
#[tokio::test]
async fn test_ecrecover_hack() {
let (chain_id, _anvil, contract) = setup_test().await;
let chain_id = U256::from(chain_id);
let (keys, public_key) = key_gen();
const MESSAGE: &[u8] = b"Hello, World!";
let hashed_message = keccak256(MESSAGE);
let full_message = &[chain_id.to_be_byte_array().as_slice(), &hashed_message].concat();
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let sig = sign(
&mut OsRng,
&algo,
keys.clone(),
algorithm_machines(&mut OsRng, &algo, &keys),
full_message,
);
let sig = Signature::new(&public_key, chain_id, MESSAGE, sig).unwrap();
call_verify(&contract, &public_key, MESSAGE, &sig).await.unwrap();
// Test an invalid signature fails
let mut sig = sig;
sig.s += Scalar::ONE;
assert!(call_verify(&contract, &public_key, MESSAGE, &sig).await.is_err());
}