BP Verification (#75)

* Use a struct in an enum for Bulletproofs

* verification bp working for just one proof

* add some more assert tests

* Clean BP verification

* Implement batch verification

* Add a debug assertion w_cache isn't 0

It's initially set to 0 and if not updated, this would be broken.

* Correct Monero workflow yaml

* Again try to corrent Monero workflow yaml

* Again

* Finally

* Re-apply weights as required by Bulletproofs

Removing these was insecure and my fault.

Co-authored-by: DangerousFreedom <dangfreed@tutanota.com>
This commit is contained in:
Luke Parker
2022-07-31 21:45:53 -05:00
committed by GitHub
parent 0453b6cbc1
commit 6340607827
7 changed files with 348 additions and 75 deletions

View File

@@ -7,12 +7,12 @@ use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
use group::{ff::Field, Group};
use dalek_ff_group::{ED25519_BASEPOINT_POINT, Scalar, EdwardsPoint};
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
use multiexp::multiexp as const_multiexp;
use multiexp::{BatchVerifier, multiexp as multiexp_const};
fn prove_multiexp(pairs: &[(Scalar, EdwardsPoint)]) -> EdwardsPoint {
const_multiexp(pairs) * *INV_EIGHT
multiexp_const(pairs) * *INV_EIGHT
}
use crate::{
@@ -108,9 +108,11 @@ fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
(aL, aR)
}
fn hash_commitments(commitments: &[Commitment]) -> Scalar {
let V = commitments.iter().map(|c| EdwardsPoint(c.calculate()) * *INV_EIGHT).collect::<Vec<_>>();
hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>())
fn hash_commitments<C: IntoIterator<Item = DalekPoint>>(
commitments: C,
) -> (Scalar, Vec<EdwardsPoint>) {
let V = commitments.into_iter().map(|c| EdwardsPoint(c) * *INV_EIGHT).collect::<Vec<_>>();
(hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>()), V)
}
fn alpha_rho<R: RngCore + CryptoRng>(
@@ -161,41 +163,198 @@ lazy_static! {
}
// TRANSCRIPT_PLUS isn't a Scalar, so we need this alternative for the first hash
fn hash_plus(mash: &[[u8; 32]]) -> Scalar {
let slice =
&[&*TRANSCRIPT_PLUS as &[u8], mash.iter().cloned().flatten().collect::<Vec<_>>().as_ref()]
.concat();
hash_to_scalar(slice)
fn hash_plus(mash: &[u8]) -> Scalar {
hash_to_scalar(&[&*TRANSCRIPT_PLUS as &[u8], mash].concat())
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OriginalStruct {
pub(crate) A: DalekPoint,
pub(crate) S: DalekPoint,
pub(crate) T1: DalekPoint,
pub(crate) T2: DalekPoint,
pub(crate) taux: DalekScalar,
pub(crate) mu: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
pub(crate) a: DalekScalar,
pub(crate) b: DalekScalar,
pub(crate) t: DalekScalar,
}
impl OriginalStruct {
#[must_use]
fn verify_core<ID: Copy, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
// Verify commitments are valid
if commitments.is_empty() || (commitments.len() > MAX_M) {
return false;
}
// Verify L and R are properly sized
if self.L.len() != self.R.len() {
return false;
}
let (logMN, M, MN) = MN(commitments.len());
if self.L.len() != logMN {
return false;
}
// Rebuild all challenges
let (mut cache, commitments) = hash_commitments(commitments.iter().cloned());
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]);
let z = hash_to_scalar(&y.to_bytes());
cache = z;
let x = hash_cache(
&mut cache,
&[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()],
);
let x_ip = hash_cache(
&mut cache,
&[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()],
);
let mut w = Vec::with_capacity(logMN);
let mut winv = Vec::with_capacity(logMN);
for (L, R) in self.L.iter().zip(&self.R) {
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
winv.push(cache.invert().unwrap());
}
// Convert the proof from * INV_EIGHT to its actual form
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
let T1 = normalize(&self.T1);
let T2 = normalize(&self.T2);
let A = normalize(&self.A);
let S = normalize(&self.S);
let commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::<Vec<_>>();
// Verify it
let mut proof = Vec::with_capacity(4 + commitments.len());
let zpow = ScalarVector::powers(z, M + 3);
let ip1y = ScalarVector::powers(y, M * N).sum();
let mut k = -(zpow[2] * ip1y);
for j in 1 ..= M {
k -= zpow[j + 2] * *IP12;
}
let y1 = Scalar(self.t) - ((z * ip1y) + k);
proof.push((-y1, *H));
proof.push((-Scalar(self.taux), G));
for (j, commitment) in commitments.iter().enumerate() {
proof.push((zpow[j + 2], *commitment));
}
proof.push((x, T1));
proof.push((x * x, T2));
verifier.queue(&mut *rng, id, proof);
proof = Vec::with_capacity(4 + (2 * (MN + logMN)));
let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip;
proof.push((z3, *H));
proof.push((-Scalar(self.mu), G));
proof.push((Scalar::one(), A));
proof.push((x, S));
{
let ypow = ScalarVector::powers(y, MN);
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut w_cache = vec![Scalar::zero(); MN];
w_cache[0] = winv[0];
w_cache[1] = w[0];
for j in 1 .. logMN {
let mut slots = (1 << (j + 1)) - 1;
while slots > 0 {
w_cache[slots] = w_cache[slots / 2] * w[j];
w_cache[slots - 1] = w_cache[slots / 2] * winv[j];
slots = slots.saturating_sub(2);
}
}
for w in &w_cache {
debug_assert!(!bool::from(w.is_zero()));
}
for i in 0 .. MN {
let g = (Scalar(self.a) * w_cache[i]) + z;
proof.push((-g, GENERATORS.G[i]));
let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)];
h -= ((zpow[(i / N) + 2] * TWO_N[i % N]) + (z * ypow[i])) * yinvpow[i];
proof.push((-h, GENERATORS.H[i]));
}
}
for i in 0 .. logMN {
proof.push((w[i] * w[i], L[i]));
proof.push((winv[i] * winv[i], R[i]));
}
verifier.queue(rng, id, proof);
true
}
#[must_use]
pub(crate) fn verify<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
commitments: &[DalekPoint],
) -> bool {
let mut verifier = BatchVerifier::new(4 + commitments.len() + 4 + (2 * (MAX_MN + 10)));
if self.verify_core(rng, &mut verifier, (), commitments) {
verifier.verify_vartime()
} else {
false
}
}
#[must_use]
pub(crate) fn batch_verify<ID: Copy, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
self.verify_core(rng, verifier, id, commitments)
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct PlusStruct {
pub(crate) A: DalekPoint,
pub(crate) A1: DalekPoint,
pub(crate) B: DalekPoint,
pub(crate) r1: DalekScalar,
pub(crate) s1: DalekScalar,
pub(crate) d1: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
}
// Types for all Bulletproofs
#[allow(clippy::large_enum_variant)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Bulletproofs {
Original {
A: DalekPoint,
S: DalekPoint,
T1: DalekPoint,
T2: DalekPoint,
taux: DalekScalar,
mu: DalekScalar,
L: Vec<DalekPoint>,
R: Vec<DalekPoint>,
a: DalekScalar,
b: DalekScalar,
t: DalekScalar,
},
Plus {
A: DalekPoint,
A1: DalekPoint,
B: DalekPoint,
r1: DalekScalar,
s1: DalekScalar,
d1: DalekScalar,
L: Vec<DalekPoint>,
R: Vec<DalekPoint>,
},
Original(OriginalStruct),
Plus(PlusStruct),
}
pub(crate) fn prove<R: RngCore + CryptoRng>(
@@ -205,7 +364,7 @@ pub(crate) fn prove<R: RngCore + CryptoRng>(
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let mut cache = hash_commitments(commitments);
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
let (alpha, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
let (sL, sR) =
@@ -297,7 +456,7 @@ pub(crate) fn prove<R: RngCore + CryptoRng>(
}
}
Bulletproofs::Original {
Bulletproofs::Original(OriginalStruct {
A: *A,
S: *S,
T1: *T1,
@@ -309,7 +468,7 @@ pub(crate) fn prove<R: RngCore + CryptoRng>(
a: *a[0],
b: *b[0],
t: *t,
}
})
}
pub(crate) fn prove_plus<R: RngCore + CryptoRng>(
@@ -319,7 +478,8 @@ pub(crate) fn prove_plus<R: RngCore + CryptoRng>(
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let mut cache = hash_plus(&[hash_commitments(commitments).to_bytes()]);
let (mut cache, _) = hash_commitments(commitments.iter().map(Commitment::calculate));
cache = hash_plus(&cache.to_bytes());
let (mut alpha1, A) = alpha_rho(&mut *rng, &GENERATORS_PLUS, &aL, &aR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes()]);
@@ -371,12 +531,12 @@ pub(crate) fn prove_plus<R: RngCore + CryptoRng>(
let (H_L, H_R) = H_proof.split_at(aL.len());
let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, *H);
L_i.push((dL, ED25519_BASEPOINT_POINT));
L_i.push((dL, G));
let L_i = prove_multiexp(&L_i);
L.push(L_i);
let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, *H);
R_i.push((dR, ED25519_BASEPOINT_POINT));
R_i.push((dR, G));
let R_i = prove_multiexp(&R_i);
R.push(R_i);
@@ -400,17 +560,17 @@ pub(crate) fn prove_plus<R: RngCore + CryptoRng>(
let A1 = prove_multiexp(&[
(r, G_proof[0]),
(s, H_proof[0]),
(d, ED25519_BASEPOINT_POINT),
(d, G),
((r * y * b[0]) + (s * y * a[0]), *H),
]);
let B = prove_multiexp(&[(r * y * s, *H), (eta, ED25519_BASEPOINT_POINT)]);
let B = prove_multiexp(&[(r * y * s, *H), (eta, G)]);
let e = hash_cache(&mut cache, &[A1.compress().to_bytes(), B.compress().to_bytes()]);
let r1 = (a[0] * e) + r;
let s1 = (b[0] * e) + s;
let d1 = ((d * e) + eta) + (alpha1 * (e * e));
Bulletproofs::Plus {
Bulletproofs::Plus(PlusStruct {
A: *A,
A1: *A1,
B: *B,
@@ -419,5 +579,5 @@ pub(crate) fn prove_plus<R: RngCore + CryptoRng>(
d1: *d1,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
}
})
}