Reorganize FROST's handling of curves

This commit is contained in:
Luke Parker
2022-06-24 19:47:19 -04:00
parent 6775fb471e
commit 60254a0171
18 changed files with 165 additions and 154 deletions

View File

@@ -1,122 +1,20 @@
use core::{ops::Mul, fmt::Debug};
use core::fmt::Debug;
use std::collections::HashMap;
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use group::{ff::{Field, PrimeField}, Group, GroupOps};
use group::ff::{Field, PrimeField};
mod schnorr;
pub mod curve;
use curve::Curve;
pub mod key_gen;
pub mod algorithm;
pub mod sign;
#[cfg(any(test, feature = "curves"))]
pub mod curves;
pub mod tests;
/// Set of errors for curve-related operations, namely encoding and decoding
#[derive(Clone, Error, Debug)]
pub enum CurveError {
#[error("invalid length for data (expected {0}, got {0})")]
InvalidLength(usize, usize),
#[error("invalid scalar")]
InvalidScalar,
#[error("invalid point")]
InvalidPoint,
}
/// Unified trait to manage a field/group
// This should be moved into its own crate if the need for generic cryptography over ff/group
// continues, which is the exact reason ff/group exists (to provide a generic interface)
// elliptic-curve exists, yet it doesn't really serve the same role, nor does it use &[u8]/Vec<u8>
// It uses GenericArray which will hopefully be deprecated as Rust evolves and doesn't offer enough
// advantages in the modern day to be worth the hassle -- Kayaba
pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
/// Scalar field element type
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
type F: PrimeField;
/// Group element type
type G: Group<Scalar = Self::F> + GroupOps;
/// Precomputed table type
type T: Mul<Self::F, Output = Self::G>;
/// ID for this curve
const ID: &'static [u8];
/// Generator for the group
// While group does provide this in its API, privacy coins will want to use a custom basepoint
const GENERATOR: Self::G;
/// Table for the generator for the group
/// If there isn't a precomputed table available, the generator itself should be used
const GENERATOR_TABLE: Self::T;
/// If little endian is used for the scalar field's Repr
const LITTLE_ENDIAN: bool;
/// Securely generate a random nonce. H4 from the IETF draft
fn random_nonce<R: RngCore + CryptoRng>(secret: Self::F, rng: &mut R) -> Self::F;
/// Hash the message for the binding factor. H3 from the IETF draft
// This doesn't actually need to be part of Curve as it does nothing with the curve
// This also solely relates to FROST and with a proper Algorithm/HRAM, all projects using
// aggregatable signatures over this curve will work without issue
// It is kept here as Curve + H{1, 2, 3} is effectively a ciphersuite according to the IETF draft
// and moving it to Schnorr would force all of them into being ciphersuite-specific
// H2 is left to the Schnorr Algorithm as H2 is the H used in HRAM, which Schnorr further
// modularizes
fn hash_msg(msg: &[u8]) -> Vec<u8>;
/// Hash the commitments and message to calculate the binding factor. H1 from the IETF draft
fn hash_binding_factor(binding: &[u8]) -> Self::F;
// The following methods would optimally be F:: and G:: yet developers can't control F/G
// They can control a trait they pass into this library
/// Field element from hash. Used during key gen and by other crates under Serai as a general
/// utility
// Not parameterized by Digest as it's fine for it to use its own hash function as relevant to
// hash_msg and hash_binding_factor
#[allow(non_snake_case)]
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F;
/// Constant size of a serialized scalar field element
// The alternative way to grab this would be either serializing a junk element and getting its
// length or doing a naive division of its BITS property by 8 and assuming a lack of padding
#[allow(non_snake_case)]
fn F_len() -> usize;
/// Constant size of a serialized group element
// We could grab the serialization as described above yet a naive developer may use a
// non-constant size encoding, proving yet another reason to force this to be a provided constant
// A naive developer could still provide a constant for a variable length encoding, yet at least
// that is on them
#[allow(non_snake_case)]
fn G_len() -> usize;
/// Field element from slice. Preferred to be canonical yet does not have to be
// Required due to the lack of standardized encoding functions provided by ff/group
// While they do technically exist, their usage of Self::Repr breaks all potential library usage
// without helper functions like this
#[allow(non_snake_case)]
fn F_from_slice(slice: &[u8]) -> Result<Self::F, CurveError>;
/// Group element from slice. Must require canonicity or risks differing binding factors
#[allow(non_snake_case)]
fn G_from_slice(slice: &[u8]) -> Result<Self::G, CurveError>;
/// Obtain a vector of the byte encoding of F
#[allow(non_snake_case)]
fn F_to_bytes(f: &Self::F) -> Vec<u8>;
/// Obtain a vector of the byte encoding of G
#[allow(non_snake_case)]
fn G_to_bytes(g: &Self::G) -> Vec<u8>;
}
/// Parameters for a multisig
// These fields can not be made public as they should be static
#[derive(Clone, Copy, PartialEq, Eq, Debug)]