Fix handling of prime/composite-order curves within short-weierstrass

This commit is contained in:
Luke Parker
2025-08-28 22:31:33 -04:00
parent da190759a9
commit 45bd376c08
4 changed files with 25 additions and 11 deletions

View File

@@ -67,6 +67,10 @@ impl ShortWeierstrass for Embedwards25519 {
(repr, odd_y)
}
// No points have a torsion element as this a prime-order curve
fn has_torsion_element(_point: Projective<Self>) -> Choice {
0.into()
}
}
pub type Point = Projective<Embedwards25519>;

View File

@@ -79,8 +79,8 @@ impl<C: ShortWeierstrass> Affine<C> {
/// Create an affine point from `x, y` coordinates, without performing any checks.
///
/// This should NOT be used. It is solely intended for trusted data at compile-time. It MUST NOT
/// be used with any untrusted/unvalidated data. Providing any off-curve point may produce
/// completely undefined behavior.
/// be used with any untrusted/unvalidated data. Providing any point not within the largest
/// prime-order subgroup has completely undefined behavior.
pub const fn from_xy_unchecked(x: C::FieldElement, y: C::FieldElement) -> Self {
Self { x, y }
}

View File

@@ -15,10 +15,6 @@ mod projective;
pub use projective::Projective;
/// An elliptic curve represented in short Weierstrass form, with equation `y^2 = x^3 + A x + B`.
///
/// This elliptic curve is expected to be of prime order. If a generator of the elliptic curve has
/// a composite order, the elliptic curve is defined solely as its largest odd-prime-order
/// subgroup, further considered the entire group/elliptic curve.
pub trait ShortWeierstrass: 'static + Sized + Debug {
/// The field the elliptic curve is defined over.
type FieldElement: Zeroize + PrimeField;
@@ -26,9 +22,9 @@ pub trait ShortWeierstrass: 'static + Sized + Debug {
const A: Self::FieldElement;
/// The constant `B` from the curve equation.
const B: Self::FieldElement;
/// A generator of this elliptic curve.
/// A generator of this elliptic curve's largest prime-order subgroup.
const GENERATOR: Affine<Self>;
/// The scalar type.
/// The scalar type for the elliptic curve's largest prime-order subgroup.
///
/// This may be omitted by specifying `()`.
type Scalar;
@@ -45,4 +41,9 @@ pub trait ShortWeierstrass: 'static + Sized + Debug {
///
/// This is expected to return the `x` coordinate and if the `y` coordinate is odd.
fn decode_compressed(bytes: &Self::Repr) -> (<Self::FieldElement as PrimeField>::Repr, Choice);
/// If the point is outside the largest prime-order subgroup and isn't the identity point.
///
/// This may immediately return `Choice::new(0)` for curves of prime order.
fn has_torsion_element(point: Projective<Self>) -> Choice;
}

View File

@@ -308,12 +308,20 @@ impl<C: ShortWeierstrass> GroupEncoding for Projective<C> {
let (x, odd_y) = C::decode_compressed(bytes);
// Parse x, recover y, return the result
C::FieldElement::from_repr(x).and_then(|x| {
let result = C::FieldElement::from_repr(x).and_then(|x| {
// Parse x and recover y
let non_identity_on_curve_point = Affine::decompress(x, odd_y).map(Projective::from);
// Set the identity, if the identity
let identity = CtOption::new(Projective::IDENTITY, identity);
non_identity_on_curve_point.or_else(|| identity)
})
});
let mut result_is_valid = result.is_some();
let result = result.unwrap_or(Projective::IDENTITY);
// Constrain points to the prime-order subgroup
result_is_valid &= !C::has_torsion_element(result);
CtOption::new(result, result_is_valid)
}
fn from_bytes_unchecked(bytes: &C::Repr) -> CtOption<Self> {
Self::from_bytes(bytes)
@@ -341,6 +349,7 @@ impl<C: ShortWeierstrass> GroupEncoding for Projective<C> {
}
}
/// We implement `PrimeGroup` due to constraining to a prime-order subgroup
impl<C: ShortWeierstrass<Scalar: PrimeFieldBits>> PrimeGroup for Projective<C> {}
#[cfg(feature = "alloc")]