Test an empty execute

This commit is contained in:
Luke Parker
2025-01-24 17:13:36 -05:00
parent ed599c8ab5
commit 3892fa30b7
6 changed files with 235 additions and 49 deletions

View File

@@ -68,6 +68,14 @@ use abi::{
#[cfg(test)]
mod tests;
// As per Dencun, used for estimating gas for determining relayer fees
const NON_ZERO_BYTE_GAS_COST: u64 = 16;
const MEMORY_EXPANSION_COST: u64 = 3; // Does not model the quadratic cost
const COLD_COST: u64 = 2_600;
const WARM_COST: u64 = 100;
const POSITIVE_VALUE_COST: u64 = 9_000;
const EMPTY_ACCOUNT_COST: u64 = 25_000;
impl From<&Signature> for abi::Signature {
fn from(signature: &Signature) -> Self {
Self {
@@ -134,35 +142,33 @@ pub struct InInstruction {
pub data: Vec<u8>,
}
impl From<&(SeraiAddress, U256)> for abi::OutInstruction {
fn from((address, amount): &(SeraiAddress, U256)) -> Self {
#[allow(non_snake_case)]
let (destinationType, destination) = match address {
SeraiAddress::Address(address) => {
// Per the documentation, `DestinationType::Address`'s value is an ABI-encoded address
(abi::DestinationType::Address, (Address::from(address)).abi_encode())
}
SeraiAddress::Contract(contract) => (
abi::DestinationType::Code,
(abi::CodeDestination {
gasLimit: contract.gas_limit(),
code: contract.code().to_vec().into(),
})
.abi_encode(),
),
};
abi::OutInstruction { destinationType, destination: destination.into(), amount: *amount }
}
}
/// A list of `OutInstruction`s.
#[derive(Clone)]
pub struct OutInstructions(Vec<abi::OutInstruction>);
impl From<&[(SeraiAddress, U256)]> for OutInstructions {
fn from(outs: &[(SeraiAddress, U256)]) -> Self {
Self(
outs
.iter()
.map(|(address, amount)| {
#[allow(non_snake_case)]
let (destinationType, destination) = match address {
SeraiAddress::Address(address) => {
// Per the documentation, `DestinationType::Address`'s value is an ABI-encoded
// address
(abi::DestinationType::Address, (Address::from(address)).abi_encode())
}
SeraiAddress::Contract(contract) => (
abi::DestinationType::Code,
(abi::CodeDestination {
gasLimit: contract.gas_limit(),
code: contract.code().to_vec().into(),
})
.abi_encode(),
),
};
abi::OutInstruction { destinationType, destination: destination.into(), amount: *amount }
})
.collect(),
)
Self(outs.iter().map(Into::into).collect())
}
}
@@ -189,6 +195,8 @@ pub enum Executed {
nonce: u64,
/// The hash of the signed message for the Batch executed.
message_hash: [u8; 32],
/// The results of the `OutInstruction`s executed.
results: Vec<bool>,
},
/// The escape hatch was set.
EscapeHatch {
@@ -238,12 +246,15 @@ pub struct Router {
address: Address,
}
impl Router {
// Gas allocated for ERC20 calls
const GAS_FOR_ERC20_CALL: u64 = 100_000;
/*
The gas limits to use for transactions.
These are expected to be constant as a distributed group signs the transactions invoking these
calls. Having the gas be constant prevents needing to run a protocol to determine what gas to
use.
These are expected to be constant as a distributed group may sign the transactions invoking
these calls. Having the gas be constant prevents needing to run a protocol to determine what
gas to use.
These gas limits may break if/when gas opcodes undergo repricing. In that case, this library is
expected to be modified with these made parameters. The caller would then be expected to pass
@@ -251,9 +262,18 @@ impl Router {
*/
const CONFIRM_NEXT_SERAI_KEY_GAS: u64 = 57_736;
const UPDATE_SERAI_KEY_GAS: u64 = 60_045;
const EXECUTE_BASE_GAS: u64 = 48_000;
const EXECUTE_BASE_GAS: u64 = 51_131;
const ESCAPE_HATCH_GAS: u64 = 61_238;
/*
The percentage to actually use as the gas limit, in case any opcodes are repriced or errors
occurred.
Per prior commentary, this is just intended to be best-effort. If this is unnecessary, the gas
will be unspent. If this becomes necessary, it avoids needing an update.
*/
const GAS_REPRICING_BUFFER: u64 = 120;
fn code() -> Vec<u8> {
const BYTECODE: &[u8] = {
const BYTECODE_HEX: &[u8] =
@@ -325,7 +345,7 @@ impl Router {
TxLegacy {
to: TxKind::Call(self.address),
input: abi::confirmNextSeraiKeyCall::new((abi::Signature::from(sig),)).abi_encode().into(),
gas_limit: Self::CONFIRM_NEXT_SERAI_KEY_GAS * 120 / 100,
gas_limit: Self::CONFIRM_NEXT_SERAI_KEY_GAS * Self::GAS_REPRICING_BUFFER / 100,
..Default::default()
}
}
@@ -351,7 +371,7 @@ impl Router {
))
.abi_encode()
.into(),
gas_limit: Self::UPDATE_SERAI_KEY_GAS * 120 / 100,
gas_limit: Self::UPDATE_SERAI_KEY_GAS * Self::GAS_REPRICING_BUFFER / 100,
..Default::default()
}
}
@@ -404,18 +424,103 @@ impl Router {
.abi_encode()
}
/// The estimated gas cost for this OutInstruction.
///
/// This is not guaranteed to be correct or even sufficient. It is a hint and a hint alone used
/// for determining relayer fees.
fn execute_out_instruction_gas_estimate_internal(
coin: Coin,
instruction: &abi::OutInstruction,
) -> u64 {
// The assigned cost for performing an additional iteration of the loop
const ITERATION_COST: u64 = 5_000;
// The additional cost for a `DestinationType.Code`, as an additional buffer for its complexity
const CODE_COST: u64 = 10_000;
let size = u64::try_from(instruction.abi_encoded_size()).unwrap();
let calldata_memory_cost =
(NON_ZERO_BYTE_GAS_COST * size) + (MEMORY_EXPANSION_COST * size.div_ceil(32));
ITERATION_COST +
(match coin {
Coin::Ether => match instruction.destinationType {
// We assume we're tranferring a positive value to a cold, empty account
abi::DestinationType::Address => {
calldata_memory_cost + COLD_COST + POSITIVE_VALUE_COST + EMPTY_ACCOUNT_COST
}
abi::DestinationType::Code => {
// OutInstructions can't be encoded/decoded and doesn't have pub internals, enabling it
// to be correct by construction
let code = abi::CodeDestination::abi_decode(&instruction.destination, true).unwrap();
// This performs a call to self with the value, incurring the positive-value cost before
// CREATE's
calldata_memory_cost +
CODE_COST +
(WARM_COST + POSITIVE_VALUE_COST + u64::from(code.gasLimit))
}
abi::DestinationType::__Invalid => unreachable!(),
},
Coin::Erc20(_) => {
// The ERC20 is warmed by the fee payment to the relayer
let erc20_call_gas = WARM_COST + Self::GAS_FOR_ERC20_CALL;
match instruction.destinationType {
abi::DestinationType::Address => calldata_memory_cost + erc20_call_gas,
abi::DestinationType::Code => {
let code = abi::CodeDestination::abi_decode(&instruction.destination, true).unwrap();
calldata_memory_cost +
CODE_COST +
erc20_call_gas +
// Call to self to deploy the contract
(WARM_COST + u64::from(code.gasLimit))
}
abi::DestinationType::__Invalid => unreachable!(),
}
}
})
}
/// The estimated gas cost for this OutInstruction.
///
/// This is not guaranteed to be correct or even sufficient. It is a hint and a hint alone used
/// for determining relayer fees.
pub fn execute_out_instruction_gas_estimate(coin: Coin, address: SeraiAddress) -> u64 {
Self::execute_out_instruction_gas_estimate_internal(
coin,
&abi::OutInstruction::from(&(address, U256::ZERO)),
)
}
/// The estimated gas cost for this batch.
///
/// This is not guaranteed to be correct or even sufficient. It is a hint and a hint alone used
/// for determining relayer fees.
pub fn execute_gas_estimate(coin: Coin, outs: &OutInstructions) -> u64 {
Self::EXECUTE_BASE_GAS +
(match coin {
// This is warm as it's the message sender who is called with the fee payment
Coin::Ether => WARM_COST + POSITIVE_VALUE_COST,
// This is cold as we say the fee payment is the one warming the ERC20
Coin::Erc20(_) => COLD_COST + Self::GAS_FOR_ERC20_CALL,
}) +
outs
.0
.iter()
.map(|out| Self::execute_out_instruction_gas_estimate_internal(coin, out))
.sum::<u64>()
}
/// Construct a transaction to execute a batch of `OutInstruction`s.
///
/// The gas limit and gas price are not set and are left to the caller.
/// The gas limit is set to an estimate which may or may not be sufficient. The caller is
/// expected to set a correct gas limit. The gas price is not set and is left to the caller.
pub fn execute(&self, coin: Coin, fee: U256, outs: OutInstructions, sig: &Signature) -> TxLegacy {
// TODO
let gas_limit = Self::EXECUTE_BASE_GAS + outs.0.iter().map(|_| 200_000 + 10_000).sum::<u64>();
let gas = Self::execute_gas_estimate(coin, &outs);
TxLegacy {
to: TxKind::Call(self.address),
input: abi::executeCall::new((abi::Signature::from(sig), Address::from(coin), fee, outs.0))
.abi_encode()
.into(),
gas_limit: gas_limit * 120 / 100,
gas_limit: gas * Self::GAS_REPRICING_BUFFER / 100,
..Default::default()
}
}
@@ -436,7 +541,7 @@ impl Router {
TxLegacy {
to: TxKind::Call(self.address),
input: abi::escapeHatchCall::new((abi::Signature::from(sig), escape_to)).abi_encode().into(),
gas_limit: Self::ESCAPE_HATCH_GAS * 120 / 100,
gas_limit: Self::ESCAPE_HATCH_GAS * Self::GAS_REPRICING_BUFFER / 100,
..Default::default()
}
}
@@ -679,6 +784,24 @@ impl Router {
TransportErrorKind::Custom(format!("failed to convert nonce to u64: {e:?}").into())
})?,
message_hash: event.messageHash.into(),
results: {
let results_len = usize::try_from(event.resultsLength).map_err(|e| {
TransportErrorKind::Custom(
format!("failed to convert resultsLength to usize: {e:?}").into(),
)
})?;
if results_len.div_ceil(8) != event.results.len() {
Err(TransportErrorKind::Custom(
"resultsLength didn't align with results length".to_string().into(),
))?;
}
let mut results = Vec::with_capacity(results_len);
for b in 0 .. results_len {
let byte = event.results[b / 8];
results.push(((byte >> (b % 8)) & 1) == 1);
}
results
},
});
}
Some(&EscapeHatchEvent::SIGNATURE_HASH) => {

View File

@@ -22,8 +22,10 @@ pub struct Erc20(Address);
impl Erc20 {
pub(crate) async fn deploy(test: &Test) -> Self {
const BYTECODE: &[u8] = {
const BYTECODE_HEX: &[u8] =
include_bytes!(concat!(env!("OUT_DIR"), "/serai-processor-ethereum-router/TestERC20.bin"));
const BYTECODE_HEX: &[u8] = include_bytes!(concat!(
env!("OUT_DIR"),
"/serai-processor-ethereum-router/tests/TestERC20.bin"
));
const BYTECODE: [u8; BYTECODE_HEX.len() / 2] =
match hex::const_decode_to_array::<{ BYTECODE_HEX.len() / 2 }>(BYTECODE_HEX) {
Ok(bytecode) => bytecode,

View File

@@ -322,7 +322,7 @@ impl Test {
coin: Coin,
fee: U256,
out_instructions: &[(SeraiEthereumAddress, U256)],
) -> TxLegacy {
) -> ([u8; 32], TxLegacy) {
let out_instructions = OutInstructions::from(out_instructions);
let msg = Router::execute_message(
self.chain_id,
@@ -331,8 +331,47 @@ impl Test {
fee,
out_instructions.clone(),
);
let msg_hash = ethereum_primitives::keccak256(&msg);
let sig = sign(self.state.key.unwrap(), &msg);
self.router.execute(coin, fee, out_instructions, &sig)
let mut tx = self.router.execute(coin, fee, out_instructions, &sig);
// Restore the original estimate as the gas limit to ensure it's sufficient, at least in our
// test cases
tx.gas_limit = (tx.gas_limit * 100) / Router::GAS_REPRICING_BUFFER;
(msg_hash, tx)
}
async fn execute(
&mut self,
coin: Coin,
fee: U256,
out_instructions: &[(SeraiEthereumAddress, U256)],
results: Vec<bool>,
) -> u64 {
let (message_hash, mut tx) = self.execute_tx(coin, fee, out_instructions);
tx.gas_price = 100_000_000_000;
let tx = ethereum_primitives::deterministically_sign(tx);
let receipt = ethereum_test_primitives::publish_tx(&self.provider, tx.clone()).await;
assert!(receipt.status());
// We don't check the gas for `execute` as it's infeasible. Due to our use of account
// abstraction, it isn't a critical if we do ever under-estimate, solely an unprofitable relay
{
let block = receipt.block_number.unwrap();
let executed = self.router.executed(block ..= block).await.unwrap();
assert_eq!(executed.len(), 1);
assert_eq!(
executed[0],
Executed::Batch { nonce: self.state.next_nonce, message_hash, results }
);
}
self.state.next_nonce += 1;
self.verify_state().await;
// We do return the gas used in case a caller can benefit from it
CalldataAgnosticGas::calculate(tx.tx(), receipt.gas_used)
}
fn escape_hatch_tx(&self, escape_to: Address) -> TxLegacy {
@@ -402,7 +441,7 @@ async fn test_no_serai_key() {
IRouterErrors::SeraiKeyWasNone(IRouter::SeraiKeyWasNone {})
));
assert!(matches!(
test.call_and_decode_err(test.execute_tx(Coin::Ether, U256::from(0), &[])).await,
test.call_and_decode_err(test.execute_tx(Coin::Ether, U256::from(0), &[]).1).await,
IRouterErrors::SeraiKeyWasNone(IRouter::SeraiKeyWasNone {})
));
assert!(matches!(
@@ -555,7 +594,7 @@ async fn test_erc20_router_in_instruction() {
let tx = TxLegacy {
chain_id: None,
nonce: 0,
gas_price: 100_000_000_000u128,
gas_price: 100_000_000_000,
gas_limit: 1_000_000,
to: test.router.address().into(),
value: U256::ZERO,
@@ -592,7 +631,7 @@ async fn test_erc20_top_level_transfer_in_instruction() {
let shorthand = Test::in_instruction();
let mut tx = test.router.in_instruction(coin, amount, &shorthand);
tx.gas_price = 100_000_000_000u128;
tx.gas_price = 100_000_000_000;
tx.gas_limit = 1_000_000;
let tx = ethereum_primitives::deterministically_sign(tx);
@@ -600,6 +639,21 @@ async fn test_erc20_top_level_transfer_in_instruction() {
test.publish_in_instruction_tx(tx, coin, amount, &shorthand).await;
}
#[tokio::test]
async fn test_empty_execute() {
let mut test = Test::new().await;
test.confirm_next_serai_key().await;
let () =
test.provider.raw_request("anvil_setBalance".into(), (test.router.address(), 1)).await.unwrap();
let gas_used = test.execute(Coin::Ether, U256::from(1), &[], vec![]).await;
// For the empty ETH case, we do compare this cost to the base cost
const CALL_GAS_STIPEND: u64 = 2_300;
// We don't use the call gas stipend here
const UNUSED_GAS: u64 = CALL_GAS_STIPEND;
assert_eq!(gas_used + UNUSED_GAS, Router::EXECUTE_BASE_GAS);
}
#[tokio::test]
async fn test_eth_address_out_instruction() {
todo!("TODO")
@@ -643,7 +697,7 @@ async fn test_escape_hatch() {
let tx = ethereum_primitives::deterministically_sign(TxLegacy {
to: Address([1; 20].into()).into(),
gas_limit: 21_000,
gas_price: 100_000_000_000u128,
gas_price: 100_000_000_000,
value: U256::from(1),
..Default::default()
});
@@ -679,7 +733,7 @@ async fn test_escape_hatch() {
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
assert!(matches!(
test.call_and_decode_err(test.execute_tx(Coin::Ether, U256::from(0), &[])).await,
test.call_and_decode_err(test.execute_tx(Coin::Ether, U256::from(0), &[]).1).await,
IRouterErrors::EscapeHatchInvoked(IRouter::EscapeHatchInvoked {})
));
// We reject further attempts to update the escape hatch to prevent the last key from being