mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-09 04:39:24 +00:00
Create a dedicated crate for the DKG (#141)
* Add dkg crate * Remove F_len and G_len They're generally no longer used. * Replace hash_to_vec with a provided method around associated type H: Digest Part of trying to minimize this trait so it can be moved elsewhere. Vec, which isn't std, may have been a blocker. * Encrypt secret shares within the FROST library Reduces requirements on callers in order to be correct. * Update usage of Zeroize within FROST * Inline functions in key_gen There was no reason to have them separated as they were. sign probably has the same statement available, yet that isn't the focus right now. * Add a ciphersuite package which provides hash_to_F * Set the Ciphersuite version to something valid * Have ed448 export Scalar/FieldElement/Point at the top level * Move FROST over to Ciphersuite * Correct usage of ff in ciphersuite * Correct documentation handling * Move Schnorr signatures to their own crate * Remove unused feature from schnorr * Fix Schnorr tests * Split DKG into a separate crate * Add serialize to Commitments and SecretShare Helper for buf = vec![]; .write(buf).unwrap(); buf * Move FROST over to the new dkg crate * Update Monero lib to latest FROST * Correct ethereum's usage of features * Add serialize to GeneratorProof * Add serialize helper function to FROST * Rename AddendumSerialize to WriteAddendum * Update processor * Slight fix to processor
This commit is contained in:
458
crypto/dkg/src/frost.rs
Normal file
458
crypto/dkg/src/frost.rs
Normal file
@@ -0,0 +1,458 @@
|
||||
use std::{
|
||||
marker::PhantomData,
|
||||
io::{self, Read, Write},
|
||||
collections::HashMap,
|
||||
};
|
||||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use zeroize::{Zeroize, ZeroizeOnDrop};
|
||||
|
||||
use digest::Digest;
|
||||
use hkdf::{Hkdf, hmac::SimpleHmac};
|
||||
use chacha20::{
|
||||
cipher::{crypto_common::KeyIvInit, StreamCipher},
|
||||
Key as Cc20Key, Nonce as Cc20Iv, ChaCha20,
|
||||
};
|
||||
|
||||
use group::{
|
||||
ff::{Field, PrimeField},
|
||||
GroupEncoding,
|
||||
};
|
||||
|
||||
use ciphersuite::Ciphersuite;
|
||||
|
||||
use multiexp::{multiexp_vartime, BatchVerifier};
|
||||
|
||||
use schnorr::SchnorrSignature;
|
||||
|
||||
use crate::{DkgError, ThresholdParams, ThresholdCore, validate_map};
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn challenge<C: Ciphersuite>(context: &str, l: u16, R: &[u8], Am: &[u8]) -> C::F {
|
||||
const DST: &[u8] = b"FROST Schnorr Proof of Knowledge";
|
||||
|
||||
// Hashes the context to get a fixed size value out of it
|
||||
let mut transcript = C::H::digest(context.as_bytes()).as_ref().to_vec();
|
||||
transcript.extend(l.to_be_bytes());
|
||||
transcript.extend(R);
|
||||
transcript.extend(Am);
|
||||
C::hash_to_F(DST, &transcript)
|
||||
}
|
||||
|
||||
/// Commitments message to be broadcast to all other parties.
|
||||
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
|
||||
pub struct Commitments<C: Ciphersuite> {
|
||||
commitments: Vec<C::G>,
|
||||
enc_key: C::G,
|
||||
cached_msg: Vec<u8>,
|
||||
sig: SchnorrSignature<C>,
|
||||
}
|
||||
impl<C: Ciphersuite> Drop for Commitments<C> {
|
||||
fn drop(&mut self) {
|
||||
self.zeroize();
|
||||
}
|
||||
}
|
||||
impl<C: Ciphersuite> ZeroizeOnDrop for Commitments<C> {}
|
||||
|
||||
impl<C: Ciphersuite> Commitments<C> {
|
||||
pub fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
|
||||
let mut commitments = Vec::with_capacity(params.t().into());
|
||||
let mut cached_msg = vec![];
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
let mut read_G = || -> io::Result<C::G> {
|
||||
let mut buf = <C::G as GroupEncoding>::Repr::default();
|
||||
reader.read_exact(buf.as_mut())?;
|
||||
let point = C::read_G(&mut buf.as_ref())?;
|
||||
cached_msg.extend(buf.as_ref());
|
||||
Ok(point)
|
||||
};
|
||||
|
||||
for _ in 0 .. params.t() {
|
||||
commitments.push(read_G()?);
|
||||
}
|
||||
let enc_key = read_G()?;
|
||||
|
||||
Ok(Commitments { commitments, enc_key, cached_msg, sig: SchnorrSignature::read(reader)? })
|
||||
}
|
||||
|
||||
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&self.cached_msg)?;
|
||||
self.sig.write(writer)
|
||||
}
|
||||
|
||||
pub fn serialize(&self) -> Vec<u8> {
|
||||
let mut buf = vec![];
|
||||
self.write(&mut buf).unwrap();
|
||||
buf
|
||||
}
|
||||
}
|
||||
|
||||
/// State machine to begin the key generation protocol.
|
||||
pub struct KeyGenMachine<C: Ciphersuite> {
|
||||
params: ThresholdParams,
|
||||
context: String,
|
||||
_curve: PhantomData<C>,
|
||||
}
|
||||
|
||||
impl<C: Ciphersuite> KeyGenMachine<C> {
|
||||
/// Creates a new machine to generate a key for the specified curve in the specified multisig.
|
||||
// The context string should be unique among multisigs.
|
||||
pub fn new(params: ThresholdParams, context: String) -> KeyGenMachine<C> {
|
||||
KeyGenMachine { params, context, _curve: PhantomData }
|
||||
}
|
||||
|
||||
/// Start generating a key according to the FROST DKG spec.
|
||||
/// Returns a commitments message to be sent to all parties over an authenticated channel. If any
|
||||
/// party submits multiple sets of commitments, they MUST be treated as malicious.
|
||||
pub fn generate_coefficients<R: RngCore + CryptoRng>(
|
||||
self,
|
||||
rng: &mut R,
|
||||
) -> (SecretShareMachine<C>, Commitments<C>) {
|
||||
let t = usize::from(self.params.t);
|
||||
let mut coefficients = Vec::with_capacity(t);
|
||||
let mut commitments = Vec::with_capacity(t);
|
||||
let mut cached_msg = vec![];
|
||||
|
||||
for i in 0 .. t {
|
||||
// Step 1: Generate t random values to form a polynomial with
|
||||
coefficients.push(C::random_nonzero_F(&mut *rng));
|
||||
// Step 3: Generate public commitments
|
||||
commitments.push(C::generator() * coefficients[i]);
|
||||
cached_msg.extend(commitments[i].to_bytes().as_ref());
|
||||
}
|
||||
|
||||
// Generate an encryption key for transmitting the secret shares
|
||||
// It would probably be perfectly fine to use one of our polynomial elements, yet doing so
|
||||
// puts the integrity of FROST at risk. While there's almost no way it could, as it's used in
|
||||
// an ECDH with validated group elemnents, better to avoid any questions on it
|
||||
let enc_key = C::random_nonzero_F(&mut *rng);
|
||||
let pub_enc_key = C::generator() * enc_key;
|
||||
cached_msg.extend(pub_enc_key.to_bytes().as_ref());
|
||||
|
||||
// Step 2: Provide a proof of knowledge
|
||||
let mut r = C::random_nonzero_F(rng);
|
||||
let sig = SchnorrSignature::<C>::sign(
|
||||
coefficients[0],
|
||||
// This could be deterministic as the PoK is a singleton never opened up to cooperative
|
||||
// discussion
|
||||
// There's no reason to spend the time and effort to make this deterministic besides a
|
||||
// general obsession with canonicity and determinism though
|
||||
r,
|
||||
challenge::<C>(
|
||||
&self.context,
|
||||
self.params.i(),
|
||||
(C::generator() * r).to_bytes().as_ref(),
|
||||
&cached_msg,
|
||||
),
|
||||
);
|
||||
r.zeroize();
|
||||
|
||||
// Step 4: Broadcast
|
||||
(
|
||||
SecretShareMachine {
|
||||
params: self.params,
|
||||
context: self.context,
|
||||
coefficients,
|
||||
our_commitments: commitments.clone(),
|
||||
enc_key,
|
||||
},
|
||||
Commitments { commitments, enc_key: pub_enc_key, cached_msg, sig },
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn polynomial<F: PrimeField>(coefficients: &[F], l: u16) -> F {
|
||||
let l = F::from(u64::from(l));
|
||||
let mut share = F::zero();
|
||||
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
|
||||
share += coefficient;
|
||||
if idx != (coefficients.len() - 1) {
|
||||
share *= l;
|
||||
}
|
||||
}
|
||||
share
|
||||
}
|
||||
|
||||
/// Secret share to be sent to the party it's intended for over an authenticated channel.
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct SecretShare<F: PrimeField>(F::Repr);
|
||||
impl<F: PrimeField> Zeroize for SecretShare<F> {
|
||||
fn zeroize(&mut self) {
|
||||
self.0.as_mut().zeroize()
|
||||
}
|
||||
}
|
||||
impl<F: PrimeField> Drop for SecretShare<F> {
|
||||
fn drop(&mut self) {
|
||||
self.zeroize();
|
||||
}
|
||||
}
|
||||
impl<F: PrimeField> ZeroizeOnDrop for SecretShare<F> {}
|
||||
|
||||
impl<F: PrimeField> SecretShare<F> {
|
||||
pub fn read<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let mut repr = F::Repr::default();
|
||||
reader.read_exact(repr.as_mut())?;
|
||||
Ok(SecretShare(repr))
|
||||
}
|
||||
|
||||
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(self.0.as_ref())
|
||||
}
|
||||
|
||||
pub fn serialize(&self) -> Vec<u8> {
|
||||
let mut buf = vec![];
|
||||
self.write(&mut buf).unwrap();
|
||||
buf
|
||||
}
|
||||
}
|
||||
|
||||
fn create_ciphers<C: Ciphersuite>(
|
||||
mut sender: <C::G as GroupEncoding>::Repr,
|
||||
receiver: &mut <C::G as GroupEncoding>::Repr,
|
||||
ecdh: &mut <C::G as GroupEncoding>::Repr,
|
||||
) -> (ChaCha20, ChaCha20) {
|
||||
let directional = |sender: &mut <C::G as GroupEncoding>::Repr| {
|
||||
let mut key = Cc20Key::default();
|
||||
key.copy_from_slice(
|
||||
&Hkdf::<C::H, SimpleHmac<C::H>>::extract(
|
||||
Some(b"key"),
|
||||
&[sender.as_ref(), ecdh.as_ref()].concat(),
|
||||
)
|
||||
.0
|
||||
.as_ref()[.. 32],
|
||||
);
|
||||
let mut iv = Cc20Iv::default();
|
||||
iv.copy_from_slice(
|
||||
&Hkdf::<C::H, SimpleHmac<C::H>>::extract(
|
||||
Some(b"iv"),
|
||||
&[sender.as_ref(), ecdh.as_ref()].concat(),
|
||||
)
|
||||
.0
|
||||
.as_ref()[.. 12],
|
||||
);
|
||||
sender.as_mut().zeroize();
|
||||
|
||||
let res = ChaCha20::new(&key, &iv);
|
||||
<Cc20Key as AsMut<[u8]>>::as_mut(&mut key).zeroize();
|
||||
<Cc20Iv as AsMut<[u8]>>::as_mut(&mut iv).zeroize();
|
||||
res
|
||||
};
|
||||
|
||||
let res = (directional(&mut sender), directional(receiver));
|
||||
ecdh.as_mut().zeroize();
|
||||
res
|
||||
}
|
||||
|
||||
/// Advancement of the key generation state machine.
|
||||
#[derive(Zeroize)]
|
||||
pub struct SecretShareMachine<C: Ciphersuite> {
|
||||
params: ThresholdParams,
|
||||
context: String,
|
||||
coefficients: Vec<C::F>,
|
||||
our_commitments: Vec<C::G>,
|
||||
enc_key: C::F,
|
||||
}
|
||||
impl<C: Ciphersuite> Drop for SecretShareMachine<C> {
|
||||
fn drop(&mut self) {
|
||||
self.zeroize()
|
||||
}
|
||||
}
|
||||
impl<C: Ciphersuite> ZeroizeOnDrop for SecretShareMachine<C> {}
|
||||
|
||||
impl<C: Ciphersuite> SecretShareMachine<C> {
|
||||
/// Verify the data from the previous round (canonicity, PoKs, message authenticity)
|
||||
fn verify_r1<R: RngCore + CryptoRng>(
|
||||
&mut self,
|
||||
rng: &mut R,
|
||||
mut commitments: HashMap<u16, Commitments<C>>,
|
||||
) -> Result<(HashMap<u16, Vec<C::G>>, HashMap<u16, C::G>), DkgError> {
|
||||
validate_map(&commitments, &(1 ..= self.params.n()).collect::<Vec<_>>(), self.params.i())?;
|
||||
|
||||
let mut enc_keys = HashMap::new();
|
||||
let mut batch = BatchVerifier::<u16, C::G>::new(commitments.len());
|
||||
let mut commitments = commitments
|
||||
.drain()
|
||||
.map(|(l, mut msg)| {
|
||||
enc_keys.insert(l, msg.enc_key);
|
||||
msg.enc_key.zeroize();
|
||||
|
||||
// Step 5: Validate each proof of knowledge
|
||||
// This is solely the prep step for the latter batch verification
|
||||
msg.sig.batch_verify(
|
||||
rng,
|
||||
&mut batch,
|
||||
l,
|
||||
msg.commitments[0],
|
||||
challenge::<C>(&self.context, l, msg.sig.R.to_bytes().as_ref(), &msg.cached_msg),
|
||||
);
|
||||
|
||||
(l, msg.commitments.drain(..).collect::<Vec<_>>())
|
||||
})
|
||||
.collect::<HashMap<_, _>>();
|
||||
|
||||
batch.verify_with_vartime_blame().map_err(DkgError::InvalidProofOfKnowledge)?;
|
||||
|
||||
commitments.insert(self.params.i, self.our_commitments.drain(..).collect());
|
||||
Ok((commitments, enc_keys))
|
||||
}
|
||||
|
||||
/// Continue generating a key.
|
||||
/// Takes in everyone else's commitments. Returns a HashMap of secret shares to be sent over
|
||||
/// authenticated channels to their relevant counterparties.
|
||||
pub fn generate_secret_shares<R: RngCore + CryptoRng>(
|
||||
mut self,
|
||||
rng: &mut R,
|
||||
commitments: HashMap<u16, Commitments<C>>,
|
||||
) -> Result<(KeyMachine<C>, HashMap<u16, SecretShare<C::F>>), DkgError> {
|
||||
let (commitments, mut enc_keys) = self.verify_r1(&mut *rng, commitments)?;
|
||||
|
||||
// Step 1: Generate secret shares for all other parties
|
||||
let mut sender = (C::generator() * self.enc_key).to_bytes();
|
||||
let mut ciphers = HashMap::new();
|
||||
let mut res = HashMap::new();
|
||||
for l in 1 ..= self.params.n() {
|
||||
// Don't insert our own shares to the byte buffer which is meant to be sent around
|
||||
// An app developer could accidentally send it. Best to keep this black boxed
|
||||
if l == self.params.i() {
|
||||
continue;
|
||||
}
|
||||
|
||||
let (mut cipher_send, cipher_recv) = {
|
||||
let receiver = enc_keys.get_mut(&l).unwrap();
|
||||
let mut ecdh = (*receiver * self.enc_key).to_bytes();
|
||||
|
||||
create_ciphers::<C>(sender, &mut receiver.to_bytes(), &mut ecdh)
|
||||
};
|
||||
|
||||
let mut share = polynomial(&self.coefficients, l);
|
||||
let mut share_bytes = share.to_repr();
|
||||
share.zeroize();
|
||||
|
||||
cipher_send.apply_keystream(share_bytes.as_mut());
|
||||
drop(cipher_send);
|
||||
|
||||
ciphers.insert(l, cipher_recv);
|
||||
res.insert(l, SecretShare::<C::F>(share_bytes));
|
||||
share_bytes.as_mut().zeroize();
|
||||
}
|
||||
self.enc_key.zeroize();
|
||||
sender.as_mut().zeroize();
|
||||
|
||||
// Calculate our own share
|
||||
let share = polynomial(&self.coefficients, self.params.i());
|
||||
|
||||
self.coefficients.zeroize();
|
||||
|
||||
Ok((KeyMachine { params: self.params, secret: share, commitments, ciphers }, res))
|
||||
}
|
||||
}
|
||||
|
||||
/// Final step of the key generation protocol.
|
||||
pub struct KeyMachine<C: Ciphersuite> {
|
||||
params: ThresholdParams,
|
||||
secret: C::F,
|
||||
ciphers: HashMap<u16, ChaCha20>,
|
||||
commitments: HashMap<u16, Vec<C::G>>,
|
||||
}
|
||||
impl<C: Ciphersuite> Zeroize for KeyMachine<C> {
|
||||
fn zeroize(&mut self) {
|
||||
self.params.zeroize();
|
||||
self.secret.zeroize();
|
||||
|
||||
// cipher implements ZeroizeOnDrop and zeroizes on drop, yet doesn't implement Zeroize
|
||||
// The following is redundant, as Rust should automatically handle dropping it, yet it shows
|
||||
// awareness of this quirk and at least attempts to be comprehensive
|
||||
for (_, cipher) in self.ciphers.drain() {
|
||||
drop(cipher);
|
||||
}
|
||||
|
||||
for (_, commitments) in self.commitments.iter_mut() {
|
||||
commitments.zeroize();
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<C: Ciphersuite> Drop for KeyMachine<C> {
|
||||
fn drop(&mut self) {
|
||||
self.zeroize()
|
||||
}
|
||||
}
|
||||
impl<C: Ciphersuite> ZeroizeOnDrop for KeyMachine<C> {}
|
||||
|
||||
impl<C: Ciphersuite> KeyMachine<C> {
|
||||
/// Complete key generation.
|
||||
/// Takes in everyone elses' shares submitted to us. Returns a ThresholdCore object representing
|
||||
/// the generated keys. Successful protocol completion MUST be confirmed by all parties before
|
||||
/// these keys may be safely used.
|
||||
pub fn complete<R: RngCore + CryptoRng>(
|
||||
mut self,
|
||||
rng: &mut R,
|
||||
mut shares: HashMap<u16, SecretShare<C::F>>,
|
||||
) -> Result<ThresholdCore<C>, DkgError> {
|
||||
let mut secret_share = self.secret;
|
||||
self.secret.zeroize();
|
||||
|
||||
validate_map(&shares, &(1 ..= self.params.n()).collect::<Vec<_>>(), self.params.i())?;
|
||||
|
||||
// Calculate the exponent for a given participant and apply it to a series of commitments
|
||||
// Initially used with the actual commitments to verify the secret share, later used with
|
||||
// stripes to generate the verification shares
|
||||
let exponential = |i: u16, values: &[_]| {
|
||||
let i = C::F::from(i.into());
|
||||
let mut res = Vec::with_capacity(self.params.t().into());
|
||||
(0 .. usize::from(self.params.t())).into_iter().fold(C::F::one(), |exp, l| {
|
||||
res.push((exp, values[l]));
|
||||
exp * i
|
||||
});
|
||||
res
|
||||
};
|
||||
|
||||
let mut batch = BatchVerifier::new(shares.len());
|
||||
for (l, mut share_bytes) in shares.drain() {
|
||||
let mut cipher = self.ciphers.remove(&l).unwrap();
|
||||
cipher.apply_keystream(share_bytes.0.as_mut());
|
||||
drop(cipher);
|
||||
|
||||
let mut share: C::F =
|
||||
Option::from(C::F::from_repr(share_bytes.0)).ok_or(DkgError::InvalidShare(l))?;
|
||||
share_bytes.zeroize();
|
||||
secret_share += share;
|
||||
|
||||
// This can be insecurely linearized from n * t to just n using the below sums for a given
|
||||
// stripe. Doing so uses naive addition which is subject to malleability. The only way to
|
||||
// ensure that malleability isn't present is to use this n * t algorithm, which runs
|
||||
// per sender and not as an aggregate of all senders, which also enables blame
|
||||
let mut values = exponential(self.params.i, &self.commitments[&l]);
|
||||
values.push((-share, C::generator()));
|
||||
share.zeroize();
|
||||
|
||||
batch.queue(rng, l, values);
|
||||
}
|
||||
batch.verify_with_vartime_blame().map_err(DkgError::InvalidShare)?;
|
||||
|
||||
// Stripe commitments per t and sum them in advance. Calculating verification shares relies on
|
||||
// these sums so preprocessing them is a massive speedup
|
||||
// If these weren't just sums, yet the tables used in multiexp, this would be further optimized
|
||||
// As of right now, each multiexp will regenerate them
|
||||
let mut stripes = Vec::with_capacity(usize::from(self.params.t()));
|
||||
for t in 0 .. usize::from(self.params.t()) {
|
||||
stripes.push(self.commitments.values().map(|commitments| commitments[t]).sum());
|
||||
}
|
||||
|
||||
// Calculate each user's verification share
|
||||
let mut verification_shares = HashMap::new();
|
||||
for i in 1 ..= self.params.n() {
|
||||
verification_shares.insert(i, multiexp_vartime(&exponential(i, &stripes)));
|
||||
}
|
||||
// Removing this check would enable optimizing the above from t + (n * t) to t + ((n - 1) * t)
|
||||
debug_assert_eq!(C::generator() * secret_share, verification_shares[&self.params.i()]);
|
||||
|
||||
Ok(ThresholdCore {
|
||||
params: self.params,
|
||||
secret_share,
|
||||
group_key: stripes[0],
|
||||
verification_shares,
|
||||
})
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user