Create a dedicated crate for the DKG (#141)

* Add dkg crate

* Remove F_len and G_len

They're generally no longer used.

* Replace hash_to_vec with a provided method around associated type H: Digest

Part of trying to minimize this trait so it can be moved elsewhere. Vec, 
which isn't std, may have been a blocker.

* Encrypt secret shares within the FROST library

Reduces requirements on callers in order to be correct.

* Update usage of Zeroize within FROST

* Inline functions in key_gen

There was no reason to have them separated as they were. sign probably 
has the same statement available, yet that isn't the focus right now.

* Add a ciphersuite package which provides hash_to_F

* Set the Ciphersuite version to something valid

* Have ed448 export Scalar/FieldElement/Point at the top level

* Move FROST over to Ciphersuite

* Correct usage of ff in ciphersuite

* Correct documentation handling

* Move Schnorr signatures to their own crate

* Remove unused feature from schnorr

* Fix Schnorr tests

* Split DKG into a separate crate

* Add serialize to Commitments and SecretShare

Helper for buf = vec![]; .write(buf).unwrap(); buf

* Move FROST over to the new dkg crate

* Update Monero lib to latest FROST

* Correct ethereum's usage of features

* Add serialize to GeneratorProof

* Add serialize helper function to FROST

* Rename AddendumSerialize to WriteAddendum

* Update processor

* Slight fix to processor
This commit is contained in:
Luke Parker
2022-10-29 03:54:42 -05:00
committed by GitHub
parent cbceaff678
commit 2379855b31
50 changed files with 2076 additions and 1601 deletions

458
crypto/dkg/src/frost.rs Normal file
View File

@@ -0,0 +1,458 @@
use std::{
marker::PhantomData,
io::{self, Read, Write},
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop};
use digest::Digest;
use hkdf::{Hkdf, hmac::SimpleHmac};
use chacha20::{
cipher::{crypto_common::KeyIvInit, StreamCipher},
Key as Cc20Key, Nonce as Cc20Iv, ChaCha20,
};
use group::{
ff::{Field, PrimeField},
GroupEncoding,
};
use ciphersuite::Ciphersuite;
use multiexp::{multiexp_vartime, BatchVerifier};
use schnorr::SchnorrSignature;
use crate::{DkgError, ThresholdParams, ThresholdCore, validate_map};
#[allow(non_snake_case)]
fn challenge<C: Ciphersuite>(context: &str, l: u16, R: &[u8], Am: &[u8]) -> C::F {
const DST: &[u8] = b"FROST Schnorr Proof of Knowledge";
// Hashes the context to get a fixed size value out of it
let mut transcript = C::H::digest(context.as_bytes()).as_ref().to_vec();
transcript.extend(l.to_be_bytes());
transcript.extend(R);
transcript.extend(Am);
C::hash_to_F(DST, &transcript)
}
/// Commitments message to be broadcast to all other parties.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct Commitments<C: Ciphersuite> {
commitments: Vec<C::G>,
enc_key: C::G,
cached_msg: Vec<u8>,
sig: SchnorrSignature<C>,
}
impl<C: Ciphersuite> Drop for Commitments<C> {
fn drop(&mut self) {
self.zeroize();
}
}
impl<C: Ciphersuite> ZeroizeOnDrop for Commitments<C> {}
impl<C: Ciphersuite> Commitments<C> {
pub fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
let mut commitments = Vec::with_capacity(params.t().into());
let mut cached_msg = vec![];
#[allow(non_snake_case)]
let mut read_G = || -> io::Result<C::G> {
let mut buf = <C::G as GroupEncoding>::Repr::default();
reader.read_exact(buf.as_mut())?;
let point = C::read_G(&mut buf.as_ref())?;
cached_msg.extend(buf.as_ref());
Ok(point)
};
for _ in 0 .. params.t() {
commitments.push(read_G()?);
}
let enc_key = read_G()?;
Ok(Commitments { commitments, enc_key, cached_msg, sig: SchnorrSignature::read(reader)? })
}
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&self.cached_msg)?;
self.sig.write(writer)
}
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
}
/// State machine to begin the key generation protocol.
pub struct KeyGenMachine<C: Ciphersuite> {
params: ThresholdParams,
context: String,
_curve: PhantomData<C>,
}
impl<C: Ciphersuite> KeyGenMachine<C> {
/// Creates a new machine to generate a key for the specified curve in the specified multisig.
// The context string should be unique among multisigs.
pub fn new(params: ThresholdParams, context: String) -> KeyGenMachine<C> {
KeyGenMachine { params, context, _curve: PhantomData }
}
/// Start generating a key according to the FROST DKG spec.
/// Returns a commitments message to be sent to all parties over an authenticated channel. If any
/// party submits multiple sets of commitments, they MUST be treated as malicious.
pub fn generate_coefficients<R: RngCore + CryptoRng>(
self,
rng: &mut R,
) -> (SecretShareMachine<C>, Commitments<C>) {
let t = usize::from(self.params.t);
let mut coefficients = Vec::with_capacity(t);
let mut commitments = Vec::with_capacity(t);
let mut cached_msg = vec![];
for i in 0 .. t {
// Step 1: Generate t random values to form a polynomial with
coefficients.push(C::random_nonzero_F(&mut *rng));
// Step 3: Generate public commitments
commitments.push(C::generator() * coefficients[i]);
cached_msg.extend(commitments[i].to_bytes().as_ref());
}
// Generate an encryption key for transmitting the secret shares
// It would probably be perfectly fine to use one of our polynomial elements, yet doing so
// puts the integrity of FROST at risk. While there's almost no way it could, as it's used in
// an ECDH with validated group elemnents, better to avoid any questions on it
let enc_key = C::random_nonzero_F(&mut *rng);
let pub_enc_key = C::generator() * enc_key;
cached_msg.extend(pub_enc_key.to_bytes().as_ref());
// Step 2: Provide a proof of knowledge
let mut r = C::random_nonzero_F(rng);
let sig = SchnorrSignature::<C>::sign(
coefficients[0],
// This could be deterministic as the PoK is a singleton never opened up to cooperative
// discussion
// There's no reason to spend the time and effort to make this deterministic besides a
// general obsession with canonicity and determinism though
r,
challenge::<C>(
&self.context,
self.params.i(),
(C::generator() * r).to_bytes().as_ref(),
&cached_msg,
),
);
r.zeroize();
// Step 4: Broadcast
(
SecretShareMachine {
params: self.params,
context: self.context,
coefficients,
our_commitments: commitments.clone(),
enc_key,
},
Commitments { commitments, enc_key: pub_enc_key, cached_msg, sig },
)
}
}
fn polynomial<F: PrimeField>(coefficients: &[F], l: u16) -> F {
let l = F::from(u64::from(l));
let mut share = F::zero();
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
share += coefficient;
if idx != (coefficients.len() - 1) {
share *= l;
}
}
share
}
/// Secret share to be sent to the party it's intended for over an authenticated channel.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct SecretShare<F: PrimeField>(F::Repr);
impl<F: PrimeField> Zeroize for SecretShare<F> {
fn zeroize(&mut self) {
self.0.as_mut().zeroize()
}
}
impl<F: PrimeField> Drop for SecretShare<F> {
fn drop(&mut self) {
self.zeroize();
}
}
impl<F: PrimeField> ZeroizeOnDrop for SecretShare<F> {}
impl<F: PrimeField> SecretShare<F> {
pub fn read<R: Read>(reader: &mut R) -> io::Result<Self> {
let mut repr = F::Repr::default();
reader.read_exact(repr.as_mut())?;
Ok(SecretShare(repr))
}
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.0.as_ref())
}
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
}
fn create_ciphers<C: Ciphersuite>(
mut sender: <C::G as GroupEncoding>::Repr,
receiver: &mut <C::G as GroupEncoding>::Repr,
ecdh: &mut <C::G as GroupEncoding>::Repr,
) -> (ChaCha20, ChaCha20) {
let directional = |sender: &mut <C::G as GroupEncoding>::Repr| {
let mut key = Cc20Key::default();
key.copy_from_slice(
&Hkdf::<C::H, SimpleHmac<C::H>>::extract(
Some(b"key"),
&[sender.as_ref(), ecdh.as_ref()].concat(),
)
.0
.as_ref()[.. 32],
);
let mut iv = Cc20Iv::default();
iv.copy_from_slice(
&Hkdf::<C::H, SimpleHmac<C::H>>::extract(
Some(b"iv"),
&[sender.as_ref(), ecdh.as_ref()].concat(),
)
.0
.as_ref()[.. 12],
);
sender.as_mut().zeroize();
let res = ChaCha20::new(&key, &iv);
<Cc20Key as AsMut<[u8]>>::as_mut(&mut key).zeroize();
<Cc20Iv as AsMut<[u8]>>::as_mut(&mut iv).zeroize();
res
};
let res = (directional(&mut sender), directional(receiver));
ecdh.as_mut().zeroize();
res
}
/// Advancement of the key generation state machine.
#[derive(Zeroize)]
pub struct SecretShareMachine<C: Ciphersuite> {
params: ThresholdParams,
context: String,
coefficients: Vec<C::F>,
our_commitments: Vec<C::G>,
enc_key: C::F,
}
impl<C: Ciphersuite> Drop for SecretShareMachine<C> {
fn drop(&mut self) {
self.zeroize()
}
}
impl<C: Ciphersuite> ZeroizeOnDrop for SecretShareMachine<C> {}
impl<C: Ciphersuite> SecretShareMachine<C> {
/// Verify the data from the previous round (canonicity, PoKs, message authenticity)
fn verify_r1<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
mut commitments: HashMap<u16, Commitments<C>>,
) -> Result<(HashMap<u16, Vec<C::G>>, HashMap<u16, C::G>), DkgError> {
validate_map(&commitments, &(1 ..= self.params.n()).collect::<Vec<_>>(), self.params.i())?;
let mut enc_keys = HashMap::new();
let mut batch = BatchVerifier::<u16, C::G>::new(commitments.len());
let mut commitments = commitments
.drain()
.map(|(l, mut msg)| {
enc_keys.insert(l, msg.enc_key);
msg.enc_key.zeroize();
// Step 5: Validate each proof of knowledge
// This is solely the prep step for the latter batch verification
msg.sig.batch_verify(
rng,
&mut batch,
l,
msg.commitments[0],
challenge::<C>(&self.context, l, msg.sig.R.to_bytes().as_ref(), &msg.cached_msg),
);
(l, msg.commitments.drain(..).collect::<Vec<_>>())
})
.collect::<HashMap<_, _>>();
batch.verify_with_vartime_blame().map_err(DkgError::InvalidProofOfKnowledge)?;
commitments.insert(self.params.i, self.our_commitments.drain(..).collect());
Ok((commitments, enc_keys))
}
/// Continue generating a key.
/// Takes in everyone else's commitments. Returns a HashMap of secret shares to be sent over
/// authenticated channels to their relevant counterparties.
pub fn generate_secret_shares<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
commitments: HashMap<u16, Commitments<C>>,
) -> Result<(KeyMachine<C>, HashMap<u16, SecretShare<C::F>>), DkgError> {
let (commitments, mut enc_keys) = self.verify_r1(&mut *rng, commitments)?;
// Step 1: Generate secret shares for all other parties
let mut sender = (C::generator() * self.enc_key).to_bytes();
let mut ciphers = HashMap::new();
let mut res = HashMap::new();
for l in 1 ..= self.params.n() {
// Don't insert our own shares to the byte buffer which is meant to be sent around
// An app developer could accidentally send it. Best to keep this black boxed
if l == self.params.i() {
continue;
}
let (mut cipher_send, cipher_recv) = {
let receiver = enc_keys.get_mut(&l).unwrap();
let mut ecdh = (*receiver * self.enc_key).to_bytes();
create_ciphers::<C>(sender, &mut receiver.to_bytes(), &mut ecdh)
};
let mut share = polynomial(&self.coefficients, l);
let mut share_bytes = share.to_repr();
share.zeroize();
cipher_send.apply_keystream(share_bytes.as_mut());
drop(cipher_send);
ciphers.insert(l, cipher_recv);
res.insert(l, SecretShare::<C::F>(share_bytes));
share_bytes.as_mut().zeroize();
}
self.enc_key.zeroize();
sender.as_mut().zeroize();
// Calculate our own share
let share = polynomial(&self.coefficients, self.params.i());
self.coefficients.zeroize();
Ok((KeyMachine { params: self.params, secret: share, commitments, ciphers }, res))
}
}
/// Final step of the key generation protocol.
pub struct KeyMachine<C: Ciphersuite> {
params: ThresholdParams,
secret: C::F,
ciphers: HashMap<u16, ChaCha20>,
commitments: HashMap<u16, Vec<C::G>>,
}
impl<C: Ciphersuite> Zeroize for KeyMachine<C> {
fn zeroize(&mut self) {
self.params.zeroize();
self.secret.zeroize();
// cipher implements ZeroizeOnDrop and zeroizes on drop, yet doesn't implement Zeroize
// The following is redundant, as Rust should automatically handle dropping it, yet it shows
// awareness of this quirk and at least attempts to be comprehensive
for (_, cipher) in self.ciphers.drain() {
drop(cipher);
}
for (_, commitments) in self.commitments.iter_mut() {
commitments.zeroize();
}
}
}
impl<C: Ciphersuite> Drop for KeyMachine<C> {
fn drop(&mut self) {
self.zeroize()
}
}
impl<C: Ciphersuite> ZeroizeOnDrop for KeyMachine<C> {}
impl<C: Ciphersuite> KeyMachine<C> {
/// Complete key generation.
/// Takes in everyone elses' shares submitted to us. Returns a ThresholdCore object representing
/// the generated keys. Successful protocol completion MUST be confirmed by all parties before
/// these keys may be safely used.
pub fn complete<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
mut shares: HashMap<u16, SecretShare<C::F>>,
) -> Result<ThresholdCore<C>, DkgError> {
let mut secret_share = self.secret;
self.secret.zeroize();
validate_map(&shares, &(1 ..= self.params.n()).collect::<Vec<_>>(), self.params.i())?;
// Calculate the exponent for a given participant and apply it to a series of commitments
// Initially used with the actual commitments to verify the secret share, later used with
// stripes to generate the verification shares
let exponential = |i: u16, values: &[_]| {
let i = C::F::from(i.into());
let mut res = Vec::with_capacity(self.params.t().into());
(0 .. usize::from(self.params.t())).into_iter().fold(C::F::one(), |exp, l| {
res.push((exp, values[l]));
exp * i
});
res
};
let mut batch = BatchVerifier::new(shares.len());
for (l, mut share_bytes) in shares.drain() {
let mut cipher = self.ciphers.remove(&l).unwrap();
cipher.apply_keystream(share_bytes.0.as_mut());
drop(cipher);
let mut share: C::F =
Option::from(C::F::from_repr(share_bytes.0)).ok_or(DkgError::InvalidShare(l))?;
share_bytes.zeroize();
secret_share += share;
// This can be insecurely linearized from n * t to just n using the below sums for a given
// stripe. Doing so uses naive addition which is subject to malleability. The only way to
// ensure that malleability isn't present is to use this n * t algorithm, which runs
// per sender and not as an aggregate of all senders, which also enables blame
let mut values = exponential(self.params.i, &self.commitments[&l]);
values.push((-share, C::generator()));
share.zeroize();
batch.queue(rng, l, values);
}
batch.verify_with_vartime_blame().map_err(DkgError::InvalidShare)?;
// Stripe commitments per t and sum them in advance. Calculating verification shares relies on
// these sums so preprocessing them is a massive speedup
// If these weren't just sums, yet the tables used in multiexp, this would be further optimized
// As of right now, each multiexp will regenerate them
let mut stripes = Vec::with_capacity(usize::from(self.params.t()));
for t in 0 .. usize::from(self.params.t()) {
stripes.push(self.commitments.values().map(|commitments| commitments[t]).sum());
}
// Calculate each user's verification share
let mut verification_shares = HashMap::new();
for i in 1 ..= self.params.n() {
verification_shares.insert(i, multiexp_vartime(&exponential(i, &stripes)));
}
// Removing this check would enable optimizing the above from t + (n * t) to t + ((n - 1) * t)
debug_assert_eq!(C::generator() * secret_share, verification_shares[&self.params.i()]);
Ok(ThresholdCore {
params: self.params,
secret_share,
group_key: stripes[0],
verification_shares,
})
}
}

399
crypto/dkg/src/lib.rs Normal file
View File

@@ -0,0 +1,399 @@
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
//! A collection of implementations of various distributed key generation protocols.
//! They all resolve into the provided Threshold types intended to enable their modularity.
//! Additional utilities around them, such as promotion from one generator to another, are also
//! provided.
use core::fmt::Debug;
use std::{io::Read, sync::Arc, collections::HashMap};
use thiserror::Error;
use zeroize::{Zeroize, ZeroizeOnDrop};
use group::{
ff::{Field, PrimeField},
GroupEncoding,
};
use ciphersuite::Ciphersuite;
/// The distributed key generation protocol described in the
/// [FROST paper](https://eprint.iacr.org/2020/852).
pub mod frost;
/// Promote keys between ciphersuites.
pub mod promote;
/// Tests for application-provided curves and algorithms.
#[cfg(any(test, feature = "tests"))]
pub mod tests;
// Validate a map of values to have the expected included participants
pub(crate) fn validate_map<T>(
map: &HashMap<u16, T>,
included: &[u16],
ours: u16,
) -> Result<(), DkgError> {
if (map.len() + 1) != included.len() {
Err(DkgError::InvalidParticipantQuantity(included.len(), map.len() + 1))?;
}
for included in included {
if *included == ours {
if map.contains_key(included) {
Err(DkgError::DuplicatedIndex(*included))?;
}
continue;
}
if !map.contains_key(included) {
Err(DkgError::MissingParticipant(*included))?;
}
}
Ok(())
}
/// Parameters for a multisig.
// These fields should not be made public as they should be static
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct ThresholdParams {
/// Participants needed to sign on behalf of the group.
t: u16,
/// Amount of participants.
n: u16,
/// Index of the participant being acted for.
i: u16,
}
impl ThresholdParams {
pub fn new(t: u16, n: u16, i: u16) -> Result<ThresholdParams, DkgError> {
if (t == 0) || (n == 0) {
Err(DkgError::ZeroParameter(t, n))?;
}
// When t == n, this shouldn't be used (MuSig2 and other variants of MuSig exist for a reason),
// but it's not invalid to do so
if t > n {
Err(DkgError::InvalidRequiredQuantity(t, n))?;
}
if (i == 0) || (i > n) {
Err(DkgError::InvalidParticipantIndex(n, i))?;
}
Ok(ThresholdParams { t, n, i })
}
pub fn t(&self) -> u16 {
self.t
}
pub fn n(&self) -> u16 {
self.n
}
pub fn i(&self) -> u16 {
self.i
}
}
/// Various errors possible during key generation/signing.
#[derive(Copy, Clone, Error, Debug)]
pub enum DkgError {
#[error("a parameter was 0 (required {0}, participants {1})")]
ZeroParameter(u16, u16),
#[error("invalid amount of required participants (max {1}, got {0})")]
InvalidRequiredQuantity(u16, u16),
#[error("invalid participant index (0 < index <= {0}, yet index is {1})")]
InvalidParticipantIndex(u16, u16),
#[error("invalid signing set")]
InvalidSigningSet,
#[error("invalid participant quantity (expected {0}, got {1})")]
InvalidParticipantQuantity(usize, usize),
#[error("duplicated participant index ({0})")]
DuplicatedIndex(u16),
#[error("missing participant {0}")]
MissingParticipant(u16),
#[error("invalid proof of knowledge (participant {0})")]
InvalidProofOfKnowledge(u16),
#[error("invalid share (participant {0})")]
InvalidShare(u16),
#[error("internal error ({0})")]
InternalError(&'static str),
}
/// Calculate the lagrange coefficient for a signing set.
pub fn lagrange<F: PrimeField>(i: u16, included: &[u16]) -> F {
let mut num = F::one();
let mut denom = F::one();
for l in included {
if i == *l {
continue;
}
let share = F::from(u64::try_from(*l).unwrap());
num *= share;
denom *= share - F::from(u64::try_from(i).unwrap());
}
// Safe as this will only be 0 if we're part of the above loop
// (which we have an if case to avoid)
num * denom.invert().unwrap()
}
/// Keys and verification shares generated by a DKG.
/// Called core as they're expected to be wrapped into an Arc before usage in various operations.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct ThresholdCore<C: Ciphersuite> {
/// Threshold Parameters.
params: ThresholdParams,
/// Secret share key.
secret_share: C::F,
/// Group key.
group_key: C::G,
/// Verification shares.
verification_shares: HashMap<u16, C::G>,
}
impl<C: Ciphersuite> Zeroize for ThresholdCore<C> {
fn zeroize(&mut self) {
self.params.zeroize();
self.secret_share.zeroize();
self.group_key.zeroize();
for (_, share) in self.verification_shares.iter_mut() {
share.zeroize();
}
}
}
impl<C: Ciphersuite> Drop for ThresholdCore<C> {
fn drop(&mut self) {
self.zeroize()
}
}
impl<C: Ciphersuite> ZeroizeOnDrop for ThresholdCore<C> {}
impl<C: Ciphersuite> ThresholdCore<C> {
pub(crate) fn new(
params: ThresholdParams,
secret_share: C::F,
verification_shares: HashMap<u16, C::G>,
) -> ThresholdCore<C> {
#[cfg(debug_assertions)]
validate_map(&verification_shares, &(0 ..= params.n).collect::<Vec<_>>(), 0).unwrap();
let t = (1 ..= params.t).collect::<Vec<_>>();
ThresholdCore {
params,
secret_share,
group_key: t.iter().map(|i| verification_shares[i] * lagrange::<C::F>(*i, &t)).sum(),
verification_shares,
}
}
pub fn params(&self) -> ThresholdParams {
self.params
}
pub fn secret_share(&self) -> C::F {
self.secret_share
}
pub fn group_key(&self) -> C::G {
self.group_key
}
pub(crate) fn verification_shares(&self) -> HashMap<u16, C::G> {
self.verification_shares.clone()
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
serialized.extend(u32::try_from(C::ID.len()).unwrap().to_be_bytes());
serialized.extend(C::ID);
serialized.extend(self.params.t.to_be_bytes());
serialized.extend(self.params.n.to_be_bytes());
serialized.extend(self.params.i.to_be_bytes());
serialized.extend(self.secret_share.to_repr().as_ref());
for l in 1 ..= self.params.n {
serialized.extend(self.verification_shares[&l].to_bytes().as_ref());
}
serialized
}
pub fn deserialize<R: Read>(reader: &mut R) -> Result<ThresholdCore<C>, DkgError> {
{
let missing = DkgError::InternalError("ThresholdCore serialization is missing its curve");
let different = DkgError::InternalError("deserializing ThresholdCore for another curve");
let mut id_len = [0; 4];
reader.read_exact(&mut id_len).map_err(|_| missing)?;
if u32::try_from(C::ID.len()).unwrap().to_be_bytes() != id_len {
Err(different)?;
}
let mut id = vec![0; C::ID.len()];
reader.read_exact(&mut id).map_err(|_| missing)?;
if id != C::ID {
Err(different)?;
}
}
let (t, n, i) = {
let mut read_u16 = || {
let mut value = [0; 2];
reader
.read_exact(&mut value)
.map_err(|_| DkgError::InternalError("missing participant quantities"))?;
Ok(u16::from_be_bytes(value))
};
(read_u16()?, read_u16()?, read_u16()?)
};
let secret_share =
C::read_F(reader).map_err(|_| DkgError::InternalError("invalid secret share"))?;
let mut verification_shares = HashMap::new();
for l in 1 ..= n {
verification_shares.insert(
l,
<C as Ciphersuite>::read_G(reader)
.map_err(|_| DkgError::InternalError("invalid verification share"))?,
);
}
Ok(ThresholdCore::new(
ThresholdParams::new(t, n, i).map_err(|_| DkgError::InternalError("invalid parameters"))?,
secret_share,
verification_shares,
))
}
}
/// Threshold keys usable for signing.
#[derive(Clone, Debug, Zeroize)]
pub struct ThresholdKeys<C: Ciphersuite> {
/// Core keys.
#[zeroize(skip)]
core: Arc<ThresholdCore<C>>,
/// Offset applied to these keys.
pub(crate) offset: Option<C::F>,
}
// Manually implement Drop due to https://github.com/RustCrypto/utils/issues/786
impl<C: Ciphersuite> Drop for ThresholdKeys<C> {
fn drop(&mut self) {
self.zeroize()
}
}
impl<C: Ciphersuite> ZeroizeOnDrop for ThresholdKeys<C> {}
/// View of keys passed to algorithm implementations.
#[derive(Clone, Zeroize)]
pub struct ThresholdView<C: Ciphersuite> {
group_key: C::G,
#[zeroize(skip)]
included: Vec<u16>,
secret_share: C::F,
#[zeroize(skip)]
verification_shares: HashMap<u16, C::G>,
}
impl<C: Ciphersuite> Drop for ThresholdView<C> {
fn drop(&mut self) {
self.zeroize()
}
}
impl<C: Ciphersuite> ZeroizeOnDrop for ThresholdView<C> {}
impl<C: Ciphersuite> ThresholdKeys<C> {
pub fn new(core: ThresholdCore<C>) -> ThresholdKeys<C> {
ThresholdKeys { core: Arc::new(core), offset: None }
}
/// Offset the keys by a given scalar to allow for account and privacy schemes.
/// This offset is ephemeral and will not be included when these keys are serialized.
/// Keys offset multiple times will form a new offset of their sum.
pub fn offset(&self, offset: C::F) -> ThresholdKeys<C> {
let mut res = self.clone();
// Carry any existing offset
// Enables schemes like Monero's subaddresses which have a per-subaddress offset and then a
// one-time-key offset
res.offset = Some(offset + res.offset.unwrap_or_else(C::F::zero));
res
}
/// Returns the current offset in-use for these keys.
pub fn current_offset(&self) -> Option<C::F> {
self.offset
}
pub fn params(&self) -> ThresholdParams {
self.core.params
}
pub fn secret_share(&self) -> C::F {
self.core.secret_share
}
/// Returns the group key with any offset applied.
pub fn group_key(&self) -> C::G {
self.core.group_key + (C::generator() * self.offset.unwrap_or_else(C::F::zero))
}
/// Returns all participants' verification shares without any offsetting.
pub(crate) fn verification_shares(&self) -> HashMap<u16, C::G> {
self.core.verification_shares()
}
pub fn serialize(&self) -> Vec<u8> {
self.core.serialize()
}
pub fn view(&self, included: &[u16]) -> Result<ThresholdView<C>, DkgError> {
if (included.len() < self.params().t.into()) || (usize::from(self.params().n) < included.len())
{
Err(DkgError::InvalidSigningSet)?;
}
let offset_share = self.offset.unwrap_or_else(C::F::zero) *
C::F::from(included.len().try_into().unwrap()).invert().unwrap();
let offset_verification_share = C::generator() * offset_share;
Ok(ThresholdView {
group_key: self.group_key(),
secret_share: (self.secret_share() * lagrange::<C::F>(self.params().i, included)) +
offset_share,
verification_shares: self
.verification_shares()
.iter()
.map(|(l, share)| {
(*l, (*share * lagrange::<C::F>(*l, included)) + offset_verification_share)
})
.collect(),
included: included.to_vec(),
})
}
}
impl<C: Ciphersuite> ThresholdView<C> {
pub fn group_key(&self) -> C::G {
self.group_key
}
pub fn included(&self) -> Vec<u16> {
self.included.clone()
}
pub fn secret_share(&self) -> C::F {
self.secret_share
}
pub fn verification_share(&self, l: u16) -> C::G {
self.verification_shares[&l]
}
}

127
crypto/dkg/src/promote.rs Normal file
View File

@@ -0,0 +1,127 @@
use std::{
marker::PhantomData,
io::{self, Read, Write},
sync::Arc,
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng};
use group::GroupEncoding;
use ciphersuite::Ciphersuite;
use transcript::{Transcript, RecommendedTranscript};
use dleq::DLEqProof;
use crate::{DkgError, ThresholdCore, ThresholdKeys, validate_map};
/// Promote a set of keys to another Ciphersuite definition.
pub trait CiphersuitePromote<C2: Ciphersuite> {
#[doc(hidden)]
#[allow(non_snake_case)]
fn _bound_C2(_c2: C2) {
panic!()
}
fn promote(self) -> ThresholdKeys<C2>;
}
fn transcript<G: GroupEncoding>(key: G, i: u16) -> RecommendedTranscript {
let mut transcript = RecommendedTranscript::new(b"FROST Generator Update");
transcript.append_message(b"group_key", key.to_bytes().as_ref());
transcript.append_message(b"participant", &i.to_be_bytes());
transcript
}
/// Proof of valid promotion to another generator.
#[derive(Clone, Copy)]
pub struct GeneratorProof<C: Ciphersuite> {
share: C::G,
proof: DLEqProof<C::G>,
}
impl<C: Ciphersuite> GeneratorProof<C> {
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.share.to_bytes().as_ref())?;
self.proof.serialize(writer)
}
pub fn read<R: Read>(reader: &mut R) -> io::Result<GeneratorProof<C>> {
Ok(GeneratorProof {
share: <C as Ciphersuite>::read_G(reader)?,
proof: DLEqProof::deserialize(reader)?,
})
}
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
}
/// Promote a set of keys from one curve to another, where the elliptic curve is the same.
/// Since the Ciphersuite trait additionally specifies a generator, this provides an O(n) way to
/// update the generator used with keys. The key generation protocol itself is exponential.
pub struct GeneratorPromotion<C1: Ciphersuite, C2: Ciphersuite> {
base: ThresholdKeys<C1>,
proof: GeneratorProof<C1>,
_c2: PhantomData<C2>,
}
impl<C1: Ciphersuite, C2: Ciphersuite> GeneratorPromotion<C1, C2>
where
C2: Ciphersuite<F = C1::F, G = C1::G>,
{
/// Begin promoting keys from one curve to another. Returns a proof this share was properly
/// promoted.
pub fn promote<R: RngCore + CryptoRng>(
rng: &mut R,
base: ThresholdKeys<C1>,
) -> (GeneratorPromotion<C1, C2>, GeneratorProof<C1>) {
// Do a DLEqProof for the new generator
let proof = GeneratorProof {
share: C2::generator() * base.secret_share(),
proof: DLEqProof::prove(
rng,
&mut transcript(base.core.group_key(), base.params().i),
&[C1::generator(), C2::generator()],
base.secret_share(),
),
};
(GeneratorPromotion { base, proof, _c2: PhantomData::<C2> }, proof)
}
/// Complete promotion by taking in the proofs from all other participants.
pub fn complete(
self,
proofs: &HashMap<u16, GeneratorProof<C1>>,
) -> Result<ThresholdKeys<C2>, DkgError> {
let params = self.base.params();
validate_map(proofs, &(1 ..= params.n).collect::<Vec<_>>(), params.i)?;
let original_shares = self.base.verification_shares();
let mut verification_shares = HashMap::new();
verification_shares.insert(params.i, self.proof.share);
for (i, proof) in proofs {
let i = *i;
proof
.proof
.verify(
&mut transcript(self.base.core.group_key(), i),
&[C1::generator(), C2::generator()],
&[original_shares[&i], proof.share],
)
.map_err(|_| DkgError::InvalidProofOfKnowledge(i))?;
verification_shares.insert(i, proof.share);
}
Ok(ThresholdKeys {
core: Arc::new(ThresholdCore::new(params, self.base.secret_share(), verification_shares)),
offset: None,
})
}
}

View File

@@ -0,0 +1,81 @@
use std::collections::HashMap;
use rand_core::{RngCore, CryptoRng};
use crate::{
Ciphersuite, ThresholdParams, ThresholdCore,
frost::{SecretShare, Commitments, KeyGenMachine},
tests::{THRESHOLD, PARTICIPANTS, clone_without},
};
/// Fully perform the FROST key generation algorithm.
pub fn frost_gen<R: RngCore + CryptoRng, C: Ciphersuite>(
rng: &mut R,
) -> HashMap<u16, ThresholdCore<C>> {
let mut machines = HashMap::new();
let mut commitments = HashMap::new();
for i in 1 ..= PARTICIPANTS {
let machine = KeyGenMachine::<C>::new(
ThresholdParams::new(THRESHOLD, PARTICIPANTS, i).unwrap(),
"DKG Test Key Generation".to_string(),
);
let (machine, these_commitments) = machine.generate_coefficients(rng);
machines.insert(i, machine);
commitments.insert(
i,
Commitments::read::<&[u8]>(
&mut these_commitments.serialize().as_ref(),
ThresholdParams { t: THRESHOLD, n: PARTICIPANTS, i: 1 },
)
.unwrap(),
);
}
let mut secret_shares = HashMap::new();
let mut machines = machines
.drain()
.map(|(l, machine)| {
let (machine, mut shares) =
machine.generate_secret_shares(rng, clone_without(&commitments, &l)).unwrap();
let shares = shares
.drain()
.map(|(l, share)| {
(l, SecretShare::<C::F>::read::<&[u8]>(&mut share.serialize().as_ref()).unwrap())
})
.collect::<HashMap<_, _>>();
secret_shares.insert(l, shares);
(l, machine)
})
.collect::<HashMap<_, _>>();
let mut verification_shares = None;
let mut group_key = None;
machines
.drain()
.map(|(i, machine)| {
let mut our_secret_shares = HashMap::new();
for (l, shares) in &secret_shares {
if i == *l {
continue;
}
our_secret_shares.insert(*l, shares[&i].clone());
}
let these_keys = machine.complete(rng, our_secret_shares).unwrap();
// Verify the verification_shares are agreed upon
if verification_shares.is_none() {
verification_shares = Some(these_keys.verification_shares());
}
assert_eq!(verification_shares.as_ref().unwrap(), &these_keys.verification_shares());
// Verify the group keys are agreed upon
if group_key.is_none() {
group_key = Some(these_keys.group_key());
}
assert_eq!(group_key.unwrap(), these_keys.group_key());
(i, these_keys)
})
.collect::<HashMap<_, _>>()
}

View File

@@ -0,0 +1,69 @@
use std::collections::HashMap;
use rand_core::{RngCore, CryptoRng};
use group::ff::Field;
use ciphersuite::Ciphersuite;
use crate::{ThresholdCore, ThresholdKeys, lagrange};
/// FROST generation test.
pub mod frost;
use frost::frost_gen;
// Promotion test.
mod promote;
use promote::test_generator_promotion;
/// Constant amount of participants to use when testing.
pub const PARTICIPANTS: u16 = 5;
/// Constant threshold of participants to use when signing.
pub const THRESHOLD: u16 = ((PARTICIPANTS / 3) * 2) + 1;
/// Clone a map without a specific value.
pub fn clone_without<K: Clone + std::cmp::Eq + std::hash::Hash, V: Clone>(
map: &HashMap<K, V>,
without: &K,
) -> HashMap<K, V> {
let mut res = map.clone();
res.remove(without).unwrap();
res
}
/// Recover the secret from a collection of keys.
pub fn recover_key<C: Ciphersuite>(keys: &HashMap<u16, ThresholdKeys<C>>) -> C::F {
let first = keys.values().next().expect("no keys provided");
assert!(keys.len() >= first.params().t().into(), "not enough keys provided");
let included = keys.keys().cloned().collect::<Vec<_>>();
let group_private = keys.iter().fold(C::F::zero(), |accum, (i, keys)| {
accum + (keys.secret_share() * lagrange::<C::F>(*i, &included))
});
assert_eq!(C::generator() * group_private, first.group_key(), "failed to recover keys");
group_private
}
/// Generate threshold keys for tests.
pub fn key_gen<R: RngCore + CryptoRng, C: Ciphersuite>(
rng: &mut R,
) -> HashMap<u16, ThresholdKeys<C>> {
let res = frost_gen(rng)
.drain()
.map(|(i, core)| {
assert_eq!(
&ThresholdCore::<C>::deserialize::<&[u8]>(&mut core.serialize().as_ref()).unwrap(),
&core
);
(i, ThresholdKeys::new(core))
})
.collect();
assert_eq!(C::generator() * recover_key(&res), res[&1].group_key());
res
}
/// Run the test suite on a ciphersuite.
pub fn test_ciphersuite<R: RngCore + CryptoRng, C: Ciphersuite>(rng: &mut R) {
key_gen::<_, C>(rng);
test_generator_promotion::<_, C>(rng);
}

View File

@@ -0,0 +1,60 @@
use std::{marker::PhantomData, collections::HashMap};
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use group::Group;
use ciphersuite::Ciphersuite;
use crate::{
promote::{GeneratorPromotion, GeneratorProof},
tests::{clone_without, key_gen, recover_key},
};
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
struct AltGenerator<C: Ciphersuite> {
_curve: PhantomData<C>,
}
impl<C: Ciphersuite> Ciphersuite for AltGenerator<C> {
type F = C::F;
type G = C::G;
type H = C::H;
const ID: &'static [u8] = b"Alternate Ciphersuite";
fn generator() -> Self::G {
C::G::generator() * <C as Ciphersuite>::hash_to_F(b"DKG Promotion Test", b"generator")
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
<C as Ciphersuite>::hash_to_F(dst, data)
}
}
// Test promotion of threshold keys to another generator
pub(crate) fn test_generator_promotion<R: RngCore + CryptoRng, C: Ciphersuite>(rng: &mut R) {
let keys = key_gen::<_, C>(&mut *rng);
let mut promotions = HashMap::new();
let mut proofs = HashMap::new();
for (i, keys) in &keys {
let (promotion, proof) =
GeneratorPromotion::<_, AltGenerator<C>>::promote(&mut *rng, keys.clone());
promotions.insert(*i, promotion);
proofs.insert(*i, GeneratorProof::<C>::read::<&[u8]>(&mut proof.serialize().as_ref()).unwrap());
}
let new_group_key = AltGenerator::<C>::generator() * recover_key(&keys);
for (i, promoting) in promotions.drain() {
let promoted = promoting.complete(&clone_without(&proofs, &i)).unwrap();
assert_eq!(keys[&i].params(), promoted.params());
assert_eq!(keys[&i].secret_share(), promoted.secret_share());
assert_eq!(new_group_key, promoted.group_key());
for (l, verification_share) in promoted.verification_shares() {
assert_eq!(AltGenerator::<C>::generator() * keys[&l].secret_share(), verification_share);
}
}
}