Create a dedicated crate for the DKG (#141)

* Add dkg crate

* Remove F_len and G_len

They're generally no longer used.

* Replace hash_to_vec with a provided method around associated type H: Digest

Part of trying to minimize this trait so it can be moved elsewhere. Vec, 
which isn't std, may have been a blocker.

* Encrypt secret shares within the FROST library

Reduces requirements on callers in order to be correct.

* Update usage of Zeroize within FROST

* Inline functions in key_gen

There was no reason to have them separated as they were. sign probably 
has the same statement available, yet that isn't the focus right now.

* Add a ciphersuite package which provides hash_to_F

* Set the Ciphersuite version to something valid

* Have ed448 export Scalar/FieldElement/Point at the top level

* Move FROST over to Ciphersuite

* Correct usage of ff in ciphersuite

* Correct documentation handling

* Move Schnorr signatures to their own crate

* Remove unused feature from schnorr

* Fix Schnorr tests

* Split DKG into a separate crate

* Add serialize to Commitments and SecretShare

Helper for buf = vec![]; .write(buf).unwrap(); buf

* Move FROST over to the new dkg crate

* Update Monero lib to latest FROST

* Correct ethereum's usage of features

* Add serialize to GeneratorProof

* Add serialize helper function to FROST

* Rename AddendumSerialize to WriteAddendum

* Update processor

* Slight fix to processor
This commit is contained in:
Luke Parker
2022-10-29 03:54:42 -05:00
committed by GitHub
parent cbceaff678
commit 2379855b31
50 changed files with 2076 additions and 1601 deletions

View File

@@ -0,0 +1,44 @@
use zeroize::Zeroize;
use sha2::{Digest, Sha512};
use group::Group;
use dalek_ff_group::Scalar;
use crate::Ciphersuite;
macro_rules! dalek_curve {
(
$feature: literal,
$Ciphersuite: ident,
$Point: ident,
$ID: literal
) => {
use dalek_ff_group::$Point;
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct $Ciphersuite;
impl Ciphersuite for $Ciphersuite {
type F = Scalar;
type G = $Point;
type H = Sha512;
const ID: &'static [u8] = $ID;
fn generator() -> Self::G {
$Point::generator()
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
Scalar::from_hash(Sha512::new_with_prefix(&[dst, data].concat()))
}
}
};
}
#[cfg(any(test, feature = "ristretto"))]
dalek_curve!("ristretto", Ristretto, RistrettoPoint, b"ristretto");
#[cfg(feature = "ed25519")]
dalek_curve!("ed25519", Ed25519, EdwardsPoint, b"edwards25519");

View File

@@ -0,0 +1,67 @@
use zeroize::Zeroize;
use digest::{
typenum::U114, core_api::BlockSizeUser, Update, Output, OutputSizeUser, FixedOutput,
ExtendableOutput, XofReader, HashMarker, Digest,
};
use sha3::Shake256;
use group::Group;
use minimal_ed448::{scalar::Scalar, point::Point};
use crate::Ciphersuite;
// Re-define Shake256 as a traditional Digest to meet API expectations
#[derive(Clone, Default)]
pub struct Shake256_114(Shake256);
impl BlockSizeUser for Shake256_114 {
type BlockSize = <Shake256 as BlockSizeUser>::BlockSize;
fn block_size() -> usize {
Shake256::block_size()
}
}
impl OutputSizeUser for Shake256_114 {
type OutputSize = U114;
fn output_size() -> usize {
114
}
}
impl Update for Shake256_114 {
fn update(&mut self, data: &[u8]) {
self.0.update(data);
}
fn chain(mut self, data: impl AsRef<[u8]>) -> Self {
Update::update(&mut self, data.as_ref());
self
}
}
impl FixedOutput for Shake256_114 {
fn finalize_fixed(self) -> Output<Self> {
let mut res = Default::default();
FixedOutput::finalize_into(self, &mut res);
res
}
fn finalize_into(self, out: &mut Output<Self>) {
let mut reader = self.0.finalize_xof();
reader.read(out);
}
}
impl HashMarker for Shake256_114 {}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct Ed448;
impl Ciphersuite for Ed448 {
type F = Scalar;
type G = Point;
type H = Shake256_114;
const ID: &'static [u8] = b"ed448";
fn generator() -> Self::G {
Point::generator()
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
Scalar::wide_reduce(Self::H::digest(&[dst, data].concat()).as_ref().try_into().unwrap())
}
}

View File

@@ -0,0 +1,72 @@
use zeroize::Zeroize;
use sha2::{Digest, Sha256};
use group::ff::{Field, PrimeField};
use elliptic_curve::{
generic_array::GenericArray,
bigint::{Encoding, U384},
hash2curve::{Expander, ExpandMsg, ExpandMsgXmd},
};
use crate::Ciphersuite;
macro_rules! kp_curve {
(
$feature: literal,
$lib: ident,
$Ciphersuite: ident,
$ID: literal
) => {
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct $Ciphersuite;
impl Ciphersuite for $Ciphersuite {
type F = $lib::Scalar;
type G = $lib::ProjectivePoint;
type H = Sha256;
const ID: &'static [u8] = $ID;
fn generator() -> Self::G {
$lib::ProjectivePoint::GENERATOR
}
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
let mut dst = dst;
let oversize = Sha256::digest([b"H2C-OVERSIZE-DST-".as_ref(), dst].concat());
if dst.len() > 255 {
dst = oversize.as_ref();
}
// While one of these two libraries does support directly hashing to the Scalar field, the
// other doesn't. While that's probably an oversight, this is a universally working method
let mut modulus = [0; 48];
modulus[16 ..].copy_from_slice(&(Self::F::zero() - Self::F::one()).to_bytes());
let modulus = U384::from_be_slice(&modulus).wrapping_add(&U384::ONE);
let mut unreduced = U384::from_be_bytes({
let mut bytes = [0; 48];
ExpandMsgXmd::<Sha256>::expand_message(&[msg], dst, 48).unwrap().fill_bytes(&mut bytes);
bytes
})
.reduce(&modulus)
.unwrap()
.to_be_bytes();
let mut array = *GenericArray::from_slice(&unreduced[16 ..]);
let res = $lib::Scalar::from_repr(array).unwrap();
unreduced.zeroize();
array.zeroize();
res
}
}
};
}
#[cfg(feature = "p256")]
kp_curve!("p256", p256, P256, b"P-256");
#[cfg(feature = "secp256k1")]
kp_curve!("secp256k1", k256, Secp256k1, b"secp256k1");

View File

@@ -0,0 +1,106 @@
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(not(feature = "std"), no_std)]
use core::fmt::Debug;
#[cfg(feature = "std")]
use std::io::{self, Read};
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use subtle::ConstantTimeEq;
use digest::{core_api::BlockSizeUser, Digest};
use group::{
ff::{Field, PrimeField, PrimeFieldBits},
Group, GroupOps,
prime::PrimeGroup,
};
#[cfg(feature = "std")]
use group::GroupEncoding;
#[cfg(feature = "dalek")]
mod dalek;
#[cfg(feature = "ristretto")]
pub use dalek::Ristretto;
#[cfg(feature = "ed25519")]
pub use dalek::Ed25519;
#[cfg(feature = "kp256")]
mod kp256;
#[cfg(feature = "secp256k1")]
pub use kp256::Secp256k1;
#[cfg(feature = "p256")]
pub use kp256::P256;
#[cfg(feature = "ed448")]
mod ed448;
#[cfg(feature = "ed448")]
pub use ed448::*;
/// Unified trait defining a ciphersuite around an elliptic curve.
pub trait Ciphersuite: Clone + Copy + PartialEq + Eq + Debug + Zeroize {
/// Scalar field element type.
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
type F: PrimeField + PrimeFieldBits + Zeroize;
/// Group element type.
type G: Group<Scalar = Self::F> + GroupOps + PrimeGroup + Zeroize + ConstantTimeEq;
/// Hash algorithm used with this curve.
// Requires BlockSizeUser so it can be used within Hkdf which requies that.
type H: Clone + BlockSizeUser + Digest;
/// ID for this curve.
const ID: &'static [u8];
/// Generator for the group.
// While group does provide this in its API, privacy coins may want to use a custom basepoint
fn generator() -> Self::G;
/// Hash the provided dst and message to a scalar.
#[allow(non_snake_case)]
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F;
/// Generate a random non-zero scalar.
#[allow(non_snake_case)]
fn random_nonzero_F<R: RngCore + CryptoRng>(rng: &mut R) -> Self::F {
let mut res;
while {
res = Self::F::random(&mut *rng);
res.ct_eq(&Self::F::zero()).into()
} {}
res
}
/// Read a canonical scalar from something implementing std::io::Read.
#[cfg(feature = "std")]
#[allow(non_snake_case)]
fn read_F<R: Read>(reader: &mut R) -> io::Result<Self::F> {
let mut encoding = <Self::F as PrimeField>::Repr::default();
reader.read_exact(encoding.as_mut())?;
// ff mandates this is canonical
let res = Option::<Self::F>::from(Self::F::from_repr(encoding))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "non-canonical scalar"));
for b in encoding.as_mut() {
b.zeroize();
}
res
}
/// Read a canonical point from something implementing std::io::Read.
#[cfg(feature = "std")]
#[allow(non_snake_case)]
fn read_G<R: Read>(reader: &mut R) -> io::Result<Self::G> {
let mut encoding = <Self::G as GroupEncoding>::Repr::default();
reader.read_exact(encoding.as_mut())?;
let point = Option::<Self::G>::from(Self::G::from_bytes(&encoding))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid point"))?;
if point.to_bytes().as_ref() != encoding.as_ref() {
Err(io::Error::new(io::ErrorKind::Other, "non-canonical point"))?;
}
Ok(point)
}
}