Create a dedicated crate for the DKG (#141)

* Add dkg crate

* Remove F_len and G_len

They're generally no longer used.

* Replace hash_to_vec with a provided method around associated type H: Digest

Part of trying to minimize this trait so it can be moved elsewhere. Vec, 
which isn't std, may have been a blocker.

* Encrypt secret shares within the FROST library

Reduces requirements on callers in order to be correct.

* Update usage of Zeroize within FROST

* Inline functions in key_gen

There was no reason to have them separated as they were. sign probably 
has the same statement available, yet that isn't the focus right now.

* Add a ciphersuite package which provides hash_to_F

* Set the Ciphersuite version to something valid

* Have ed448 export Scalar/FieldElement/Point at the top level

* Move FROST over to Ciphersuite

* Correct usage of ff in ciphersuite

* Correct documentation handling

* Move Schnorr signatures to their own crate

* Remove unused feature from schnorr

* Fix Schnorr tests

* Split DKG into a separate crate

* Add serialize to Commitments and SecretShare

Helper for buf = vec![]; .write(buf).unwrap(); buf

* Move FROST over to the new dkg crate

* Update Monero lib to latest FROST

* Correct ethereum's usage of features

* Add serialize to GeneratorProof

* Add serialize helper function to FROST

* Rename AddendumSerialize to WriteAddendum

* Update processor

* Slight fix to processor
This commit is contained in:
Luke Parker
2022-10-29 03:54:42 -05:00
committed by GitHub
parent cbceaff678
commit 2379855b31
50 changed files with 2076 additions and 1601 deletions

View File

@@ -0,0 +1,49 @@
[package]
name = "ciphersuite"
version = "0.1.1"
description = "Ciphersuites built around ff/group"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/ciphersuite"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["ciphersuite", "ff", "group"]
edition = "2021"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
rand_core = "0.6"
zeroize = { version = "1.5", features = ["zeroize_derive"] }
subtle = "2"
digest = "0.10"
sha2 = { version = "0.10", optional = true }
sha3 = { version = "0.10", optional = true }
ff = { version = "0.12", features = ["bits"] }
group = "0.12"
dalek-ff-group = { path = "../dalek-ff-group", version = "^0.1.2", optional = true }
elliptic-curve = { version = "0.12", features = ["hash2curve"], optional = true }
p256 = { version = "0.11", features = ["arithmetic", "bits", "hash2curve"], optional = true }
k256 = { version = "0.11", features = ["arithmetic", "bits", "hash2curve"], optional = true }
minimal-ed448 = { path = "../ed448", version = "0.1", optional = true }
[features]
std = []
dalek = ["sha2", "dalek-ff-group"]
ed25519 = ["dalek"]
ristretto = ["dalek"]
kp256 = ["sha2", "elliptic-curve"]
p256 = ["kp256", "dep:p256"]
secp256k1 = ["kp256", "k256"]
ed448 = ["sha3", "minimal-ed448"]
default = ["std"]

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021-2022 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,3 @@
# Ciphersuite
Ciphersuites for elliptic curves premised on ff/group.

View File

@@ -0,0 +1,44 @@
use zeroize::Zeroize;
use sha2::{Digest, Sha512};
use group::Group;
use dalek_ff_group::Scalar;
use crate::Ciphersuite;
macro_rules! dalek_curve {
(
$feature: literal,
$Ciphersuite: ident,
$Point: ident,
$ID: literal
) => {
use dalek_ff_group::$Point;
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct $Ciphersuite;
impl Ciphersuite for $Ciphersuite {
type F = Scalar;
type G = $Point;
type H = Sha512;
const ID: &'static [u8] = $ID;
fn generator() -> Self::G {
$Point::generator()
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
Scalar::from_hash(Sha512::new_with_prefix(&[dst, data].concat()))
}
}
};
}
#[cfg(any(test, feature = "ristretto"))]
dalek_curve!("ristretto", Ristretto, RistrettoPoint, b"ristretto");
#[cfg(feature = "ed25519")]
dalek_curve!("ed25519", Ed25519, EdwardsPoint, b"edwards25519");

View File

@@ -0,0 +1,67 @@
use zeroize::Zeroize;
use digest::{
typenum::U114, core_api::BlockSizeUser, Update, Output, OutputSizeUser, FixedOutput,
ExtendableOutput, XofReader, HashMarker, Digest,
};
use sha3::Shake256;
use group::Group;
use minimal_ed448::{scalar::Scalar, point::Point};
use crate::Ciphersuite;
// Re-define Shake256 as a traditional Digest to meet API expectations
#[derive(Clone, Default)]
pub struct Shake256_114(Shake256);
impl BlockSizeUser for Shake256_114 {
type BlockSize = <Shake256 as BlockSizeUser>::BlockSize;
fn block_size() -> usize {
Shake256::block_size()
}
}
impl OutputSizeUser for Shake256_114 {
type OutputSize = U114;
fn output_size() -> usize {
114
}
}
impl Update for Shake256_114 {
fn update(&mut self, data: &[u8]) {
self.0.update(data);
}
fn chain(mut self, data: impl AsRef<[u8]>) -> Self {
Update::update(&mut self, data.as_ref());
self
}
}
impl FixedOutput for Shake256_114 {
fn finalize_fixed(self) -> Output<Self> {
let mut res = Default::default();
FixedOutput::finalize_into(self, &mut res);
res
}
fn finalize_into(self, out: &mut Output<Self>) {
let mut reader = self.0.finalize_xof();
reader.read(out);
}
}
impl HashMarker for Shake256_114 {}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct Ed448;
impl Ciphersuite for Ed448 {
type F = Scalar;
type G = Point;
type H = Shake256_114;
const ID: &'static [u8] = b"ed448";
fn generator() -> Self::G {
Point::generator()
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
Scalar::wide_reduce(Self::H::digest(&[dst, data].concat()).as_ref().try_into().unwrap())
}
}

View File

@@ -0,0 +1,72 @@
use zeroize::Zeroize;
use sha2::{Digest, Sha256};
use group::ff::{Field, PrimeField};
use elliptic_curve::{
generic_array::GenericArray,
bigint::{Encoding, U384},
hash2curve::{Expander, ExpandMsg, ExpandMsgXmd},
};
use crate::Ciphersuite;
macro_rules! kp_curve {
(
$feature: literal,
$lib: ident,
$Ciphersuite: ident,
$ID: literal
) => {
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct $Ciphersuite;
impl Ciphersuite for $Ciphersuite {
type F = $lib::Scalar;
type G = $lib::ProjectivePoint;
type H = Sha256;
const ID: &'static [u8] = $ID;
fn generator() -> Self::G {
$lib::ProjectivePoint::GENERATOR
}
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
let mut dst = dst;
let oversize = Sha256::digest([b"H2C-OVERSIZE-DST-".as_ref(), dst].concat());
if dst.len() > 255 {
dst = oversize.as_ref();
}
// While one of these two libraries does support directly hashing to the Scalar field, the
// other doesn't. While that's probably an oversight, this is a universally working method
let mut modulus = [0; 48];
modulus[16 ..].copy_from_slice(&(Self::F::zero() - Self::F::one()).to_bytes());
let modulus = U384::from_be_slice(&modulus).wrapping_add(&U384::ONE);
let mut unreduced = U384::from_be_bytes({
let mut bytes = [0; 48];
ExpandMsgXmd::<Sha256>::expand_message(&[msg], dst, 48).unwrap().fill_bytes(&mut bytes);
bytes
})
.reduce(&modulus)
.unwrap()
.to_be_bytes();
let mut array = *GenericArray::from_slice(&unreduced[16 ..]);
let res = $lib::Scalar::from_repr(array).unwrap();
unreduced.zeroize();
array.zeroize();
res
}
}
};
}
#[cfg(feature = "p256")]
kp_curve!("p256", p256, P256, b"P-256");
#[cfg(feature = "secp256k1")]
kp_curve!("secp256k1", k256, Secp256k1, b"secp256k1");

View File

@@ -0,0 +1,106 @@
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(not(feature = "std"), no_std)]
use core::fmt::Debug;
#[cfg(feature = "std")]
use std::io::{self, Read};
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use subtle::ConstantTimeEq;
use digest::{core_api::BlockSizeUser, Digest};
use group::{
ff::{Field, PrimeField, PrimeFieldBits},
Group, GroupOps,
prime::PrimeGroup,
};
#[cfg(feature = "std")]
use group::GroupEncoding;
#[cfg(feature = "dalek")]
mod dalek;
#[cfg(feature = "ristretto")]
pub use dalek::Ristretto;
#[cfg(feature = "ed25519")]
pub use dalek::Ed25519;
#[cfg(feature = "kp256")]
mod kp256;
#[cfg(feature = "secp256k1")]
pub use kp256::Secp256k1;
#[cfg(feature = "p256")]
pub use kp256::P256;
#[cfg(feature = "ed448")]
mod ed448;
#[cfg(feature = "ed448")]
pub use ed448::*;
/// Unified trait defining a ciphersuite around an elliptic curve.
pub trait Ciphersuite: Clone + Copy + PartialEq + Eq + Debug + Zeroize {
/// Scalar field element type.
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
type F: PrimeField + PrimeFieldBits + Zeroize;
/// Group element type.
type G: Group<Scalar = Self::F> + GroupOps + PrimeGroup + Zeroize + ConstantTimeEq;
/// Hash algorithm used with this curve.
// Requires BlockSizeUser so it can be used within Hkdf which requies that.
type H: Clone + BlockSizeUser + Digest;
/// ID for this curve.
const ID: &'static [u8];
/// Generator for the group.
// While group does provide this in its API, privacy coins may want to use a custom basepoint
fn generator() -> Self::G;
/// Hash the provided dst and message to a scalar.
#[allow(non_snake_case)]
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F;
/// Generate a random non-zero scalar.
#[allow(non_snake_case)]
fn random_nonzero_F<R: RngCore + CryptoRng>(rng: &mut R) -> Self::F {
let mut res;
while {
res = Self::F::random(&mut *rng);
res.ct_eq(&Self::F::zero()).into()
} {}
res
}
/// Read a canonical scalar from something implementing std::io::Read.
#[cfg(feature = "std")]
#[allow(non_snake_case)]
fn read_F<R: Read>(reader: &mut R) -> io::Result<Self::F> {
let mut encoding = <Self::F as PrimeField>::Repr::default();
reader.read_exact(encoding.as_mut())?;
// ff mandates this is canonical
let res = Option::<Self::F>::from(Self::F::from_repr(encoding))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "non-canonical scalar"));
for b in encoding.as_mut() {
b.zeroize();
}
res
}
/// Read a canonical point from something implementing std::io::Read.
#[cfg(feature = "std")]
#[allow(non_snake_case)]
fn read_G<R: Read>(reader: &mut R) -> io::Result<Self::G> {
let mut encoding = <Self::G as GroupEncoding>::Repr::default();
reader.read_exact(encoding.as_mut())?;
let point = Option::<Self::G>::from(Self::G::from_bytes(&encoding))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid point"))?;
if point.to_bytes().as_ref() != encoding.as_ref() {
Err(io::Error::new(io::ErrorKind::Other, "non-canonical point"))?;
}
Ok(point)
}
}